1
|
Lima WR, Tessarin-Almeida G, Rozanski A, Parreira KS, Moraes MS, Martins DC, Hashimoto RF, Galante PAF, Garcia CRS. Signaling transcript profile of the asexual intraerythrocytic development cycle of Plasmodium falciparum induced by melatonin and cAMP. Genes Cancer 2016; 7:323-339. [PMID: 28050233 PMCID: PMC5115173 DOI: 10.18632/genesandcancer.118] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
According to the World Health Organization (WHO), Plasmodium falciparum is the deadliest parasite among all species. This parasite possesses the ability to sense molecules, including melatonin (MEL) and cAMP, and modulate its cell cycle accordingly. MEL synchronizes the development of this malaria parasite by activating several cascades, including the generation of the second messenger cAMP. Therefore, we performed RNA sequencing (RNA-Seq) analysis in P. falciparum erythrocytic stages (ring, trophozoite and schizont) treated with MEL and cAMP. To investigate the expression profile of P. falciparum genes regulated by MEL and cAMP, we performed RNA-Seq analysis in three P. falciparum strains (control, 3D7; protein kinase 7 knockout, PfPK7-; and PfPK7 complement, PfPK7C). In the 3D7 strain, 38 genes were differentially expressed upon MEL treatment; however, none of the genes in the trophozoite (T) stage PfPK7- knockout parasites were differentially expressed upon MEL treatment for 5 hours compared to untreated controls, suggesting that PfPK7 may be involved in the signaling leading to differential gene expression. Moreover, we found that MEL modified the mRNA expression of genes encoding membrane proteins, zinc ion-binding proteins and nucleic acid-binding proteins, which might influence numerous functions in the parasite. The RNA-Seq data following treatment with cAMP show that this molecule modulates different genes throughout the intraerythrocytic cycle, namely, 75, 101 and 141 genes, respectively, in the ring (R), T and schizont (S) stages. Our results highlight P. falciparum's perception of the external milieu through the signaling molecules MEL and cAMP, which are able to drive to changes in gene expression in the parasite.
Collapse
Affiliation(s)
- Wânia Rezende Lima
- Departamento de Fisiologia, Instituto de Biociências, Universidade de Sao Paulo, Sao Paulo, Brazil.,Instituto de Ciências Exatas e Naturais (ICEN)- Medicina, Universidade Federal do Mato Grosso - Campus Rondonópolis, Brazil
| | | | - Andrei Rozanski
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, Sao Paulo, Brazil
| | - Kleber S Parreira
- Departamento de Imunologia e Parasitologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Brazil
| | - Miriam S Moraes
- Departamento de Fisiologia, Instituto de Biociências, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - David C Martins
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Paulo, Brazil
| | - Ronaldo F Hashimoto
- Departamento de Ciência da Computação, Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Brazil
| | - Pedro A F Galante
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, Sao Paulo, Brazil
| | - Célia R S Garcia
- Departamento de Fisiologia, Instituto de Biociências, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
2
|
Kern S, Agarwal S, Huber K, Gehring AP, Strödke B, Wirth CC, Brügl T, Abodo LO, Dandekar T, Doerig C, Fischer R, Tobin AB, Alam MM, Bracher F, Pradel G. Inhibition of the SR protein-phosphorylating CLK kinases of Plasmodium falciparum impairs blood stage replication and malaria transmission. PLoS One 2014; 9:e105732. [PMID: 25188378 PMCID: PMC4154858 DOI: 10.1371/journal.pone.0105732] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 07/28/2014] [Indexed: 01/01/2023] Open
Abstract
Cyclin-dependent kinase-like kinases (CLKs) are dual specificity protein kinases that phosphorylate Serine/Arginine-rich (SR) proteins involved in pre-mRNA processing. Four CLKs, termed PfCLK-1-4, can be identified in the human malaria parasite Plasmodium falciparum, which show homology with the yeast SR protein kinase Sky1p. The four PfCLKs are present in the nucleus and cytoplasm of the asexual blood stages and of gametocytes, sexual precursor cells crucial for malaria parasite transmission from humans to mosquitoes. We identified three plasmodial SR proteins, PfSRSF12, PfSFRS4 and PfSF-1, which are predominantly present in the nucleus of blood stage trophozoites, PfSRSF12 and PfSF-1 are further detectable in the nucleus of gametocytes. We found that recombinantly expressed SR proteins comprising the Arginine/Serine (RS)-rich domains were phosphorylated by the four PfCLKs in in vitro kinase assays, while a recombinant PfSF-1 peptide lacking the RS-rich domain was not phosphorylated. Since it was hitherto not possible to knock-out the pfclk genes by conventional gene disruption, we aimed at chemical knock-outs for phenotype analysis. We identified five human CLK inhibitors, belonging to the oxo-β-carbolines and aminopyrimidines, as well as the antiseptic chlorhexidine as PfCLK-targeting compounds. The six inhibitors block P. falciparum blood stage replication in the low micromolar to nanomolar range by preventing the trophozoite-to-schizont transformation. In addition, the inhibitors impair gametocyte maturation and gametogenesis in in vitro assays. The combined data show that the four PfCLKs are involved in phosphorylation of SR proteins with essential functions for the blood and sexual stages of the malaria parasite, thus pointing to the kinases as promising targets for antimalarial and transmission blocking drugs.
Collapse
Affiliation(s)
- Selina Kern
- Research Center for Infectious Diseases, University of Würzburg, Würzburg, Germany
- Institute of Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Shruti Agarwal
- Research Center for Infectious Diseases, University of Würzburg, Würzburg, Germany
| | - Kilian Huber
- Department of Pharmacy – Center for Drug Research, Ludwig-Maximillians University, Munich, Germany
| | - André P. Gehring
- Department of Pharmacy – Center for Drug Research, Ludwig-Maximillians University, Munich, Germany
| | - Benjamin Strödke
- Department of Pharmacy – Center for Drug Research, Ludwig-Maximillians University, Munich, Germany
| | - Christine C. Wirth
- Institute of Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Thomas Brügl
- Research Center for Infectious Diseases, University of Würzburg, Würzburg, Germany
| | | | - Thomas Dandekar
- Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Christian Doerig
- INSERM U609, Global Health Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Rainer Fischer
- Institute of Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Andrew B. Tobin
- Department of Cell Physiology and Pharmacology, MRC Toxicology Unit, University of Leicester, Leicester, United Kingdom
| | - Mahmood M. Alam
- Department of Cell Physiology and Pharmacology, MRC Toxicology Unit, University of Leicester, Leicester, United Kingdom
| | - Franz Bracher
- Department of Pharmacy – Center for Drug Research, Ludwig-Maximillians University, Munich, Germany
| | - Gabriele Pradel
- Institute of Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
- * E-mail:
| |
Collapse
|
3
|
Structural and evolutionary divergence of eukaryotic protein kinases in Apicomplexa. BMC Evol Biol 2011; 11:321. [PMID: 22047078 PMCID: PMC3239843 DOI: 10.1186/1471-2148-11-321] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 11/02/2011] [Indexed: 12/04/2022] Open
Abstract
Background The Apicomplexa constitute an evolutionarily divergent phylum of protozoan pathogens responsible for widespread parasitic diseases such as malaria and toxoplasmosis. Many cellular functions in these medically important organisms are controlled by protein kinases, which have emerged as promising drug targets for parasitic diseases. However, an incomplete understanding of how apicomplexan kinases structurally and mechanistically differ from their host counterparts has hindered drug development efforts to target parasite kinases. Results We used the wealth of sequence data recently made available for 15 apicomplexan species to identify the kinome of each species and quantify the evolutionary constraints imposed on each family of apicomplexan kinases. Our analysis revealed lineage-specific adaptations in selected families, namely cyclin-dependent kinase (CDK), calcium-dependent protein kinase (CDPK) and CLK/LAMMER, which have been identified as important in the pathogenesis of these organisms. Bayesian analysis of selective constraints imposed on these families identified the sequence and structural features that most distinguish apicomplexan protein kinases from their homologs in model organisms and other eukaryotes. In particular, in a subfamily of CDKs orthologous to Plasmodium falciparum crk-5, the activation loop contains a novel PTxC motif which is absent from all CDKs outside Apicomplexa. Our analysis also suggests a convergent mode of regulation in a subset of apicomplexan CDPKs and mammalian MAPKs involving a commonly conserved arginine in the αC helix. In all recognized apicomplexan CLKs, we find a set of co-conserved residues involved in substrate recognition and docking that are distinct from metazoan CLKs. Conclusions We pinpoint key conserved residues that can be predicted to mediate functional differences from eukaryotic homologs in three identified kinase families. We discuss the structural, functional and evolutionary implications of these lineage-specific variations and propose specific hypotheses for experimental investigation. The apicomplexan-specific kinase features reported in this study can be used in the design of selective kinase inhibitors.
Collapse
|
4
|
Artz JD, Wernimont AK, Allali-Hassani A, Zhao Y, Amani M, Lin YH, Senisterra G, Wasney GA, Fedorov O, King O, Roos A, Lunin VV, Qiu W, Finerty P, Hutchinson A, Chau I, von Delft F, MacKenzie F, Lew J, Kozieradzki I, Vedadi M, Schapira M, Zhang C, Shokat K, Heightman T, Hui R. The Cryptosporidium parvum kinome. BMC Genomics 2011; 12:478. [PMID: 21962082 PMCID: PMC3227725 DOI: 10.1186/1471-2164-12-478] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 09/30/2011] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Hundreds of millions of people are infected with cryptosporidiosis annually, with immunocompromised individuals suffering debilitating symptoms and children in socioeconomically challenged regions at risk of repeated infections. There is currently no effective drug available. In order to facilitate the pursuit of anti-cryptosporidiosis targets and compounds, our study spans the classification of the Cryptosporidium parvum kinome and the structural and biochemical characterization of representatives from the CDPK family and a MAP kinase. RESULTS The C. parvum kinome comprises over 70 members, some of which may be promising drug targets. These C. parvum protein kinases include members in the AGC, Atypical, CaMK, CK1, CMGC, and TKL groups; however, almost 35% could only be classified as OPK (other protein kinases). In addition, about 25% of the kinases identified did not have any known orthologues outside of Cryptosporidium spp. Comparison of specific kinases with their Plasmodium falciparum and Toxoplasma gondii orthologues revealed some distinct characteristics within the C. parvum kinome, including potential targets and opportunities for drug design. Structural and biochemical analysis of 4 representatives of the CaMK group and a MAP kinase confirms features that may be exploited in inhibitor design. Indeed, screening CpCDPK1 against a library of kinase inhibitors yielded a set of the pyrazolopyrimidine derivatives (PP1-derivatives) with IC₅₀ values of < 10 nM. The binding of a PP1-derivative is further described by an inhibitor-bound crystal structure of CpCDPK1. In addition, structural analysis of CpCDPK4 identified an unprecedented Zn-finger within the CDPK kinase domain that may have implications for its regulation. CONCLUSIONS Identification and comparison of the C. parvum protein kinases against other parasitic kinases shows how orthologue- and family-based research can be used to facilitate characterization of promising drug targets and the search for new drugs.
Collapse
Affiliation(s)
- Jennifer D Artz
- Structural Genomics Consortium, University of Toronto, MaRS South Tower, Floor 7, 101 College St, Toronto, Ontario M5G 1L7, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Agarwal S, Kern S, Halbert J, Przyborski JM, Baumeister S, Dandekar T, Doerig C, Pradel G. Two nucleus-localized CDK-like kinases with crucial roles for malaria parasite erythrocytic replication are involved in phosphorylation of splicing factor. J Cell Biochem 2011; 112:1295-310. [PMID: 21312235 DOI: 10.1002/jcb.23034] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The kinome of the human malaria parasite Plasmodium falciparum comprises representatives of most eukaryotic protein kinase groups, including kinases which regulate proliferation and differentiation processes. Despite extensive research on most plasmodial enzymes, little information is available regarding the four identified members of the cyclin-dependent kinase-like kinase (CLK) family. In other eukaryotes, CLKs regulate mRNA splicing through phosphorylation of Serine/Arginine-rich proteins. Here, we investigate two of the PfCLKs, the Lammer kinase homolog PfCLK-1, and PfCLK-2. Both PfCLKs show homology with the yeast Serine/Arginine protein kinase Sky1p and are transcribed throughout the asexual blood stages and in gametocytes. PfCLK-1/Lammer possesses two nuclear localization signal sites and PfCLK-2 possesses one of these signal sites upstream of the C-terminal catalytic domains. Indirect immunofluorescence, Western blot, and electron microscopy data confirm that the kinases are primarily localized in the parasite nucleus, and PfCLK-2 is further present in the cytoplasm. The two kinases are important for completion of the asexual replication cycle of P. falciparum, as demonstrated by reverse genetics approaches. In vitro kinase assays show substrate phosphorylation by the PfCLKs, including the Sky1p substrate, splicing factor Npl3p, and the plasmodial alternative splicing factor PfASF-1. Mass spectrometric analysis of co-immunoprecipitated proteins indicates assembly of the two PfCLKs with proteins with predicted nuclease, phosphatase, or helicase functions. Our data indicate a crucial role of PfCLKs for malaria blood stage parasites, presumably by participating in gene regulation through the post-transcriptional modification of mRNA.
Collapse
Affiliation(s)
- Shruti Agarwal
- Research Center for Infectious Diseases, University of Würzburg, Josef-Schneider-Strasse 2, Building D15, 97080 Würzburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Tewari R, Straschil U, Bateman A, Böhme U, Cherevach I, Gong P, Pain A, Billker O. The systematic functional analysis of Plasmodium protein kinases identifies essential regulators of mosquito transmission. Cell Host Microbe 2010; 8:377-87. [PMID: 20951971 PMCID: PMC2977076 DOI: 10.1016/j.chom.2010.09.006] [Citation(s) in RCA: 216] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 08/02/2010] [Accepted: 09/13/2010] [Indexed: 12/23/2022]
Abstract
Although eukaryotic protein kinases (ePKs) contribute to many cellular processes, only three Plasmodium falciparum ePKs have thus far been identified as essential for parasite asexual blood stage development. To identify pathways essential for parasite transmission between their mammalian host and mosquito vector, we undertook a systematic functional analysis of ePKs in the genetically tractable rodent parasite Plasmodium berghei. Modeling domain signatures of conventional ePKs identified 66 putative Plasmodium ePKs. Kinomes are highly conserved between Plasmodium species. Using reverse genetics, we show that 23 ePKs are redundant for asexual erythrocytic parasite development in mice. Phenotyping mutants at four life cycle stages in Anopheles stephensi mosquitoes revealed functional clusters of kinases required for sexual development and sporogony. Roles for a putative SR protein kinase (SRPK) in microgamete formation, a conserved regulator of clathrin uncoating (GAK) in ookinete formation, and a likely regulator of energy metabolism (SNF1/KIN) in sporozoite development were identified.
Collapse
Affiliation(s)
- Rita Tewari
- Institute of Genetics, QMC, University of Nottingham, Nottingham NG7 2UH, UK
- Division of Cell & Molecular Biology, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - Ursula Straschil
- Institute of Genetics, QMC, University of Nottingham, Nottingham NG7 2UH, UK
- Division of Cell & Molecular Biology, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - Alex Bateman
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Ulrike Böhme
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Inna Cherevach
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Peng Gong
- Institute of Genetics, QMC, University of Nottingham, Nottingham NG7 2UH, UK
| | - Arnab Pain
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
- Computational Bioscience Research Center, Chemical Life Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Oliver Billker
- Division of Cell & Molecular Biology, Imperial College London, Exhibition Road, London SW7 2AZ, UK
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| |
Collapse
|
7
|
Dixit A, Singh PK, Sharma GP, Malhotra P, Sharma P. PfSRPK1, a novel splicing-related kinase from Plasmodium falciparum. J Biol Chem 2010; 285:38315-23. [PMID: 20870716 DOI: 10.1074/jbc.m110.119255] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Even though it is increasingly evident that post-transcriptional events like mRNA processing and splicing may regulate gene expression and proteome diversity of malaria parasite Plasmodium, molecular mechanisms that regulate events like mRNA splicing in malaria parasite are poorly understood. Protein kinases control a wide variety of cellular events in almost all eukaryotes, including modulation of mRNA splicing, transport, and stability. We have identified a novel splicing-related protein kinase from Plasmodium falciparum, PfSRPK1. PfSRPK1 when incubated with parasite nuclear extracts inhibited RNA splicing, suggesting that it may control mRNA splicing in the parasite. PfSR1, a putative splicing factor from P. falciparum, was identified as a substrate of PfSRPK1. PfSR1 interacts with RNA and PfSRPK1 modulates its RNA binding. Early in the parasite development, PfSRPK1 and PfSR1 are present in the nucleus. These studies provide useful insights into the function of two potentially key components of P. falciparum mRNA splicing machinery.
Collapse
Affiliation(s)
- Aparna Dixit
- Eukaryotic Gene Expression Laboratory, National Institute of Immunology, New Delhi 110067, India
| | | | | | | | | |
Collapse
|
8
|
Doerig C, Billker O, Haystead T, Sharma P, Tobin AB, Waters NC. Protein kinases of malaria parasites: an update. Trends Parasitol 2008; 24:570-7. [PMID: 18845480 DOI: 10.1016/j.pt.2008.08.007] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 08/04/2008] [Accepted: 08/11/2008] [Indexed: 11/24/2022]
Abstract
Protein kinases (PKs) play crucial roles in the control of proliferation and differentiation in eukaryotic cells. Research on protein phosphorylation has expanded tremendously in the past few years, in part as a consequence of the realization that PKs represent attractive drug targets in a variety of diseases. Activity in Plasmodium PK research has followed this trend, and several reports on various aspects of this subject were delivered at the Molecular Approaches to Malaria 2008 meeting (MAM2008), a sharp increase from the previous meeting. Here, the authors of most of these communications join to propose an integrated update of the development of the rapidly expanding field of Plasmodium kinomics.
Collapse
Affiliation(s)
- Christian Doerig
- INSERM U609, Wellcome Centre for Molecular Parasitology, University of Glasgow Biomedical Research Centre, Glasgow G12 8TA, Scotland, UK.
| | | | | | | | | | | |
Collapse
|
9
|
Ward P, Equinet L, Packer J, Doerig C. Protein kinases of the human malaria parasite Plasmodium falciparum: the kinome of a divergent eukaryote. BMC Genomics 2004; 5:79. [PMID: 15479470 PMCID: PMC526369 DOI: 10.1186/1471-2164-5-79] [Citation(s) in RCA: 389] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2004] [Accepted: 10/12/2004] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Malaria, caused by the parasitic protist Plasmodium falciparum, represents a major public health problem in the developing world. The P. falciparum genome has been sequenced, which provides new opportunities for the identification of novel drug targets. Eukaryotic protein kinases (ePKs) form a large family of enzymes with crucial roles in most cellular processes; hence malarial ePKS represent potential drug targets. We report an exhaustive analysis of the P. falciparum genomic database (PlasmoDB) aimed at identifying and classifying all ePKs in this organism. RESULTS Using a variety of bioinformatics tools, we identified 65 malarial ePK sequences and constructed a phylogenetic tree to position these sequences relative to the seven established ePK groups. Predominant features of the tree were: (i) that several malarial sequences did not cluster within any of the known ePK groups; (ii) that the CMGC group, whose members are usually involved in the control of cell proliferation, had the highest number of malarial ePKs; and (iii) that no malarial ePK clustered with the tyrosine kinase (TyrK) or STE groups, pointing to the absence of three-component MAPK modules in the parasite. A novel family of 20 ePK-related sequences was identified and called FIKK, on the basis of a conserved amino acid motif. The FIKK family seems restricted to Apicomplexa, with 20 members in P. falciparum and just one member in some other Apicomplexan species. CONCLUSION The considerable phylogenetic distance between Apicomplexa and other Eukaryotes is reflected by profound divergences between the kinome of malaria parasites and that of yeast or mammalian cells.
Collapse
Affiliation(s)
- Pauline Ward
- Wellcome Centre for Molecular Parasitology, University of Glasgow, 56 Dumbarton Road, Glasgow G11 6NU, Scotland, UK
| | - Leila Equinet
- INSERM U609, Wellcome Centre for Molecular Parasitology, University of Glasgow, 56 Dumbarton Road, Glasgow G11 6NU, Scotland, UK
| | - Jeremy Packer
- Division of Advanced Technologies, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064, USA
| | - Christian Doerig
- INSERM U609, Wellcome Centre for Molecular Parasitology, University of Glasgow, 56 Dumbarton Road, Glasgow G11 6NU, Scotland, UK
| |
Collapse
|
10
|
Talman AM, Domarle O, McKenzie FE, Ariey F, Robert V. Gametocytogenesis: the puberty of Plasmodium falciparum. Malar J 2004; 3:24. [PMID: 15253774 PMCID: PMC497046 DOI: 10.1186/1475-2875-3-24] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2004] [Accepted: 07/14/2004] [Indexed: 11/16/2022] Open
Abstract
The protozoan Plasmodium falciparum has a complex life cycle in which asexual multiplication in the vertebrate host alternates with an obligate sexual reproduction in the anopheline mosquito. Apart from the apparent recombination advantages conferred by sex, P. falciparum has evolved a remarkable biology and adaptive phenotypes to insure its transmission despite the dangers of sex. This review mainly focuses on the current knowledge on commitment to sexual development, gametocytogenesis and the evolutionary significance of various aspects of gametocyte biology. It goes further than pure biology to look at the strategies used to improve successful transmission. Although gametocytes are inevitable stages for transmission and provide a potential target to fight malaria, they have received less attention than the pathogenic asexual stages. There is a need for research on gametocytes, which are a fascinating stage, responsible to a large extent for the success of P. falciparum.
Collapse
Affiliation(s)
- Arthur M Talman
- Groupe de Recherche sur le Paludisme, Institut Pasteur de Madagascar, B.P.1274 Antananarivo 101, Madagascar
- Department of Biological Sciences, Imperial College London, Exhibition Road, SW7 2AZ London, UK
| | - Olivier Domarle
- Groupe de Recherche sur le Paludisme, Institut Pasteur de Madagascar, B.P.1274 Antananarivo 101, Madagascar
| | - F Ellis McKenzie
- Fogarty International Centre, National Institutes of Health, Bethesda, MD 20892, USA
| | - Frédéric Ariey
- Groupe de Recherche sur le Paludisme, Institut Pasteur de Madagascar, B.P.1274 Antananarivo 101, Madagascar
| | - Vincent Robert
- Groupe de Recherche sur le Paludisme, Institut Pasteur de Madagascar, B.P.1274 Antananarivo 101, Madagascar
- UR 77 Paludisme Afro-tropical, Institut de Recherche pour le Développement, Madagascar
| |
Collapse
|
11
|
Li JL, Cox LS. Characterisation of a sexual stage-specific gene encoding ORC1 homologue in the human malaria parasite Plasmodium falciparum. Parasitol Int 2003; 52:41-52. [PMID: 12543146 DOI: 10.1016/s1383-5769(02)00079-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The origin recognition complex (ORC) is a multisubunit protein composed of six polypeptides that binds to replication origins and is essential for the initiation of chromosomal DNA replication. Using the Vectorette technique, we have isolated a novel gene encoding an ORC1-like protein from the human malaria parasite Plasmodium falciparum. The gene has no introns and encodes a protein (PfORC1) of 1189 amino acid residues with a predicted molecular mass of 139 kDa. PfORC1 contains all conserved sequences in the ORC1/Cdc6/Cdc18 family and displays the highest homology to the Schizosaccharomyces pombe ORC1. However, PfORC1 possesses an extensive N-terminal segment with several interesting features including multiple potential phosphorylation sites, a large proportion of charged amino acids, four copies of a heptamer repeat, two nuclear localisation signals, and a leucine zipper motif. Southern blot analyses show that the Pforc1 gene is present as a single copy per haploid genome and is located on chromosome 12. A 5600 nucleotide transcript of this gene is expressed predominantly in the sexual erythrocytic stage, indicating that PfORC1 may be involved in gametogenesis during which DNA is quickly replicated.
Collapse
Affiliation(s)
- Ji-Liang Li
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | | |
Collapse
|
12
|
Li JL, Warren AV, Cox LS. Identification of a second proliferating cell nuclear antigen in the human malarial pathogen Plasmodium falciparum. Int J Parasitol 2002; 32:1683-92. [PMID: 12464414 DOI: 10.1016/s0020-7519(02)00162-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Proliferating cell nuclear antigen seems to exist as a single form in higher eukaryotic cells and plays multiple roles in nucleic acid metabolism. We have identified a second additional proliferating cell nuclear antigen (PfPCNA2) in Plasmodium falciparum on the basis of several lines of evidence. (1) PfPCNA2, consisting of 264 amino acid residues with a predicted molecular mass of 30.2kDa, shares only 29% identity and 53% similarity with PfPCNA1 at the amino acid level. (2) Southern blot analyses revealed that the hybridisation pattern of the Pfpcna2 gene is completely different from that of the Pfpcna1 gene. (3) Chromosomal localisation studies showed that Pfpcna2 is located on chromosome 12 while Pfpcna1 is located on chromosome 13. Northern blot analyses revealed two different transcripts of Pfpcna2, one expressed in both asexual and sexual erythrocytic stages, while the other existed only in the sexual stage, implying that PfPCNA2 may play multiple roles in DNA metabolism in different stages of the parasite. Recombinant protein of PfPCNA2, overexpressed in Escherichia coli, has been purified to near homogeneity and shown to form an oligomer, probably a trimer, as revealed by a size-exclusion chromatography and a native gel electrophoresis, suggesting that PfPCNA2, like its higher eukaryotic counterparts, may serve as a sliding platform which is capable of interaction with diverse proteins and regulation of their activities.
Collapse
Affiliation(s)
- Ji-Liang Li
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | | | | |
Collapse
|
13
|
Kongkasuriyachai D, Kumar N. Functional characterisation of sexual stage specific proteins in Plasmodium falciparum. Int J Parasitol 2002; 32:1559-66. [PMID: 12435440 DOI: 10.1016/s0020-7519(02)00184-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The various stages of the malaria parasites in the vertebrate host and in the mosquito vector offer numerous candidates for vaccine and drug development. However, the biological complexity of the parasites and the interaction with the immune system of the host continue to frustrate all such efforts thus far. While most of the targets for drug and vaccine design have focused on the asexual stages, the sexual stages of the parasite are critical for transmission and maintenance of parasites among susceptible vertebrate hosts. Sexual stage parasites undergo a series of morphological and biochemical changes during their development, accompanied by a co-ordinated cascade of a distinct expression pattern of sexual stage specific proteins. Mechanisms underlying the developmental switch from asexual parasite to sexual parasite still remain elusive. Methods that can break the malaria transmission cycle thus occupy a central place in the overall malaria control strategies. This paper provides a review of genes expressed in sexually differentiated Plasmodium. In the past few years, a molecular approach based on targeted gene disruption has revealed fascinating biological roles for many of the sexual stage gene products. In addition, we will briefly discuss other functional genomic approaches employed to study not only sexual but also other aspects of host-parasite biology.
Collapse
Affiliation(s)
- Darin Kongkasuriyachai
- Johns Hopkins Malaria Research Institute, Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | |
Collapse
|
14
|
Li JL, Cox LS. Identification of an MCM4 homologue expressed specifically in the sexual stage of Plasmodium falciparum. Int J Parasitol 2001; 31:1246-52. [PMID: 11513894 DOI: 10.1016/s0020-7519(01)00237-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mini-chromosome maintenance (MCM) proteins play an essential role in DNA replication initiation. We have isolated a novel gene encoding an MCM-like protein from the human malaria parasite Plasmodium falciparum using the vectorette technique. The gene has no introns and comprises an open reading frame encoding 1005 amino acid residues with a predicted Mr of 115 kDa. The encoded protein, termed PfMCM4, contains all conserved sequences in the MCM family and displays the highest homology to the Cdc54 (MCM4) of Saccharomyces cerevisiae. However, PfMCM4 possesses five unique amino acid inserts with sizes ranging from seven to 75 residues. Southern blotting of genomic DNA digests and chromosomal separations showed that the Pfmcm4 gene is present as a single copy per haploid genome and is located on chromosome 13. A 4000-nucleotide transcript of this gene is expressed specifically in the sexual erythrocytic stage, indicating that PfMCM4 may be involved in gametogenesis in which DNA is quickly replicated.
Collapse
Affiliation(s)
- J L Li
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | | |
Collapse
|