1
|
Yu EM, Yoshinaga T, Jalufka FL, Ehsan H, Mark Welch DB, Kaneko G. The complex evolution of the metazoan HSP70 gene family. Sci Rep 2021; 11:17794. [PMID: 34493758 PMCID: PMC8423806 DOI: 10.1038/s41598-021-97192-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/23/2021] [Indexed: 01/01/2023] Open
Abstract
The metazoan 70-kDa heat shock protein (HSP70) family contains several members localized in different subcellular compartments. The cytosolic members have been classified into inducible HSP70s and constitutive heat shock cognates (HSC70s), but their distinction and evolutionary relationship remain unclear because of occasional reports of “constitutive HSP70s” and the lack of cross-phylum comparisons. Here we provide novel insights into the evolution of these important molecular chaperones. Phylogenetic analyses of 125 full-length HSP70s from a broad range of phyla revealed an ancient duplication that gave rise to two lineages from which all metazoan cytosolic HSP70s descend. One lineage (A) contains a relatively small number of genes from many invertebrate phyla, none of which have been shown to be constitutively expressed (i.e., either inducible or unknown). The other lineage (B) included both inducible and constitutive genes from diverse phyla. Species-specific duplications are present in both lineages, and Lineage B contains well-supported phylum-specific clades for Platyhelminthes, Rotifera, Nematoda, Porifera/Cnidaria, and Chordata. Some genes in Lineage B have likely independently acquired inducibility, which may explain the sporadic distribution of “HSP70” or “HSC70” in previous phylogenetic analyses. Consistent with the diversification history within each group, inducible members show lower purifying selection pressure compared to constitutive members. These results illustrate the evolutionary history of the HSP70 family, encouraging us to propose a new nomenclature: “HSP70 + subcellular localization + linage + copy number in the organism + inducible or constitutive, if known.” e.g., HSP70cA1i for cytosolic Lineage A, copy 1, inducible.
Collapse
Affiliation(s)
- Er-Meng Yu
- School of Arts and Sciences, University of Houston-Victoria, Victoria, TX, USA.,Key Laboratory of Tropical and Subtropical Fishery Resource Application & Cultivation, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute of CAFS, Guangzhou, China
| | | | - Frank L Jalufka
- School of Arts and Sciences, University of Houston-Victoria, Victoria, TX, USA
| | - Hashimul Ehsan
- School of Arts and Sciences, University of Houston-Victoria, Victoria, TX, USA
| | - David B Mark Welch
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA.
| | - Gen Kaneko
- School of Arts and Sciences, University of Houston-Victoria, Victoria, TX, USA.
| |
Collapse
|
2
|
Liu R, Cheng WJ, Ye F, Zhang YD, Zhong QP, Dong HF, Tang HB, Jiang H. Comparative Transcriptome Analyses of Schistosoma japonicum Derived From SCID Mice and BALB/c Mice: Clues to the Abnormality in Parasite Growth and Development. Front Microbiol 2020; 11:274. [PMID: 32218772 PMCID: PMC7078119 DOI: 10.3389/fmicb.2020.00274] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 02/06/2020] [Indexed: 12/13/2022] Open
Abstract
Schistosomiasis, caused by the parasitic flatworms called schistosomes, remains one of the most prevailing parasitic diseases in the world. The prodigious oviposition of female worms after maturity is the main driver of pathology due to infection, yet our understanding about the regulation of development and reproduction of schistosomes is limited. Here, we comparatively profiled the transcriptome of Schistosoma japonicum recovered from SCID and BALB/c mice, which were collected 35 days post-infection, when prominent morphological abnormalities could be observed in schistosomes from SCID mice, by performing RNA-seq analysis. Of the 11,183 identified genes, 62 differentially expressed genes (DEGs) with 39 upregulated and 23 downregulated messenger RNAs (mRNAs) were found in male worms from SCID mice (S_M) vs. male worms from BALB/c mice (B_M), and 240 DEGs with 152 upregulated and 88 downregulated mRNAs were found in female worms from SCID mice (S_F) vs. female worms from BALB/c mice (B_F). We also tested nine DEGs with a relatively higher expression abundance in the gonads of the worms (ovary, vitellaria, or testis), suggesting their potential biological significance in the development and reproduction of the parasites. Gene ontology (GO) enrichment analysis revealed that GO terms such as “microtubule-based process,” “multicellular organismal development,” and “Rho protein signal transduction” were significantly enriched in the DEGs in S_F vs. B_F, whereas GO terms such as “oxidation–reduction process,” “response to stress,” and “response to DNA damage stimulus” were significantly enriched in the DEGs in S_M vs. B_M. These results revealed that the differential expression of some important genes might contribute to the morphological abnormalities of worms in SCID mice. Furthermore, we selected one DEG, the mitochondrial prohibitin complex protein 1 (Phb1), to perform double-stranded RNA (dsRNA)-mediated RNA interference (RNAi) in vivo targeting the worms in BALB/c mice, and we found that it was essential for the growth and reproductive development of both male and female S. japonicum worms. Taken together, these results provided a wealth of information on the differential gene expression profiles of schistosomes from SCID mice when compared with those from BALB/c mice, which were potentially involved in regulating the growth and development of schistosomes. These findings contributed to an understanding of parasite biology and provided a rich resource for the exploitation of antischistosomal intervention targets.
Collapse
Affiliation(s)
- Rong Liu
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Wen-Jun Cheng
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Feng Ye
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yao-Dan Zhang
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Qin-Ping Zhong
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Hui-Fen Dong
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Hong-Bin Tang
- Laboratory Animal Center, School of Medicine, Wuhan University, Wuhan, China
| | - Hong Jiang
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Heat shock protein 70 of filarial parasite Setaria equina: Cloning, expression, and analysis of binding with diethylcarbamazine citrate. Int J Biol Macromol 2019; 133:202-213. [DOI: 10.1016/j.ijbiomac.2019.04.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 11/24/2022]
|
4
|
Senathilake KS, Karunanayake EH, Samarakoon SR, Tennekoon KH, de Silva ED, Adhikari A. Oleanolic acid from antifilarial triterpene saponins of Dipterocarpus zeylanicus induces oxidative stress and apoptosis in filarial parasite Setaria digitata in vitro. Exp Parasitol 2017; 177:13-21. [PMID: 28351683 DOI: 10.1016/j.exppara.2017.03.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 03/20/2017] [Accepted: 03/25/2017] [Indexed: 11/24/2022]
Abstract
Absence of a drug that kills adult filarial parasites remains the major challenge in eliminating human lymphatic filariasis (LF); the second leading cause of long-term and permanent disability. Thus, the discovery of novel antifilarial natural products with potent adulticidal activity is an urgent need. In the present study, methanol extracts of leaves, bark and winged seeds of Dipterocarpus zeylanicus (Dipterocarpaceae) were investigated for macro and microfilaricidal activity. Two antifilarial triterpene saponins were isolated from winged seed extracts by bioactivity guided chromatographic separation and identified using Nuclear Magnetic Resonance and mass spectroscopic analysis as oleanolic acid 3-O-β-D- glucopyranoside (1) (IC50 = 20.54 μM for adult worms, 19.71 μM for microfilariae ) and oleanolic acid 3-O-α-L-arabinopyranoside (2) (IC50 = 29.02 μM for adult worms, 25.99 μM for microfilariae). Acid hydrolysis of both compounds yielded oleanolic acid (3) which was non or least toxic to human peripheral blood mono nuclear cells (Selectivity index = >10) while retaining similar macrofilaricidal (IC50 = 38.4 μM) and microfilaricidal (IC50 = 35.6 μM) activities. In adult female worms treated with 50 and 100 μM doses of oleanolic acid, condensation of nuclear DNA, apoptotic body formation and tissue damage was observed by using Hoechst 33342 staining, TUNEL assay and Hematoxylin and Eosin staining respectively. A dose dependent increase in caspase 3/CED3 activity and decrease in total protein content were also observed in these parasites. A dose dependant DNA fragmentation was observed in adult parasites and microfilariae. Decreased levels of reduced glutathione (GSH) and elevated levels of glutathione S transferase (GST), superoxide dismutase (SOD) and reactive oxygen species (ROS) were also observed in parasites treated with oleanolic acid indicating an oxidative stress mediated apoptotic event. Compound 3/oleanolic acid was thus identified as a potent and safe antifilarial compound in vitro.
Collapse
Affiliation(s)
- K S Senathilake
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo 03, Sri Lanka
| | - E H Karunanayake
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo 03, Sri Lanka.
| | - S R Samarakoon
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo 03, Sri Lanka
| | - K H Tennekoon
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo 03, Sri Lanka
| | - E D de Silva
- Department of Chemistry, Faculty of Science, University of Colombo, Colombo 03, Sri Lanka
| | - A Adhikari
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan.
| |
Collapse
|
5
|
Senathilake KS, Karunanayake EH, Samarakoon SR, Tennekoon KH, de Silva ED. Rhizome extracts of Curcuma zedoaria Rosc induce caspase dependant apoptosis via generation of reactive oxygen species in filarial parasite Setaria digitata in vitro. Exp Parasitol 2016; 167:50-60. [PMID: 27174667 DOI: 10.1016/j.exppara.2016.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 04/28/2016] [Accepted: 05/08/2016] [Indexed: 01/29/2023]
Abstract
Human lymphatic filariasis (LF) is mainly caused by filarial parasite Wuchereria bancrofti and is the second leading cause of long term and permanent disability in tropical countries. To date, incapability to eliminate long lived adult parasites by current drugs remains the major challenge in the elimination of LF. Hence, in the current study, the efficacy of rhizome extracts of Curcuma zedoaria (a plant traditionally used in Sri Lanka in the management of LF) was evaluated as an effective filaricide in vitro. Sequential solvent extracts of C. zedoaria rhizomes were screened for in vitro antifilarial activity at 0.01-1 mg/mL concentrations by motility inhibition assay and 3-(4, 5 dimethylthiazol-2-yl)-2, 5 diphenyl tetrazolium bromide (MTT) reduction assay using cattle parasite Setaria digitata as a model organism. Exposure of parasites to hexane and chloroform extracts of C. zedoaria caused a dose dependant reduction in motility and viability of microfilariae (IC50 = 72.42 μg/mL for hexane extract, 191.14 μg/mL for chloroform extract) and adult parasites (IC50 = 77.07 μg/mL for hexane extract, 259.87 μg/mL for chloroform extract). Both extracts were less toxic to human peripheral blood mononuclear cells when compared to filariae. A dose dependant increase in caspase 3/CED 3 and a decrease in total protein content, cyclooxygenase (COX) and protein tyrosine phosphatase (PTP) activities were observed in adult parasites treated with hexane or chloroform extract. A significant degree of chromatin condensation and apoptotic body formation were also observed in these worms by Hoechst 33342 and terminal deoxynucleotidyl transferase-mediated dUTP biotin nick end labeling (TUNEL) staining respectively. Dose dependant chromosomal DNA laddering was observed in treated adult worms but not in microfilariae in response to both extracts. Oxidative stress parameters such as reduction in reduced glutathione (GSH) levels and increase in glutathione s transferase (GST), superoxide dismutase (SOD) and catalase activities, increased reactive oxygen levels (ROS) and lipid peroxidation were also observed indicating that an apoptotic event is induced by reactive oxygen species.
Collapse
Affiliation(s)
- K S Senathilake
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo 03, Sri Lanka.
| | - E H Karunanayake
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo 03, Sri Lanka.
| | - S R Samarakoon
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo 03, Sri Lanka.
| | - K H Tennekoon
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo 03, Sri Lanka.
| | - E D de Silva
- Department of Chemistry, Faculty of Science, University of Colombo, Colombo 03, Sri Lanka.
| |
Collapse
|
6
|
Abstract
Setaria digitata is a filarial parasite that causes fatal cerebrospinal nematodiasis in goats, sheep and horses, resulting in substantial economic losses in animal husbandry in the tropics. Due to its close resemblance to Wuchereria bancrofti, this nematode is also frequently used as a model organism to study human lymphatic filariasis. This review highlights numerous insights into the morphological, histological, biochemical, immunological and genetic aspects of S. digitata that have broadened our understanding towards the control and eradication of filarial diseases.
Collapse
|
7
|
Effect of diethylcarbamazine, butylated hydroxy anisole and methyl substituted chalcone on filarial parasite Setaria cervi: Proteomic and biochemical approaches. J Proteomics 2011; 74:1595-606. [DOI: 10.1016/j.jprot.2011.04.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 04/20/2011] [Accepted: 04/22/2011] [Indexed: 12/22/2022]
|
8
|
Identification of Setaria cervi heat shock protein70 by mass spectrometry and its evaluation as diagnostic marker for lymphatic filariasis. Vaccine 2010; 28:1429-36. [DOI: 10.1016/j.vaccine.2009.06.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Accepted: 06/09/2009] [Indexed: 11/21/2022]
|
9
|
Ahmad R, Srivastava AK. Biochemical composition and metabolic pathways of filarial worms Setaria cervi: search for new antifilarial agents. J Helminthol 2008; 81:261-80. [PMID: 17875226 DOI: 10.1017/s0022149x07799133] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The main problem regarding the chemotherapy of filariasis is that no safe and effective drug is available yet to combat the adult human filarial worms. Setaria cervi, the causal organism of setariasis and lumbar paralysis in cattle, is routinely employed as a model organism for conducting biochemical and enzymatic studies on filarial parasites. In view of the practical difficulties in procuring human strains of Wuchereria bancrofti and Brugia malayi for drug screening, the bovine filarial parasite S. cervi, resembling the human species in having microfilarial periodicity and chemotherapeutic response to known antifilarial agents, is widely used as a model in such studies. For a rational approach to antifilarial chemotherapy, knowledge of the biochemical composition and metabolic pathways of this helminth parasite may be of paramount importance, so that more potent antifilarial agents based on specific drug targets can be identified in drug discovery programmes. The present review provides an update on the biochemistry of the important metabolic pathways functioning within this potentially important bovine parasite, that have so far been studied, and on those that need to be investigated further so as to identify novel drug targets that can be exploited for designing new antifilarial drugs.
Collapse
Affiliation(s)
- Rumana Ahmad
- Division of Biochemistry, Po Box 173, Central Drug Research Institute, Chattar Manzil Palace, Lucknow-226001, India
| | | |
Collapse
|
10
|
Jagdale GB, Grewal PS, Salminen SO. Both heat-shock and cold-shock influence trehalose metabolism in an entomopathogenic nematode. J Parasitol 2006; 91:988-94. [PMID: 16419738 DOI: 10.1645/ge-504r.1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Heat-shock response is highly conserved in animals and microorganisms, and it results in the synthesis of heat-shock proteins. In yeast, heat-shock response has also been reported to induce trehalose accumulation. We explored the relationship between heat- (35 C) or cold-shock (1 and 10 C) and trehalose metabolism in the entomopathogenic nematode, Heterorhabditis bacteriophora. Because both heat- and cold-shocks may precede desiccation stress in natural soil environments, we hypothesized that nematodes may accumulate a general desiccation protectant, trehalose, under both situations. Indeed, both heat- and cold-shocks influenced trehalose accumulation and activities of enzymes of trehalose metabolism in H. bacteriophora. Trehalose increased by 5- and 6-fold in heat- and cold-shocked infective juveniles, respectively, within 3 hr of exposure, compared with the nematodes maintained at 25 C (culture temperature). The activity of trehalose-6-phosphate synthase (T6PS), an enzyme involved in the synthesis of trehalose, also significantly increased in both heat- and cold-shocked nematodes during the first 3 hr of exposure. Generally, the trehalose levels and activities of T6PS declined to their original levels within 3 hr when nematodes were transferred back to 25 C. In both heat- and cold-shocked nematodes, trehalase activity decreased significantly within the first 3 hr and generally returned to the original levels within 3 hr when these nematodes were transferred back to 25 C. The results demonstrate that the trehalose concentrations in H. bacteriophora are influenced by both heat- and cold-shocks and are regulated by the action of 2 trehalose-metabolizing enzymes, T6PS and trehalase. The accumulated trehalose may enhance survival of nematodes under both cold and warm conditions, but it may also provide simultaneous protection against desiccation that may result from subsequent evaporation or freezing. This is the first report of the relationship between trehalose metabolism and heat-shock for the Nematoda.
Collapse
Affiliation(s)
- Ganpati B Jagdale
- Department of Entomology, Ohio State University, OARDC, Wooster 44691-4096, USA.
| | | | | |
Collapse
|
11
|
Ravi V, Kubofcik J, Bandopathyaya S, Geetha M, Narayanan RB, Nutman TB, Kaliraj P. Wuchereria bancrofti: cloning and characterization of heat shock protein 70 from the human lymphatic filarial parasite. Exp Parasitol 2004; 106:1-10. [PMID: 15013783 DOI: 10.1016/j.exppara.2004.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2002] [Revised: 10/08/2003] [Accepted: 01/05/2004] [Indexed: 01/20/2023]
Abstract
Heat shock protein 70 (HSP70) was identified as an immunodominant antigen by screening a Wuchereria bancrofti (Wb) microfilarial cDNA library with pooled Wb-infected sera, with 28% of the immunopositive clones coding for Wb-HSP70. The deduced amino acid sequence showed greater than 97 and 85% identity with HSP70 from filarial nematodes and humans, respectively. Recombinant HSP70 (74 kDa) and a recombinant protein from the C-terminal portion (43 kDa) also reacted with pooled Wb-infected sera, suggesting that the C-terminal region of HSP70 contains at least one antibody epitope. Brugia malayi L3 larvae showed increasing levels of HSP70 with increasing temperatures. Further, a polyclonal mouse anti-Wb-HSP70 antibody had reactivity to the HSP70 of cattle filarial parasite Settaria digitata and to human HSP70 derived from a Hep-2 cell line. Immune reactivity to Wb-HSP70 was strong, with uninfected non-endemic normal sera showing significantly greater reactions than sera from filaria-infected individuals. Both immunodominant self-HSP70 and HSP70 from other microbial infections may be primary targets for developing autoantibodies naturally.
Collapse
Affiliation(s)
- V Ravi
- Centre for Biotechnology, Anna University, Chennai, India
| | | | | | | | | | | | | |
Collapse
|
12
|
Boutet I, Tanguy A, Rousseau S, Auffret M, Moraga D. Molecular identification and expression of heat shock cognate 70 (hsc70) and heat shock protein 70 (hsp70) genes in the Pacific oyster Crassostrea gigas. Cell Stress Chaperones 2003; 8:76-85. [PMID: 12820657 PMCID: PMC514856 DOI: 10.1379/1466-1268(2003)8<76:miaeoh>2.0.co;2] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2002] [Revised: 10/10/2002] [Accepted: 10/17/2002] [Indexed: 02/06/2023] Open
Abstract
The 70-kDa heat shock protein (Hsp) family is composed of both environmentally inducible (Hsp) and constitutively expressed (Hsc) family members. We sequenced 2 genes encoding an Hsp70 and an Hsc70 in the Pacific oyster Crassostrea gigas. The Cghsc70 gene contained introns, whereas the Cghsp70 gene did not. Moreover, the corresponding amino acid sequences of the 2 genes presented all the characteristic motifs of the Hsp70 family. We also investigated the expression of Hsp70 in tissues of oysters experimentally exposed to metal. A recombinant Hsc72 was used as an antigen to produce a polyclonal antibody to quantify soluble Hsp70 by enzyme-linked immunosorbent assay in protein samples extracted from oysters. Our results showed that metals (copper and cadmium) induced a decrease in cytosolic Hsp70 level in gills and digestive gland of oysters experimentally exposed to metal. These data suggest that metals may inhibit stress protein synthesis.
Collapse
Affiliation(s)
- Isabelle Boutet
- Laboratoire de Sciences de l'Environnement Marin, UMR-CNRS 6539, Institut Universitaire Européen de la Mer, Université de Bretagne Occidentale, Place Nicolas Copernic, 29280, Plouzané, France
| | | | | | | | | |
Collapse
|
13
|
Imbriano C, Bolognese F, Gurtner A, Piaggio G, Mantovani R. HSP-CBF is an NF-Y-dependent coactivator of the heat shock promoters CCAAT boxes. J Biol Chem 2001; 276:26332-9. [PMID: 11306579 DOI: 10.1074/jbc.m101553200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cellular response to toxic stimuli is elicited through the expression of heat shock proteins, a transcriptional process that relies upon conserved DNA elements in the promoters: the Heat Shock Elements, activated by the heat shock factors, and the CCAAT boxes. The identity of the CCAAT activator(s) is unclear because two distinct entities, NF-Y and HSP-CBF, have been implicated in the HSP70 system. The former is a conserved ubiquitous trimer containing histone-like subunits, the latter a 110-kDa protein with an acidic N-terminal. We analyzed two CCAAT-containing promoters, HSP70 and HSP40, with recombinant NF-Y and HSP-CBF using electrophoretic mobility shift assay, protein-protein interactions, transfections and chromatin immunoprecipitation assays (ChIP) assays. Both recognize a common DNA-binding protein in nuclear extracts, identified in vitro and in vivo as NF-Y. Both CCAAT boxes show high affinity for recombinant NF-Y but not for HSP-CBF. However, HSP-CBF does activate HSP70 and HSP40 transcription under basal and heat shocked conditions; for doing so, it requires an intact NF-Y trimer as judged by cotransfections with a diagnostic NF-YA dominant negative vector. HSP-CBF interacts in solution and on DNA with the NF-Y trimer through an evolutionary conserved region. In yeast two-hybrid assays HSP-CBF interacts with NF-YB. These data implicate HSP-CBF as a non-DNA binding coactivator of heat shock genes that act on a DNA-bound NF-Y.
Collapse
Affiliation(s)
- C Imbriano
- Dipartimento di Biologia Animale, U. di Modena e Reggio, Via Campi 213/d, 41100 Modena, Italy
| | | | | | | | | |
Collapse
|
14
|
Casinader Saverimuttu JK, Karunanayake EH, Chandrasekharan NV, Jayasena SM. Molecular characterisation of the actin gene of the filarial parasite Wuchereria bancrofti. Int J Parasitol 2000; 30:119-24. [PMID: 10704593 DOI: 10.1016/s0020-7519(99)00176-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Wuchereria bancrofti is the major cause of lymphatic filariasis in humans. Although it is responsible for this immensely morbid and debilitating disease, very little is known of the basic molecular biology of this parasite, and there is a vast lack of knowledge on its gene organisation. In this study, the actin gene of W. bancrofti has been characterised by sequencing a clone isolated from a genomic DNA library of this parasite. The 5' flanking region had a potential TATA box and a putative mRNA initiation site. The gene had five exons encoding 376 amino acids, and four introns ranging in size from 109 to 190bp. The 3' flanking region had a potential polyadenylation signal with the sequence ATTAAA which is a common natural variant of the conventional sequence AATAAA. The gene was AT-rich, with a GC content of 37.2%. Southern blot analysis of W. bancrofti genomic DNA indicated that the gene is possibly found as a single copy. The actin amino acid sequence of W. bancrofti showed a high degree of homology to the actin of many organisms of different taxonomic groups, but the highest homology was observed with the free-living nematode Plectus acuminatus. This suggests that P. acuminatus may bear a close evolutionary relationship to W. bancrofti.
Collapse
Affiliation(s)
- J K Casinader Saverimuttu
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | | | | | | |
Collapse
|