1
|
Low high-density lipoprotein cholesterol and particle concentrations are associated with greater levels of endothelial activation markers in Multi-Ethnic Study of Atherosclerosis participants. J Clin Lipidol 2017; 11:955-963.e3. [PMID: 28666711 DOI: 10.1016/j.jacl.2017.05.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 05/17/2017] [Accepted: 05/28/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND High-density lipoproteins (HDL) are well characterized for their role in reverse cholesterol transport but may confer other cardiovascular benefits-specifically, HDL may suppress the endothelial activation cascade in the initiating stages of atherogenesis. OBJECTIVE It was the primary aim of this study to examine the relations of HDL cholesterol (HDL-C), total HDL particle (HDL-P) concentrations, and HDL-P subclasses with circulating levels of endothelial activation markers in a subcohort of Multi-Ethnic Study of Atherosclerosis participants. METHODS HDL-C was measured by enzymatic assay, and total HDL-P and subclass concentrations were assessed by nuclear magnetic resonance spectroscopy. Concentrations of circulating endothelial activation markers were determined through immunoassay. Multivariable linear regression was used to determine the cross-sectional associations between HDL variables and endothelial markers with statistical adjustment for age, race/ethnicity, sex, education, systolic blood pressure, hypertension medication use, body mass index, smoking status, lipid-lowering medication use, serum creatinine, diabetes, low-density lipoprotein cholesterol, and coronary artery calcium. RESULTS HDL-C and HDL-P were found to be inversely associated with soluble vascular cell adhesion molecule-1, soluble vascular intracellular adhesion molecule-1, sL-selectin, and sP-selectin; HDL-P was additionally inversely associated with sE-selectin. Participants with low levels of HDL-C (<40 mg/dL) or HDL-P (<25th percentile) showed 3%-12% higher mean levels of soluble vascular cell adhesion molecule and compared with those above these levels (all P < .01). CONCLUSION Coupled with previous evidence, our findings suggest a modest to moderate relation of HDL and circulating levels of endothelial activation markers in humans. Whether this relationship may have clinical implications in suppressing atherogenesis or coronary heart disease development requires additional research.
Collapse
|
2
|
Wodicka JR, Chambers AM, Sangha GS, Goergen CJ, Panitch A. Development of a Glycosaminoglycan Derived, Selectin Targeting Anti-Adhesive Coating to Treat Endothelial Cell Dysfunction. Pharmaceuticals (Basel) 2017; 10:ph10020036. [PMID: 28353658 PMCID: PMC5490393 DOI: 10.3390/ph10020036] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/22/2017] [Accepted: 03/24/2017] [Indexed: 12/26/2022] Open
Abstract
Endothelial cell (EC) dysfunction is associated with many disease states including deep vein thrombosis (DVT), chronic kidney disease, sepsis and diabetes. Loss of the glycocalyx, a thin glycosaminoglycan (GAG)-rich layer on the EC surface, is a key feature of endothelial dysfunction and increases exposure of EC adhesion molecules such as selectins, which are involved in platelet binding to ECs. Once bound, platelets cause thrombus formation and an increased inflammatory response. We have developed a GAG derived, selectin targeting anti-adhesive coating (termed EC-SEAL) consisting of a dermatan sulfate backbone and multiple selectin-binding peptides designed to bind to inflamed endothelium and prevent platelet binding to create a more quiescent endothelial state. Multiple EC-SEAL variants were evaluated and the lead variant was found to preferentially bind to selectin-expressing ECs and smooth muscle cells (SMCs) and inhibit platelet binding and activation in a dose-dependent manner. In an in vivo model of DVT, treatment with the lead variant resulted in reduced thrombus formation. These results indicate that EC-SEAL has promise as a potential therapeutic in the treatment of endothelial dysfunction.
Collapse
Affiliation(s)
- James R Wodicka
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
- Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Andrea M Chambers
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Gurneet S Sangha
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Alyssa Panitch
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
- Department of Biomedical Engineering, University of California-Davis, Davis, CA 95616, USA.
| |
Collapse
|
3
|
Sutter I, Velagapudi S, Othman A, Riwanto M, Manz J, Rohrer L, Rentsch K, Hornemann T, Landmesser U, von Eckardstein A. Plasmalogens of high-density lipoproteins (HDL) are associated with coronary artery disease and anti-apoptotic activity of HDL. Atherosclerosis 2015; 241:539-46. [DOI: 10.1016/j.atherosclerosis.2015.05.037] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/09/2015] [Accepted: 05/31/2015] [Indexed: 12/27/2022]
|
4
|
Mahdy Ali K, Wonnerth A, Huber K, Wojta J. Cardiovascular disease risk reduction by raising HDL cholesterol--current therapies and future opportunities. Br J Pharmacol 2013; 167:1177-94. [PMID: 22725625 DOI: 10.1111/j.1476-5381.2012.02081.x] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Since the first discovery of an inverse correlation between high-density lipoprotein-cholesterol (HDL-C) levels and coronary heart disease in the 1950s the life cycle of HDL, its role in atherosclerosis and the therapeutic modification of HDL-C levels have been major research topics. The Framingham study and others that followed could show that HDL-C is an independent cardiovascular risk factor and that the increase of HDL-C of only 10 mg·L(-1) leads to a risk reduction of 2-3%. While statin therapy and therefore low-density lipoprotein-cholesterol (LDL-C) reduction could lower coronary heart disease considerably; cardiovascular morbidity and mortality still occur in a significant portion of subjects already receiving therapy. Therefore, new strategies and therapies are needed to further reduce the risk. Raising HDL-C was thought to achieve this goal. However, established drug therapies resulting in substantial HDL-C increase are scarce and their effect is controversial. Furthermore, it is becoming increasingly evident that HDL particle functionality is at least as important as HDL-C levels since HDL particles not only promote reverse cholesterol transport from the periphery (mainly macrophages) to the liver but also exert pleiotropic effects on inflammation, haemostasis and apoptosis. This review deals with the biology of HDL particles, the established and future therapeutic options to increase HDL-C and discusses the results and conclusions of the most important studies published in the last years. Finally, an outlook on future diagnostic tools and therapeutic opportunities regarding coronary artery disease is given.
Collapse
Affiliation(s)
- K Mahdy Ali
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | | | | | | |
Collapse
|
5
|
Effect of oat and barley β-glucans on inhibition of cytokine-induced adhesion molecule expression in human aortic endothelial cells: Molecular structure–function relations. Carbohydr Polym 2011. [DOI: 10.1016/j.carbpol.2010.11.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
6
|
Abstract
Plasma levels of HDL (high-density lipoprotein)-cholesterol are strongly and inversely correlated with atherosclerotic cardiovascular disease. Both clinical and epidemiological studies have reported an inverse and independent association between serum HDL-cholesterol levels and CHD (coronary heart disease) risk. The cardioprotective effects of HDLs have been attributed to several mechanisms, including their involvement in the reverse cholesterol transport pathway. HDLs also have antioxidant, anti-inflammatory and antithrombotic properties and promote endothelial repair, all of which are likely to contribute to their ability to prevent CHD. The first part of this review summarizes what is known about the origins and metabolism of HDL. We then focus on the anti-inflammatory and antioxidant properties of HDL and discuss why these characteristics are cardioprotective.
Collapse
|
7
|
Lekakis J, Ikonomidis I, Papoutsi Z, Moutsatsou P, Nikolaou M, Parissis J, Kremastinos DT. Selective serotonin re-uptake inhibitors decrease the cytokine-induced endothelial adhesion molecule expression, the endothelial adhesiveness to monocytes and the circulating levels of vascular adhesion molecules. Int J Cardiol 2008; 139:150-8. [PMID: 19004511 DOI: 10.1016/j.ijcard.2008.10.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 09/20/2008] [Accepted: 10/12/2008] [Indexed: 01/03/2023]
Abstract
BACKGROUND Selective serotonin reuptake inhibitors (SSRIs) exert cardioprotective effects. We examined whether SSRIs a) modulate endothelial cell expression of vascular cell adhesion molecule (VCAM-1), intracellular adhesion molecule (ICAM-1) and adhesiveness to U937 monocytes, b) reduce the circulating levels of these adhesion molecules in vivo. METHODS We assessed the effect of SSRIs, (citalopram, fluvoxamine and fluoxetine), on TNF-alpha-induced expression of VCAM-1 and ICAM-1 in human aorta endothelial cells and adhesiveness to U937 monocytes. Cells were incubated with TNF-alpha in the absence and in the presence of SSRIs concentrations from 10(-7) M to10(-4) M and the VCAM-1 and ICAM-1 expression was quantified by cell-ELISA. The TNF-alpha-stimulated adhesiveness to U937 monocytes was also assessed. Twenty five patients with chronic heart failure and depression were randomized to receive sertaline 50 mg, p.o., o.d. (n=13) or placebo. At baseline and 3-months after treatment, we measured VCAM-1 and ICAM-1 plasma levels. RESULTS SSRIs decreased the TNF-alpha-induced endothelial expression of VCAM-1 at concentration range 10(-7) M to 10(-4) M (p<0.05). ICAM-1 expression was decreased in the presence of fluvoxamine and fluoxetine at concentrations from 10(-7) M to 10(-4) M (p<0.05) and in the presence of citalopram at concentrations from 10(-7) M to 10(-5) M (p<0.05). All SSRIs inhibited the TNF-alpha-stimulated adhesiveness to U937 cells at 10(-5) M and 10(-4) M (p<0.05). Compared to baseline, there was a greater reduction in ICAM-1 and VCAM-1 levels post-sertaline than post placebo in heart failure patients (p<0.05). CONCLUSION SSRIs may exhibit an anti-inflammatory activity on endothelial cells and reduce circulating VCAM-1 and ICAM-1 in vivo, a mechanism which may partly mediate their cardioprotective effects.
Collapse
Affiliation(s)
- John Lekakis
- 2nd Department of Cardiology, Attikon Hospital, University of Athens, School of Medicine, Athens, Greece
| | | | | | | | | | | | | |
Collapse
|
8
|
Walnut extract (Juglans regia L.) and its component ellagic acid exhibit anti-inflammatory activity in human aorta endothelial cells and osteoblastic activity in the cell line KS483. Br J Nutr 2007; 99:715-22. [DOI: 10.1017/s0007114507837421] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Epidemiological studies suggest that the incidence of CVD and postmenopausal osteoporosis is low in the Mediterranean area, where herbs and nuts, among others, play an important role in nutrition. In the present study, we sought a role of walnuts (Juglans regia L.) in endothelial and bone-cell function. As the endothelial cell expression of adhesion molecules has been recognised as an early step in inflammation and atherogenesis, we examined the effect of walnut methanolic extract and ellagic acid, one of its major polyphenolic components (as shown by HPLC analysis), on the expression of vascular cell adhesion molecule (VCAM)-1 and intracellular adhesion molecule (ICAM)-1 in human aortic endothelial cells. After incubating the cells with TNF-α (1 ng/ml) in the absence and in the presence of walnut extract (10–200 μg/ml) or ellagic acid (10− 7–10− 5m), the VCAM-1 and ICAM-1 expression was quantified by cell-ELISA. We further evaluated the effect of walnut extract (10–50 μg/ml), in comparison with ellagic acid (10− 9–10− 6m), on nodule formation in the osteoblastic cell line KS483.Walnut extract and ellagic acid decreased significantly the TNF-α-induced endothelial expression of both VCAM-1 and ICAM-1 (P < 0·01; P < 0·001). Both walnut extract (at 10–25 μg/ml) and ellagic acid (at 10− 9–10− 8m) induced nodule formation in KS483 osteoblasts. The present results suggest that the walnut extract has a high anti-atherogenic potential and a remarkable osteoblastic activity, an effect mediated, at least in part, by its major component ellagic acid. Such findings implicate the beneficial effect of a walnut-enriched diet on cardioprotection and bone loss.
Collapse
|
9
|
Kimura T, Tomura H, Mogi C, Kuwabara A, Ishiwara M, Shibasawa K, Sato K, Ohwada S, Im DS, Kurose H, Ishizuka T, Murakami M, Okajima F. Sphingosine 1-phosphate receptors mediate stimulatory and inhibitory signalings for expression of adhesion molecules in endothelial cells. Cell Signal 2005; 18:841-50. [PMID: 16111867 DOI: 10.1016/j.cellsig.2005.07.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2005] [Revised: 07/14/2005] [Accepted: 07/18/2005] [Indexed: 11/30/2022]
Abstract
Sphingosine 1-phosphate (S1P) stimulates expression of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 in human umbilical vein endothelial cells. S1P-induced actions were associated with nuclear factor kappa-B activation and inhibited by pertussis toxin as well as by antisense oligonucleotides specific to S1P receptors, especially, S1P(3). S1P also stimulated endothelial nitric oxide synthase (eNOS) and its activation was markedly inhibited by the antisense oligonucleotide for the S1P(1) receptor rather than that for the S1P(3) receptor. The dose-response curve of S1P to stimulate adhesion molecule expression was shifted to the left in the presence of the phosphatidylinositol 3-kinase inhibitor wortmannin and the NOS inhibitor Nomega-nitro-l-arginine methyl ester. NO donor S-nitroso-N-acetylpenicillamine inhibited S1P-induced adhesion molecule expression. Moreover, tumor necrosis factor-alpha-induced adhesion molecule expression was markedly inhibited by S1P in a manner sensitive to inhibitors for PI3-K and NOS. These results suggest that S1P receptors are coupled to both stimulatory and inhibitory pathways for adhesion molecule expression. The stimulatory pathway involves nuclear factor kappa-B and inhibitory one does phosphatidylinositol 3-kinase and NOS.
Collapse
Affiliation(s)
- Takao Kimura
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi 371-8512, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
There are several well-documented functions of high-density lipoprotein (HDL) that may explain the ability of these lipoproteins to protect against atherosclerosis. The best recognized of these is the ability of HDL to promote the efflux of cholesterol from cells. This process may minimize the accumulation of foam cells in the artery wall. However, HDL has additional properties that may also be antiatherogenic. For example, HDL is an effective antioxidant. The major proteins of HDL, apoA-I and apoA-II, as well as other proteins such as paraoxonase that cotransport with HDL in plasma, are well-known to have antioxidant properties. As a consequence, HDL has the capacity to inhibit the oxidative modification of low-density lipoprotein (LDL) in a process that reduces the atherogenicity of these lipoproteins. HDL also possesses other antiinflammatory properties. By virtue of their ability to inhibit the expression of adhesion molecules in endothelial cells, they reduce the recruitment of blood monocytes into the artery wall. These antioxidant and antiinflammatory properties of HDL may be as important as its cholesterol efflux function in terms of protecting against the development of atherosclerosis.
Collapse
Affiliation(s)
- Philip J Barter
- The Heart Research Institute, 145 Missenden Rd, Camperdown, Sydney 2050, Australia.
| | | | | | | | | | | |
Collapse
|
11
|
Stanojević NB, Ivanović ZJ, Djurovic S, Kalimanovska VS, Spasić S, Ostrić DK, Memon L. Lack of Association Between Low HDL-cholesterol and Elevated Circulating Cellular Adhesion Molecules in Normolipidemic CAD Patients and Healthy Subjects. Int Heart J 2005; 46:593-600. [PMID: 16157950 DOI: 10.1536/ihj.46.593] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
High plasma HDL-cholesterol (HDL-c) is a well-established protective factor in coronary artery disease (CAD). One of its potential protective mechanisms is the inhibition of the cytokine-induced upregulation of expression of cellular adhesion molecules (CAMs). High sCAM levels were found to be associated with low HDL-c in some studies performed mostly in hyperlipidemic subjects, but this association has not yet been investigated in CAD patients. In addition, conflicting results were obtained from in vitro studies that explored the proposed HDL effect on cytokine-induced CAM expression. The aim of the present case-control study was to investigate whether low HDL-c values are associated with CAM overexpression in normolipidemic CAD patients and healthy individuals, matched according to age and gender. Plasma HDL-c, sICAM-1, sVCAM-1, and sE-selectin were measured in 37 normolipidemic patients with angiographically verified coronary artery disease and in 52 healthy normolipidemic subjects. The sCAM values obtained in the subjects (patients or controls) with low HDL-c levels (< 1.03 mmol/L) were compared with the values in the subjects with high HDL-c (>or= 1.03 mmol/L). No significant difference was found between sICAM-1, sVCAM-1, and E-selectin values obtained in subjects with low and high HDL-c, either among the patients or the healthy controls. In conclusion, low HDL-c levels are not associated with CAM overexpression in normolipidemic CAD patients and healthy subjects.
Collapse
|
12
|
Calabresi L, Gomaraschi M, Franceschini G. Endothelial protection by high-density lipoproteins: from bench to bedside. Arterioscler Thromb Vasc Biol 2003; 23:1724-31. [PMID: 12969988 DOI: 10.1161/01.atv.0000094961.74697.54] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
There are several potential mechanisms by which HDLs protect against the development of vascular disease. One relates to the unique ability of these lipoproteins to remove cholesterol from the arterial wall. Another is the ability of HDL to prevent and eventually correct endothelial dysfunction, a key variable in the pathogenesis of atherosclerosis and its complications. HDLs help maintain endothelial integrity, facilitate vascular relaxation, inhibit blood cell adhesion to vascular endothelium, reduce platelet aggregability and coagulation, and may favor fibrinolysis. These functions of HDLs complement their activity in arterial cholesterol removal by providing an excellent rationale for favorably influencing pathological processes underlying a variety of clinical conditions, such as accelerated atherosclerosis, acute coronary syndromes, and restenosis after coronary angioplasty, through a chronic or acute elevation of plasma HDL concentration.
Collapse
Affiliation(s)
- Laura Calabresi
- Center E. Grossi Paoletti, Department of Pharmacological Sciences, University of Milano, Italy
| | | | | |
Collapse
|