1
|
Nagirnaja L, Venclovas Č, Rull K, Jonas KC, Peltoketo H, Christiansen OB, Kairys V, Kivi G, Steffensen R, Huhtaniemi IT, Laan M. Structural and functional analysis of rare missense mutations in human chorionic gonadotrophin β-subunit. Mol Hum Reprod 2012; 18:379-90. [PMID: 22554618 PMCID: PMC3389497 DOI: 10.1093/molehr/gas018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Heterodimeric hCG is one of the key hormones determining early pregnancy success. We have previously identified rare missense mutations in hCGβ genes with potential pathophysiological importance. The present study assessed the impact of these mutations on the structure and function of hCG by applying a combination of in silico (sequence and structure analysis, molecular dynamics) and in vitro (co-immunoprecipitation, immuno- and bioassays) approaches. The carrier status of each mutation was determined for 1086 North-Europeans [655 patients with recurrent miscarriage (RM)/431 healthy controls from Estonia, Finland and Denmark] using PCR-restriction fragment length polymorphism. The mutation CGB5 p.Val56Leu (rs72556325) was identified in a single heterozygous RM patient and caused a structural hindrance in the formation of the hCGα/β dimer. Although the amount of the mutant hCGβ assembled into secreted intact hCG was only 10% compared with the wild-type, a stronger signaling response was triggered upon binding to its receptor, thus compensating the effect of poor dimerization. The mutation CGB8 p.Pro73Arg (rs72556345) was found in five heterozygotes (three RM cases and two control individuals) and was inherited by two of seven studied live born children. The mutation caused ∼50% of secreted β-subunits to acquire an alternative conformation, but did not affect its biological activity. For the CGB8 p.Arg8Trp (rs72556341) substitution, the applied in vitro methods revealed no alterations in the assembly of intact hCG as also supported by an in silico analysis. In summary, the accumulated data indicate that only mutations with neutral or mild functional consequences might be tolerated in the major hCGβ genes CGB5 and CGB8.
Collapse
Affiliation(s)
- Liina Nagirnaja
- Human Molecular Genetics Research Group, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Roig J, Krause JM, Berger P, Merz WE. Time-dependent folding of immunological epitopes of the human chorionic gonadotropin beta-subunit. Mol Cell Endocrinol 2007; 260-262:12-22. [PMID: 17059865 DOI: 10.1016/j.mce.2005.10.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Accepted: 10/29/2005] [Indexed: 11/21/2022]
Abstract
We have explored the possibility to use 14 different monoclonal antibodies in order to follow the formation of the respective epitopes during the biosynthesis of hCG subunits and their association in JEG-3 choriocarcinoma cells using pulse (30s to 5 min)-chase (0-180 min) experiments. We found central cystine knot epitope structures (epitope beta1) to be formed immediately and simultaneously with epitopes on the protruding hCG-beta loops 1 and 3. We found also differences in the time-dependent folding of beta2 and beta4 epitopes, which are highly overlapping structures on the loops 1+3. These differences were reinforced by decreasing the temperature during the pulse-chase experiments to 25 degrees C. Moreover, we describe for the first time an intracellular intact hCG beta-subunit form that showed the transient expression of the hCG-beta-core fragment epitope beta11 in the course of the maturation of this subunit which casts new light on the presence of hCG-beta-core fragment in Down's syndrome, tumors and pregnancy.
Collapse
MESH Headings
- Antibodies, Monoclonal/immunology
- Chorionic Gonadotropin, beta Subunit, Human/chemistry
- Chorionic Gonadotropin, beta Subunit, Human/immunology
- Chorionic Gonadotropin, beta Subunit, Human/metabolism
- Dimerization
- Epitopes/chemistry
- Epitopes/immunology
- Epitopes/metabolism
- Glycoprotein Hormones, alpha Subunit/chemistry
- Glycoprotein Hormones, alpha Subunit/metabolism
- HeLa Cells
- Humans
- Immunoprecipitation
- Protein Folding
- Protein Processing, Post-Translational
- Protein Subunits/chemistry
- Protein Subunits/immunology
- Protein Subunits/metabolism
- Time Factors
Collapse
Affiliation(s)
- J Roig
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Federal Republic of Germany
| | | | | | | |
Collapse
|
3
|
Belghazi M, Klett D, Cahoreau C, Combarnous Y. Nitro-thiocyanobenzoic acid (NTCB) reactivity of cysteines beta100 and beta110 in porcine luteinizing hormone: metastability and hypothetical isomerization of the two disulfide bridges of its beta-subunit seatbelt. Mol Cell Endocrinol 2006; 247:175-82. [PMID: 16458419 DOI: 10.1016/j.mce.2006.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Revised: 12/23/2005] [Accepted: 01/02/2006] [Indexed: 11/17/2022]
Abstract
Luteinizing hormone (LH) like all other glycoprotein hormones is composed of two dissimilar subunits, alpha and beta, that are non-covalently associated. The heterodimer is stabilized by a region of the beta-subunit called the "seatbelt" because it wraps around the alpha-subunit and it is fastened by a disulfide bridge between cysteines beta26 and beta110. Although all 22 cysteines of porcine LH (pLH) are engaged in disulfide bridges, we previously showed that the free cysteine-specific reagent NTCB could react with pLH: it slowly cyanylated two cysteines in pLH and there was a close relationship between NTCB reaction with pLH and association/dissociation kinetics of its subunits. Therefore, cysteines beta26 and beta110 were considered as the best candidates for NTCB reaction. In order to identify the NTCB-reactive cysteines in pLH we have performed a mass spectroscopic analysis of the peptides released after mild basic hydrolysis of S-cyanylated pLH and its subunits. Only cysteines beta100 and beta110 were found to react with NTCB. Since these residues are not linked by a disulfide bridge in the crystallographic 3D structure of gonadotropins, it is proposed that their respective counterparts (Cysbeta93 and beta26) do not react with NTCB either because they are shielded from solvent or because they form a transient bridge. In the first hypothesis, both seatbelt bridges would be independently metastable; in the second one, a fast reversible isomerization between bridges beta26-beta110 and beta93-beta100 would occur. Such a reaction could be catalyzed by the previously recognized intrinsic protein disulfide isomerase (PDI) activity of gonadotropins.
Collapse
Affiliation(s)
- Maya Belghazi
- INRA-CNRS-Tours University, Service de Spectrométrie de Masse et de Protéomique, Physiologie de la Reproduction et des Comportements, Centre INRA de Tours-Nouzilly, 37380 Nouzilly, France
| | | | | | | |
Collapse
|
4
|
Wilken JA, Bedows E. Disulfide bond rearrangement during formation of the chorionic gonadotropin beta-subunit cystine knot in vivo. Biochemistry 2004; 43:5109-18. [PMID: 15109270 DOI: 10.1021/bi049856x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The intracellular kinetic folding pathway of the human chorionic gonadotropin beta-subunit (hCG-beta) reveals the presence of a disulfide between Cys residues 38-57 that is not detected by X-ray analysis of secreted hCG-beta. This led us to propose that disulfide rearrangement is an essential feature of cystine knot formation during CG-beta folding. To test this, we used disulfide bond formation to monitor progression of intracellular folding intermediates of a previously uncharacterized protein, the CG-beta subunit of cynomolgous macaque (Macaca fascicularis). Like its human counterpart hCG-beta with which it shares 81% identity, macaque (m)CG-beta is a cystine knot-containing subunit that assembles with an alpha-subunit common to all glycoprotein hormone members of its species to form a biologically active heterodimer, mCG, which, like hCG, is required for pregnancy maintenance. An early mCG-beta folding intermediate, mpbeta1, contained two disulfide bonds, one between Cys34 and Cys88 and the other between Cys38 and Cys57. The subsequent folding intermediate, mpbeta2-early, was represented by an ensemble of folding forms that, in addition to the two disulfides mentioned above, included disulfide linkages between Cys9 and Cys57 and between Cys38 and Cys90. These latter two disulfides are those contained within the beta-subunit cystine knot and reveal that a disulfide exchange occurred during the mpbeta2-early folding step leading to formation of the mCG-beta knot. Thus, while defining the intracellular kinetic protein folding pathway of a monkey homologue of CG-beta, we detected the previously predicted disulfide exchange event crucial for CG-beta cystine knot formation and attainment of CG-beta assembly competence.
Collapse
Affiliation(s)
- Jason A Wilken
- Department of Biochemistry and Molecular Biology, Eppley Institute for Research in Cancer and Allied Diseases and University of Nebraska Medical Center Eppley Cancer Center, Omaha, Nebraska 68198-3255, USA
| | | |
Collapse
|
5
|
Arias-Salgado EG, Butta N, González-Manchón C, Larrucea S, Ayuso MS, Parrilla R. Competition between normal [674C] and mutant [674R] subunits: role of the molecular chaperone BiP in the processing of GPIIb-IIIa complexes. Blood 2001; 97:2640-7. [PMID: 11313253 DOI: 10.1182/blood.v97.9.2640] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This work aimed at investigating the function of the [C674R] mutation in GPIIb that disrupts the intramolecular 674 to 687 disulfide bridge. Individuals heterozygous for this mutation show a platelet GPIIb-IIIa content approximately 30% of normal controls, which is less than expected from one normal functioning allele. Coexpression of normal [674C]GPIIb and mutant [674R]GPIIb with normal GPIIIa produced a [674R]GPIIb concentration-dependent inhibition of surface exposure of GPIIb-IIIa complexes in Chinese hamster ovary (CHO) cells, suggesting that [674R]GPIIb interferes with the association and/or intracellular trafficking of normal subunits. Mutation of either 674C or 687C had similar effects in reducing the surface exposure of GPIIb-IIIa. However, substitution of 674C for A produced a much lesser inhibition than R, suggesting that a positive-charged residue at that position renders a less efficient subunit conformation. The mutant [674R]GPIIb but not normal GPIIb was found associated with the endoplasmic reticulum chaperone BiP in transiently transfected CHO cells. BiP was also found associated with [674R]GPIIb-IIIa heterodimers, but not with normal GPIIIa or normal heterodimers. Overexpression of BiP did not increase the surface exposure of [674R]GPIIb-IIIa complexes, indicating that its availability was not a limiting step. Platelets from the thrombasthenic patient expressing [674R]GPIIb-IIIa were found to bind soluble fibrinogen in response to physiologic agonists or dithiothreitol treatment. Thus, the [674R]GPIIb mutation leads to a retardation of the secretory pathway, most likely related to its binding to the molecular chaperone BiP, with the result of a defective number of functional GPIIb-IIIa receptors in the cell surface.
Collapse
Affiliation(s)
- E G Arias-Salgado
- Department of Pathophysiology and Human Molecular Genetics, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | | | | | | | | | | |
Collapse
|
6
|
Darling RJ, Wilken JA, Miller-Lindholm AK, Urlacher TM, Ruddon RW, Sherman SA, Bedows E. Functional contributions of noncysteine residues within the cystine knots of human chorionic gonadotropin subunits. J Biol Chem 2001; 276:10692-9. [PMID: 11134053 DOI: 10.1074/jbc.m010168200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human chorionic gonadotropin (hCG) is a heterodimeric member of a family of cystine knot-containing proteins that contain the consensus sequences Cys-X(1)-Gly-X(2)-Cys and Cys-X(3)-Cys. Previously, we characterized the contributions that cystine residues of the hCG subunit cystine knots make in folding, assembly, and bioactivity. Here, we determined the contributions that noncysteine residues make in hCG folding, secretion, and assembly. When the X(1), X(2), and X(3) residues of hCG-alpha and -beta were substituted by swapping their respective cystine knot motifs, the resulting chimeras appeared to fold correctly and were efficiently secreted. However, assembly of the chimeras with their wild type partner was almost completely abrogated. No single amino acid substitution completely accounted for the assembly inhibition, although the X(2) residue made the greatest individual contribution. Analysis by tryptic mapping, high performance liquid chromatography, and SDS-polyacrylamide gel electrophoresis revealed that substitution of the central Gly in the Cys-X(1)-Gly-X(2)-Cys sequence of either the alpha- or beta-subunit cystine knot resulted in non-native disulfide bond formation and subunit misfolding. This occurred even when the most conservative change possible (Gly --> Ala) was made. From these studies we conclude that all three "X" residues within the hCG cystine knots are collectively, but not individually, required for the formation of assembly-competent hCG subunits and that the invariant Gly residue is required for efficient cystine knot formation and subunit folding.
Collapse
Affiliation(s)
- R J Darling
- Eppley Institute for Research in Cancer and Allied Diseases, Department of Pharmacology, Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Hare JF. Protease inhibitors divert amyloid precursor protein to the secretory pathway. Biochem Biophys Res Commun 2001; 281:1298-303. [PMID: 11243877 DOI: 10.1006/bbrc.2001.4507] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Addition of cysteine protease inhibitors to cells expressing amyloid precursor protein (APP) resulted in a >2-fold increase in appearance of the secreted extracellular domain of APP in the media. This was accounted for by increased flux of APP into the secretory pathway since protease inhibitors also caused a twofold increase in newly translated, incompletely glycosylated APP detected by pulse-labeling. These results show that a portion of newly translated APP molecules are normally rapidly degraded by cysteine protease(s) but can enter the secretory pathway when degradation is inhibited. Newly translated APP molecules are thus still competent for posttranslational processing in distal cellular compartments. Their degradation thus may not result from misfolding but merely susceptibility to an endoplasmic reticulum localized cysteine protease.
Collapse
Affiliation(s)
- J F Hare
- Department of Biochemistry, Oregon Health Sciences University, Portland, Oregon 97219, USA.
| |
Collapse
|
8
|
Darling RJ, Wilken JA, Ruddon RW, Bedows E. Intracellular folding pathway of the cystine knot-containing glycoprotein hormone alpha-subunit. Biochemistry 2001; 40:577-85. [PMID: 11148053 DOI: 10.1021/bi002046a] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Three of the five disulfide bonds in the glycoprotein hormone alpha-subunit (GPH-alpha) form a cystine knot motif that stabilizes a three-loop antiparallel structure. Previously, we described a mutant (alpha(k)) that contained only the three knot disulfide bonds and demonstrated that the cystine knot was necessary and sufficient for efficient GPH-alpha folding and secretion. In this study, we used alpha(k) as a model to study the intracellular GPH-alpha folding pathway. Cystine knot formation proceeded through a 1-disulfide intermediate that contained the 28-82 disulfide bond. Formation of disulfide bond 10-60, then disulfide bond 32-84, followed the formation of 28-82. Whether the two non-cystine knot bonds 7-31 and 59-87 could form independent of the knot was also tested. Disulfide bond 7-31 formed rapidly, whereas 59-87 did not form when all cysteine residues of the cystine knot were converted to alanine, suggesting that 7-31 forms early in the folding pathway and that 59-87 forms during or after cystine knot formation. Finally, loop 2 of GPH-alpha has been shown to be very flexible, suggesting that loop 2 does not actively drive GPH-alpha folding. To test this, we replaced residues 36-55 in the flexible loop 2 with an artificially flexible glycine chain. Consistent with our hypothesis, folding and secretion were unaffected when loop 2 was replaced with the glycine chain. Based on these findings, we describe a model for the intracellular folding pathway of GPH-alpha and discuss how these findings may provide insight into the folding mechanisms of other cystine knot-containing proteins.
Collapse
MESH Headings
- Amino Acid Motifs/genetics
- Cell Line
- Chorionic Gonadotropin, beta Subunit, Human/chemistry
- Chorionic Gonadotropin, beta Subunit, Human/metabolism
- Cysteine/chemistry
- Cysteine/genetics
- Cysteine/metabolism
- Cystine/chemistry
- Cystine/genetics
- Cystine/metabolism
- Dithiothreitol/pharmacology
- Glycoprotein Hormones, alpha Subunit/chemistry
- Glycoprotein Hormones, alpha Subunit/genetics
- Glycoprotein Hormones, alpha Subunit/metabolism
- Humans
- Intracellular Fluid/chemistry
- Mutagenesis, Site-Directed
- Peptide Fragments/chemistry
- Peptide Fragments/genetics
- Peptide Fragments/metabolism
- Protein Folding
- Protein Structure, Secondary/genetics
- Protein Structure, Tertiary/genetics
- Reducing Agents/pharmacology
Collapse
Affiliation(s)
- R J Darling
- Department of Pharmacology, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | | | | | | |
Collapse
|
9
|
Silva RAGD, Sherman SA, Perini F, Bedows E, Keiderling TA. Folding Studies on the Human Chorionic Gonadotropin β-Subunit Using Optical Spectroscopy of Peptide Fragments. J Am Chem Soc 2000. [DOI: 10.1021/ja0013172] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- R. A. Gangani D. Silva
- Contribution from the Department of Chemistry (M/C 111), University of Illinois at Chicago, 845 W. Taylor Street, Chicago, Illinois 60607-7061, the Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, Nebraska 68198-6805, The Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, Nebraska 68198-6805, and The Department of Pharmacology, University
| | - Simon A. Sherman
- Contribution from the Department of Chemistry (M/C 111), University of Illinois at Chicago, 845 W. Taylor Street, Chicago, Illinois 60607-7061, the Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, Nebraska 68198-6805, The Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, Nebraska 68198-6805, and The Department of Pharmacology, University
| | - Fulvio Perini
- Contribution from the Department of Chemistry (M/C 111), University of Illinois at Chicago, 845 W. Taylor Street, Chicago, Illinois 60607-7061, the Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, Nebraska 68198-6805, The Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, Nebraska 68198-6805, and The Department of Pharmacology, University
| | - Elliott Bedows
- Contribution from the Department of Chemistry (M/C 111), University of Illinois at Chicago, 845 W. Taylor Street, Chicago, Illinois 60607-7061, the Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, Nebraska 68198-6805, The Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, Nebraska 68198-6805, and The Department of Pharmacology, University
| | - Timothy A. Keiderling
- Contribution from the Department of Chemistry (M/C 111), University of Illinois at Chicago, 845 W. Taylor Street, Chicago, Illinois 60607-7061, the Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, Nebraska 68198-6805, The Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, Nebraska 68198-6805, and The Department of Pharmacology, University
| |
Collapse
|
10
|
Darling RJ, Ruddon RW, Perini F, Bedows E. Cystine knot mutations affect the folding of the glycoprotein hormone alpha-subunit. Differential secretion and assembly of partially folded intermediates. J Biol Chem 2000; 275:15413-21. [PMID: 10809777 DOI: 10.1074/jbc.275.20.15413] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The common glycoprotein hormone alpha-subunit (GPH-alpha) contains five intramolecular disulfide bonds, three of which form a cystine knot motif (10-60, 28-82, and 32-84). By converting each pair of cysteine residues of a given disulfide bond to alanine, we have studied the role of individual disulfide bonds in GPH-alpha folding and have related folding ability to secretion and assembly with the human chorionic gonadotropin beta-subunit (hCG-beta). Mutation of non-cystine knot disulfide bond 7-31, bond 59-87, or both (leaving only the cystine knot) resulted in an efficiently secreted folding form that was indistinguishable from wild type. Conversely, the cystine knot mutants were inefficiently secreted (<25%). Furthermore, mutation of the cystine knot disulfide bonds resulted in multiple folding intermediates containing 1, 2, or 4 disulfide bonds. High performance liquid chromatographic separation of intracellular and secreted forms of the folding intermediates demonstrated that the most folded forms were preferentially secreted and combined with hCG-beta. From these studies we conclude that: (i) the cystine knot of GPH-alpha is necessary and sufficient for folding and (ii) there is a direct correlation between the extent of GPH-alpha folding, its ability to be secreted, and its ability to heterodimerize with hCG-beta.
Collapse
Affiliation(s)
- R J Darling
- Eppley Institute for Research in Cancer and Allied Diseases and the Department of Pharmacology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | | | | | | |
Collapse
|
11
|
Singh V, Merz WE. Disulfide bond formation is not required for human chorionic gonadotropin subunit association. Studies with dithiothreitol in JEG-3 cells. J Biol Chem 2000; 275:11765-70. [PMID: 10766799 DOI: 10.1074/jbc.275.16.11765] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To study the influence of disulfide bridge formation on the assembly of the subunits of human chorionic gonadotropin in JEG-3 choriocarcinoma cells, dithiothreitol (DTT) was used to create a reducing milieu in the endoplasmic reticulum (ER) in vivo. In the presence of 5 mM DTT during pulse-chase experiments all of the beta-subunit precursors observed in unperturbed cells (pbeta(0), pbeta(1), pbeta(2), and beta(*)) collapsed into the pbeta(0) form. The reducing milieu of the ER was reoxidized in less than 5 min after removal of DTT from the medium. DTT markedly increased the half-life of the pbeta(0) precursor from 8.8 to 65.2 min. Under reoxidation conditions, the beta-subunit precursors folded back from pbeta(0) in less than 5 min. In unperturbed JEG-3 cells, the alpha-subunit was present in both fully glycosylated and monoglycosylated precursor (pre-alpha) forms. The attachment of the second N-linked glycan residue of the alpha-subunit was accelerated in the presence of DTT, and consequently pre-alpha-subunit was missing from the DTT-treated cultures. The formation of alphabeta-dimers appeared to be at least partially independent of the oxidation state in the ER. The alphabeta-dimer was present under conditions in which disulfide bridge formation was prevented by exposure to 5 mM DTT before and during the pulse period. This clearly suggests that the human chorionic gonadotropin subunits may acquire association-competent conformations even when no disulfide bridge formation has taken place.
Collapse
Affiliation(s)
- V Singh
- Biochemie-Zentrum Heidelberg, University of Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | | |
Collapse
|
12
|
Dannies PS. Protein folding and deficiencies caused by dominant-negative mutants of hormones. VITAMINS AND HORMONES 2000; 58:1-26. [PMID: 10668393 DOI: 10.1016/s0083-6729(00)58019-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Protein folding and transport in the secretory pathway of cells is a controlled process, facilitated by chaperones. Proteins that do not fold well elicit several different programmed responses from the cells. A comparison of mutants of growth hormone that result in growth hormone deficiency suggests that cells do not respond in the same way to all growth hormone mutants that cannot fold, because some mutants are dominant and some are recessive. Causes for autosomal dominant hormone deficiencies include accumulation of toxic or dysfunctional forms, competition for chaperones important for folding or transport, induction of protein degradation in the endoplasmic reticulum, or long-term responses of the cells to synthesis of proteins that do not fold that decrease hormone synthesis or cell viability.
Collapse
Affiliation(s)
- P S Dannies
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06510, USA
| |
Collapse
|
13
|
Suzuki S, Furuhashi M, Suganuma N. Additional N-glycosylation at Asn(13) rescues the human LHbeta-subunit from disulfide-linked aggregation. Mol Cell Endocrinol 2000; 160:157-63. [PMID: 10715549 DOI: 10.1016/s0303-7207(99)00213-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CG, LH, FSH, and TSH are a family of heterodimeric glycoprotein hormones that contain a common alpha-subunit, but differ in their hormone-specific beta-subunits. Despite the considerable homology between LHbeta and CGbeta, we previously demonstrated that, when expressed in GH(3) cells, the secreted form of LHbeta showed mispaired disulfide-linked aggregation in addition to monomer, whereas no aggregation was observed in CGbeta. To determine the domains which are associated with the LHbeta-aggregation and which prevent CGbeta-aggregation, mutant beta-subunits in glycosylation and carboxy-terminus were expressed in GH(3) cells, and the occurrence of aggregation was assessed by continuous labeling with [35S]methionine/cysteine, immunoprecipitation with anti-hCGbeta serum, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis in a non-reducing condition. No aggregation was seen when N-linked oligosaccharides were attached to the Asn(13) of LHbeta. Removal of the carbohydrate unit at the Asn(13) of CGbeta caused aggregation, although the amount was less than 10% of monomer. The carboxy-terminal regions of neither LHbeta nor CGbeta were associated with their aggregation. Both CGbeta wild-type (WT) and CGbeta lacking N-glycosylation at Asn(13) (CGbeta-N13) showed aggregates in lysate. However, in contrast to CGbeta-N13, CGbetaWT revealed no aggregation in medium. These results indicate that the backbone structure consisting of 114 amino acids and N-linked glycosylation at Asn(30) is involved in the aggregation of LHbeta. Moreover, N-glycosylation at Asn(13) does not prevent such aggregation, but instead plays an important role in correct folding for both LHbeta- and CGbeta-subunits to be secreted as monomer.
Collapse
Affiliation(s)
- S Suzuki
- Department of Obstetrics and Gynecology, Nagoya University School of Medicine, Nagoya, Japan
| | | | | |
Collapse
|
14
|
Silva RA, Sherman SA, Keiderling TA. Beta-hairpin stabilization in a 28-residue peptide derived from the beta-subunit sequence of human chorionic gonadotropin hormone. Biopolymers 1999; 50:413-23. [PMID: 10423550 DOI: 10.1002/(sici)1097-0282(19991005)50:4<413::aid-bip7>3.0.co;2-l] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The beta-subunit of the human chorionic gonadotropin (hCG) hormone, which is believed to be related to certain types of cancer, contains three hairpin-like fragments. To investigate the role of beta-hairpin formation in the early stages of the hCGbeta folding, a 28-residue peptide with the sequence RDVRFESIRLPGSPRGVNPVVSYAVALS, corresponding to the H3-beta hairpin fragment (residues 60-87) of the hCGbeta subunit, was studied under various conditions using three optical spectroscopic methods: Fourier transform ir spectroscopy, electronic CD, and vibrational CD. Environmental conditions are critical factors for formation of secondary structure in this peptide. TFE : H(2)O mixed solvents induced helical formation. Formation of beta-structure in this peptide, which may be related to the native beta-hairpin formation in the intact hormone, was found to be induced only under conditions such as high concentration, high temperature, and the presence of nonmicellar sodium dodecyl sulfate concentrations. These findings support a protein folding mechanism for the hCGbeta subunit in which an initial hydrophobic collapse, which increases intermolecular interactions in hCGbeta, is needed to induce the H3-beta hairpin formation.
Collapse
Affiliation(s)
- R A Silva
- Department of Chemistry (M¿C 111), University of Illinois at Chicago, 845 W. Taylor St., Chicago IL 60607-7061, USA
| | | | | |
Collapse
|
15
|
Miller-Lindholm AK, Bedows E, Bartels CF, Ramey J, Maclin V, Ruddon RW. A naturally occurring genetic variant in the human chorionic gonadotropin-beta gene 5 is assembly inefficient. Endocrinology 1999; 140:3496-506. [PMID: 10433205 DOI: 10.1210/endo.140.8.6915] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The hCGbeta gene family is composed of six homologous genes linked in tandem repeat on chromosome 19; the order of the genes is 7, 8, 5, 1, 2, and 3. Previous studies have shown that hCGbeta gene 5 is highly expressed during the first trimester of pregnancy. The purpose of our study was to identify naturally occurring polymorphisms in hCGbeta gene 5 and determine whether these alterations affected hCG function. The data presented here show that hCGbeta gene 5 was highly conserved in the 334 asymptomatic individuals and 41 infertile patients examined for polymorphisms using PCR followed by single stranded conformational polymorphism analysis. Most of the polymorphisms detected were either silent or located in intron regions. However, one genetic variant identified in beta gene 5 exon 3 was a G to A transition that changed the naturally occurring valine residue to methionine in codon 79 (V79M) in 4.2% of the random population studied. The V79M polymorphism was always linked to a silent C to T transition in codon 82 (tyrosine). To determine whether betaV79M hCG had biological properties that differed from those of wild-type hCG, a beta-subunit containing the V79M substitution was created by site-directed mutagenesis and was coexpressed with the glycoprotein hormone alpha-subunit in Chinese hamster ovary cells and 293T cells. When we examined betaV79M hCG biosynthesis, we detected atypical betaV79M hCG folding intermediates, including a betaV79M conformational variant that resulted in a beta-subunit with impaired ability to assemble with the alpha-subunit. The inefficient assembly of betaV79M hCG appeared to be independent of beta-subunit glycosylation or of the cell type studied, but, rather, was due to the inability of the betaV79M subunit to fold correctly. The majority of the V79M beta-subunit synthesized was secreted as unassembled free beta. Although the amount of alphabeta hCG heterodimer formed and secreted by betaV79M-producing cells was less than that by wild-type beta-producing cells, the hCG that was secreted as alphabeta V79M heterodimer exhibited biological activity indistinguishable from that of wild-type hCG.
Collapse
MESH Headings
- Abortion, Spontaneous/genetics
- Amino Acid Substitution
- Animals
- CHO Cells
- Cell Line
- Chorionic Gonadotropin, beta Subunit, Human/biosynthesis
- Chorionic Gonadotropin, beta Subunit, Human/chemistry
- Chorionic Gonadotropin, beta Subunit, Human/genetics
- Chromosome Mapping
- Chromosomes, Human, Pair 19
- Cricetinae
- DNA/blood
- DNA/genetics
- Female
- Genetic Variation
- Glycoprotein Hormones, alpha Subunit/chemistry
- Humans
- Infertility, Female/genetics
- Male
- Methionine
- Models, Molecular
- Multigene Family
- Mutagenesis, Site-Directed
- Point Mutation
- Polymorphism, Single-Stranded Conformational
- Pregnancy
- Protein Structure, Secondary
- Recombinant Proteins/biosynthesis
- Transfection
- Valine
Collapse
Affiliation(s)
- A K Miller-Lindholm
- Eppley Institute for Research in Cancer and Allied Diseases, Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha 68198-6805, USA
| | | | | | | | | | | |
Collapse
|
16
|
Muyan M, Ruddon RW, Norton SE, Boime I, Bedows E. Dissociation of early folding events from assembly of the human lutropin beta-subunit. Mol Endocrinol 1998; 12:1640-9. [PMID: 9773985 DOI: 10.1210/mend.12.10.0177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The human LH of the anterior pituitary is a member of the glycoprotein hormone family that includes FSH, TSH, and placental CG. All are noncovalently bound heterodimers that share a common alpha-subunit and beta-subunits that confer biological specificity. LHbeta and CGbeta share more than 80% amino acid sequence identity; however, in transfected Chinese hamster ovary (CHO) cells, LHbeta assembles with the alpha-subunit more slowly than does hCGbeta, and only a fraction of the LHbeta synthesized is secreted, whereas CGbeta is secreted efficiently. To understand why the assembly and secretion of these related beta-subunits differ, we studied the folding of LHbeta in CHO cells transfected with either the LHbeta gene alone, or in cells cotransfected with the gene expressing the common alpha-subunit, and compared our findings to those previously seen for CG. We found that the rate of conversion of the earliest detectable folding intermediate of LH, pbeta1, to the second major folding form, pbeta2, did not differ significantly from the pbeta1-to-pbeta2 conversion of CGbeta, suggesting that variations between the intracellular fates of the two beta-subunits cannot be explained by differences in the rates of their early folding steps. Rather, we discovered that unlike CGbeta, where the folding to pbeta2 results in an assembly-competent product, apparently greater than 90% of the LH pbeta2 recovered from LHbeta-transfected CHO cells was assembly incompetent, accounting for inefficient LHbeta assembly with the alpha-subunit. Using the formation of disulfide (S-S) bonds as an index, we observed that, in contrast to CGbeta, all 12 LHbeta cysteine residues formed S-S linkages as soon as pbeta2 was detected. Attempts to facilitate LH assembly with protein disulfide isomerase in vitro using LH pbeta2 and excess urinary alpha-subunit as substrate were unsuccessful, although protein disulfide isomerase did facilitate CG assembly in this assay. Moreover, unlike CGbeta, LHbeta homodimers were recovered from transfected CHO cells. Taken together, these data suggest that differences seen in the rate and extent of LH assembly and secretion, as compared to those of CG, reflect conformational differences between the folding intermediates of the respective beta-subunits.
Collapse
Affiliation(s)
- M Muyan
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
17
|
Affiliation(s)
- R W Ruddon
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198-6805, USA
| | | |
Collapse
|
18
|
Feng W, Bedows E, Norton SE, Ruddon RW. Novel covalent chaperone complexes associated with human chorionic gonadotropin beta subunit folding intermediates. J Biol Chem 1996; 271:18543-8. [PMID: 8702502 DOI: 10.1074/jbc.271.31.18543] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Molecular chaperones facilitate the folding of proteins in the endoplasmic reticulum (ER) of mammalian cells. The glycoprotein hormone chorionic gonadotropin beta subunit is a secretory protein whose folding in the ER has been demonstrated (Huth, J. R., Mountjoy, K., Perini, F., and Ruddon, R. W.(1992) J. Biol. Chem. 267, 8870-8879). Because folding of wild type hCG-beta subunit occurs in the ER with a t1/2 = 4-5 min, stable association of ER chaperones with hCG-beta have been difficult to detect probably because they have a short half-life. However, beta-chaperone complexes containing the ER chaperones BiP, ERp72, and ERp94 have been detected in slow folding mutants of hCG-beta subunit that lack both of the N-linked oligosaccharides (Feng, W., Matzuk, M. M., Mountjoy, K., Bedows, E., Ruddon, R. W., and Boime, I. (1995) J. Biol. Chem. 270, 11851-11859). The questions addressed here are 1) whether the detection of chaperone-containing complexes is related to the absence of carbohydrate or to the rate of hCG-beta subunit folding, 2) whether such complexes are dead-end or whether they lead to formation of a secreted, mature hCG-beta form, and 3) what the nature of the hCG-beta-chaperone binding is. The data obtained indicate that the amount of detectable hCG-beta-chaperone complexes correlates with the rate or extent of folding, that the complexes of hCG-beta with ER chaperones lead to the formation of secretable beta, and that the complexes of hCG-beta with chaperones involve the formation of intermolecular disulfide bonds.
Collapse
Affiliation(s)
- W Feng
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198-6805, USA
| | | | | | | |
Collapse
|
19
|
Ruddon RW, Sherman SA, Bedows E. Protein folding in the endoplasmic reticulum: lessons from the human chorionic gonadotropin beta subunit. Protein Sci 1996; 5:1443-52. [PMID: 8844836 PMCID: PMC2143471 DOI: 10.1002/pro.5560050801] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
There have been few studies of protein folding in the endoplasmic reticulum of intact mammalian cells. In the one case where the in vivo and in vitro folding pathways of a mammalian secretory protein have been compared, the folding of the human chorionic gonadotropin beta subunit (hCG-beta), the order of formation of the detected folding intermediates is the same. The rate and efficiency with which multidomain proteins such as hCG-beta fold to native structure in intact cells is higher than in vitro, although intracellular rates of folding of the beta subunit can be approached in vitro in the presence of an optimal redox potential and protein disulfide isomerase. Understanding how proteins fold in vivo may provide a new way to diagnose and treat human illnesses that occur due to folding defects.
Collapse
Affiliation(s)
- R W Ruddon
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha 68189, USA.
| | | | | |
Collapse
|
20
|
Feng W, Matzuk MM, Mountjoy K, Bedows E, Ruddon RW, Boime I. The asparagine-linked oligosaccharides of the human chorionic gonadotropin beta subunit facilitate correct disulfide bond pairing. J Biol Chem 1995; 270:11851-9. [PMID: 7538125 DOI: 10.1074/jbc.270.20.11851] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The role of asparagine (N)-linked oligosaccharide chains in intracellular folding of the human chorionic gonadotropin (hCG)-beta subunit was determined by examining the kinetics of folding in Chinese hamster ovary (CHO) cells transfected with wild-type or mutant hCG-beta genes lacking one or both of the asparagine glycosylation sites. The half-time for folding of p beta 1 into p beta 2, the rate-determining step in beta folding, was 7 min for wild-type beta but 33 min for beta lacking both N-linked glycans. The p beta 1-->p beta 2 half-time was 7.5 min in CHO cells expressing the beta subunit missing the Asn13-linked glycan and 10 min for the beta subunit missing the Asn30-linked glycan. The inefficient folding of hCG-beta lacking both N-linked glycans correlated with the slow formation of the last three disulfide bonds (i.e. disulfides 23-72, 93-100, and 26-110) to form in the hCG-beta-folding pathway. Unglycosylated hCG-beta was slowly secreted from CHO cells, and beta subunit-folding intermediates retained in cells for more than 5 h were degraded into a hCG-beta core fragment-like protein. However, coexpression of the hCG-alpha gene enhanced folding and formation of disulfide bonds 23-72, 93-100, and 26-110 of hCG-beta lacking N-linked glycans. In addition, the molecular chaperones BiP, ERp72, and ERp94, but not calnexin, were found in a complex with unglycosylated, unfolded hCG-beta and may be involved in the folding of this beta form. These data indicate that N-linked oligosaccharides assist hCG-beta subunit folding by facilitating disulfide bond formation.
Collapse
Affiliation(s)
- W Feng
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha 68198-6805, USA
| | | | | | | | | | | |
Collapse
|