1
|
Regulation of Aerobic Energy Metabolism in Podospora anserina by Two Paralogous Genes Encoding Structurally Different c-Subunits of ATP Synthase. PLoS Genet 2016; 12:e1006161. [PMID: 27442014 PMCID: PMC4956034 DOI: 10.1371/journal.pgen.1006161] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 06/10/2016] [Indexed: 01/24/2023] Open
Abstract
Most of the ATP in living cells is produced by an F-type ATP synthase. This enzyme uses the energy of a transmembrane electrochemical proton gradient to synthesize ATP from ADP and inorganic phosphate. Proton movements across the membrane domain (FO) of the ATP synthase drive the rotation of a ring of 8–15 c-subunits, which induces conformational changes in the catalytic part (F1) of the enzyme that ultimately promote ATP synthesis. Two paralogous nuclear genes, called Atp9-5 and Atp9-7, encode structurally different c-subunits in the filamentous fungus Podospora anserina. We have in this study identified differences in the expression pattern for the two genes that correlate with the mitotic activity of cells in vegetative mycelia: Atp9-7 is transcriptionally active in non-proliferating (stationary) cells while Atp9-5 is expressed in the cells at the extremity (apex) of filaments that divide and are responsible for mycelium growth. When active, the Atp9-5 gene sustains a much higher rate of c-subunit synthesis than Atp9-7. We further show that the ATP9-7 and ATP9-5 proteins have antagonist effects on the longevity of P. anserina. Finally, we provide evidence that the ATP9-5 protein sustains a higher rate of mitochondrial ATP synthesis and yield in ATP molecules per electron transferred to oxygen than the c-subunit encoded by Atp9-7. These findings reveal that the c-subunit genes play a key role in the modulation of ATP synthase production and activity along the life cycle of P. anserina. Such a degree of sophistication for regulating aerobic energy metabolism has not been described before. In mitochondria, the ATP synthase (also referred to as complex V) catalyzes the late steps of oxidative phosphorylation (OXPHOS), which is a process that provides aerobic eukaryotes with most of their energy requirements by generating adenosine triphosphate (ATP) molecules. While the structure and mechanism of ATP synthase are mostly well established, much remains to be learned about how cells and tissues modulate the production and activity of this enzyme. Herein we report the existence in the filamentous fungus Podospora anserina of a two-pronged energy regulatory mechanism that involves two nuclear genes (Atp9-5 and Atp9-7) that encode structurally different c-subunits of ATP synthase. This system enables a proper production of ATP synthase and optimizes the rate of ATP synthesis in mitochondria along the rather complex life cycle of this fungus.
Collapse
|
2
|
Bidard F, Aït Benkhali J, Coppin E, Imbeaud S, Grognet P, Delacroix H, Debuchy R. Genome-wide gene expression profiling of fertilization competent mycelium in opposite mating types in the heterothallic fungus Podospora anserina. PLoS One 2011; 6:e21476. [PMID: 21738678 PMCID: PMC3125171 DOI: 10.1371/journal.pone.0021476] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 05/29/2011] [Indexed: 12/15/2022] Open
Abstract
Background Mating-type loci in yeasts and ascomycotan filamentous fungi (Pezizomycotina) encode master transcriptional factors that play a critical role in sexual development. Genome-wide analyses of mating-type-specification circuits and mating-type target genes are available in Saccharomyces cerevisiae and Schizosaccharomyces pombe; however, no such analyses have been performed in heterothallic (self-incompatible) Pezizomycotina. The heterothallic fungus Podospora anserina serves as a model for understanding the basic features of mating-type control. Its mat+ and mat− mating types are determined by dissimilar allelic sequences. The mat− sequence contains three genes, designated FMR1, SMR1 and SMR2, while the mat+ sequence contains one gene, FPR1. FMR1 and FPR1 are the major regulators of fertilization, and this study presents a genome-wide view of their target genes and analyzes their target gene regulation. Methodology/Principal Findings The transcriptomic profiles of the mat+ and mat− strains revealed 157 differentially transcribed genes, and transcriptomic analysis of fmr1− and fpr1− mutant strains was used to determine the regulatory actions exerted by FMR1 and FPR1 on these differentially transcribed genes. All possible combinations of transcription repression and/or activation by FMR1 and/or FPR1 were observed. Furthermore, 10 additional mating-type target genes were identified that were up- or down-regulated to the same level in mat+ and mat− strains. Of the 167 genes identified, 32 genes were selected for deletion, which resulted in the identification of two genes essential for the sexual cycle. Interspecies comparisons of mating-type target genes revealed significant numbers of orthologous pairs, although transcriptional profiles were not conserved between species. Conclusions/Significance This study represents the first comprehensive genome-wide analysis of mating-type direct and indirect target genes in a heterothallic filamentous fungus. Mating-type transcription factors have many more target genes than are found in yeasts and exert a much greater diversity of regulatory actions on target genes, most of which are not directly related to mating.
Collapse
Affiliation(s)
- Frédérique Bidard
- Univ Paris-Sud, Institut de Génétique et Microbiologie UMR8621, Orsay, France
- CNRS, Institut de Génétique et Microbiologie UMR8621, Orsay, France
| | - Jinane Aït Benkhali
- Univ Paris-Sud, Institut de Génétique et Microbiologie UMR8621, Orsay, France
- CNRS, Institut de Génétique et Microbiologie UMR8621, Orsay, France
| | - Evelyne Coppin
- Univ Paris-Sud, Institut de Génétique et Microbiologie UMR8621, Orsay, France
- CNRS, Institut de Génétique et Microbiologie UMR8621, Orsay, France
| | - Sandrine Imbeaud
- CNRS, Centre de Génétique Moléculaire FRE3144, GODMAP, Gif sur Yvette, France
| | - Pierre Grognet
- Univ Paris-Sud, Institut de Génétique et Microbiologie UMR8621, Orsay, France
- UFR des Sciences du Vivant, Université Paris 7-Denis Diderot, Paris, France
| | - Hervé Delacroix
- CNRS, Centre de Génétique Moléculaire FRE3144, GODMAP, Gif sur Yvette, France
- Univ Paris-Sud, Orsay, France
| | - Robert Debuchy
- Univ Paris-Sud, Institut de Génétique et Microbiologie UMR8621, Orsay, France
- CNRS, Institut de Génétique et Microbiologie UMR8621, Orsay, France
- * E-mail:
| |
Collapse
|
3
|
Suppression of mitochondrial DNA instability of autosomal dominant forms of progressive external ophthalmoplegia-associated ANT1 mutations in Podospora anserina. Genetics 2009; 183:861-71. [PMID: 19687137 DOI: 10.1534/genetics.109.107813] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Maintenance and expression of mitochondrial DNA (mtDNA) are essential for the cell and the organism. In humans, several mutations in the adenine nucleotide translocase gene ANT1 are associated with multiple mtDNA deletions and autosomal dominant forms of progressive external ophthalmoplegia (adPEO). The mechanisms underlying the mtDNA instability are still obscure. A current hypothesis proposes that these pathogenic mutations primarily uncouple the mitochondrial inner membrane, which secondarily causes mtDNA instability. Here we show that the three adPEO-associated mutations equivalent to A114P, L98P, and V289M introduced into the Podospora anserina ANT1 ortholog dominantly cause severe growth defects, decreased reactive oxygen species production (ROS), decreased mitochondrial inner membrane potential (Deltapsi), and accumulation of large-scale mtDNA deletions leading to premature death. Interestingly, we show that, at least for the adPEO-type M106P and A121P mutant alleles, the associated mtDNA instability cannot be attributed only to a reduced membrane potential or to an increased ROS level since it can be suppressed without restoration of the Deltapsi or modification of the ROS production. Suppression of mtDNA instability due to the M106P and A121P mutations was obtained by an allele of the rmp1 gene involved in nucleo-mitochondrial cross- talk and also by an allele of the AS1 gene encoding a cytosolic ribosomal protein. In contrast, the mtDNA instability caused by the S296M mutation was not suppressed by these alleles.
Collapse
|
4
|
Coppin E, de Renty C, Debuchy R. The function of the coding sequences for the putative pheromone precursors in Podospora anserina is restricted to fertilization. EUKARYOTIC CELL 2005; 4:407-20. [PMID: 15701803 PMCID: PMC549327 DOI: 10.1128/ec.4.2.407-420.2005] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We cloned the pheromone precursor genes of Podospora anserina in order to elucidate their role in the biology of this fungus. The mfp gene encodes a 24-amino-acid polypeptide finished by the CAAX motif, characteristic of fungal lipopeptide pheromone precursors similar to the a-factor precursor of Saccharomyces cerevisiae. The mfm gene encodes a 221-amino-acid polypeptide, which is related to the S. cerevisiae alpha-factor precursor and contains two 13-residue repeats assumed to correspond to the mature pheromone. We deleted the mfp and mfm coding sequence by gene replacement. The mutations specifically affect male fertility, without impairing female fertility and vegetative growth. The male defect is mating type specific: the mat+ Deltamfp and mat- Deltamfm mutants produce male cells inactive in fertilization whereas the mat- Deltamfp and mat+ Deltamfm mutants show normal male fertility. Genetic data indicate that both mfp and mfm are transcribed at a low level in mat+ and mat- vegetative hyphae. Northern-blot analysis shows that their transcription is induced by the mating types in microconidia (mfp by mat+ and mfm by mat-). We managed to cross Deltamfp Deltamfm strains of opposite mating type, by complementation and transient expression of the pheromone precursor gene to trigger fertilization. These crosses were fertile, demonstrating that once fertilization occurs, the pheromone precursor genes are unnecessary for the completion of the sexual cycle. Finally, we show that the constitutively transcribed gpd::mfm and gpd::mfp constructs are repressed at a posttranscriptional level by the noncognate mating type.
Collapse
Affiliation(s)
- Evelyne Coppin
- Institut de Génétique et Microbiologie, UMR 8621 CNRS, Université Paris-Sud, Orsay, France.
| | | | | |
Collapse
|
5
|
Sellem CH, Lemaire C, Lorin S, Dujardin G, Sainsard-Chanet A. Interaction between the oxa1 and rmp1 genes modulates respiratory complex assembly and life span in Podospora anserina. Genetics 2004; 169:1379-89. [PMID: 15545650 PMCID: PMC1449539 DOI: 10.1534/genetics.104.033837] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A causal link between deficiency of the cytochrome respiratory pathway and life span was previously shown in the filamentous fungus Podospora anserina. To gain more insight into the relationship between mitochondrial function and life span, we have constructed a strain carrying a thermosensitive mutation of the gene oxa1. OXA1 is a membrane protein conserved from bacteria to human. The mitochondrial OXA1 protein is involved in the assembly/insertion of several respiratory complexes. We show here that oxa1 is an essential gene in P. anserina. The oxa1(ts) mutant exhibits severe defects in the respiratory complexes I and IV, which are correlated with an increased life span, a strong induction of the alternative oxidase, and a reduction in ROS production. However, there is no causal link between alternative oxidase level and life span. We also show that in the oxa1(ts) mutant, the extent of the defects in complexes I and IV and the life-span increase depends on the essential gene rmp1. The RMP1 protein, whose function is still unknown, can be localized in the mitochondria and/or the cytosolic compartment, depending on the developmental stage. We propose that the RMP1 protein could be involved in the process of OXA1-dependent protein insertion.
Collapse
Affiliation(s)
- Carole H Sellem
- Centre de Génétique Moléculaire UPR 2167, Associated with the University of Paris-Sud 11 CNRS, Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
6
|
Contamine V, Zickler D, Picard M. The Podospora rmp1 gene implicated in nucleus-mitochondria cross-talk encodes an essential protein whose subcellular location is developmentally regulated. Genetics 2004; 166:135-50. [PMID: 15020413 PMCID: PMC1470695 DOI: 10.1534/genetics.166.1.135] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It has been previously reported that, at the time of death, the Podospora anserina AS1-4 mutant strains accumulate specific deleted forms of the mitochondrial genome and that their life spans depend on two natural alleles (variants) of the rmp1 gene: AS1-4 rmp1-2 strains exhibit life spans strikingly longer than those of AS1-4 rmp1-1. Here, we show that rmp1 is an essential gene. In silico analyses of eight rmp1 natural alleles present in Podospora isolates and of the putative homologs of this orphan gene in other filamentous fungi suggest that rmp1 evolves rapidly. The RMP1 protein is localized in the mitochondrial and/or the cytosolic compartment, depending on cell type and developmental stage. Strains producing RMP1 without its mitochondrial targeting peptide are viable but exhibit vegetative and sexual defects.
Collapse
Affiliation(s)
- Véronique Contamine
- Institut de Génétique et Microbiologie, Université Paris-Sud, UMR 8621, Orsay, France
| | | | | |
Collapse
|
7
|
Boisnard S, Zickler D, Picard M, Berteaux-Lecellier V. Overexpression of a human and a fungal ABC transporter similarly suppresses the differentiation defects of a fungal peroxisomal mutant but introduces pleiotropic cellular effects. Mol Microbiol 2003; 49:1287-96. [PMID: 12940987 DOI: 10.1046/j.1365-2958.2003.03630.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Among the peroxisome membrane proteins, some are required for peroxisome biogenesis (e.g. PEX2) while others are not, e.g. ABC (ATP-binding cassette) transporters. Unexpectedly, overproduction of the peroxisomal ABC transporter PMP70 was found to be able to restore peroxisome biogenesis in mammalian pex2 mutant cell lines. In the filamentous fungus Podospora anserina, pex2 mutations not only impair peroxisome biogenesis but also cause a precise cell differentiation defect. Here, we show that both defects are partially suppressed by expression of the human cDNA encoding PMP70. In addition, PMP70 expression causes new developmental defects, different from those induced by pex2 mutations. We also show that overexpression of the P. anserina pABC1 gene, which encodes a peroxisomal ABC transporter, leads to similar effects. Taken together, our results demonstrate that: (i) the genetic relationship between PEX2 and PMP70, initially observed in mammals, has been conserved through evolution; (ii) the cell differentiation defect observed in the P. anserina pex2 mutants is indeed linked to impairment in peroxisome biogenesis; and (iii) unexpected detrimental cellular defects result from overproduction of peroxisomal ABC transporters.
Collapse
Affiliation(s)
- Stéphanie Boisnard
- Institut de Génétique et Microbiologie, UMR 8621, Bat. 400, Université Paris-Sud, 91405 Orsay cedex, France
| | | | | | | |
Collapse
|
8
|
Silar P, Barreau C, Debuchy R, Kicka S, Turcq B, Sainsard-Chanet A, Sellem CH, Billault A, Cattolico L, Duprat S, Weissenbach J. Characterization of the genomic organization of the region bordering the centromere of chromosome V of Podospora anserina by direct sequencing. Fungal Genet Biol 2003; 39:250-63. [PMID: 12892638 DOI: 10.1016/s1087-1845(03)00025-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A Podospora anserina BAC library of 4800 clones has been constructed in the vector pBHYG allowing direct selection in fungi. Screening of the BAC collection for centromeric sequences of chromosome V allowed the recovery of clones localized on either sides of the centromere, but no BAC clone was found to contain the centromere. Seven BAC clones containing 322,195 and 156,244bp from either sides of the centromeric region were sequenced and annotated. One 5S rRNA gene, 5 tRNA genes, and 163 putative coding sequences (CDS) were identified. Among these, only six CDS seem specific to P. anserina. The gene density in the centromeric region is approximately one gene every 2.8kb. Extrapolation of this gene density to the whole genome of P. anserina suggests that the genome contains about 11,000 genes. Synteny analyses between P. anserina and Neurospora crassa show that co-linearity extends at the most to a few genes, suggesting rapid genome rearrangements between these two species.
Collapse
MESH Headings
- Amino Acid Sequence
- Centromere/chemistry
- Centromere/genetics
- Chromosomes, Artificial, Bacterial
- Chromosomes, Fungal/genetics
- Chromosomes, Fungal/ultrastructure
- DNA, Intergenic/analysis
- Gene Rearrangement
- Genes, Fungal
- Genes, rRNA
- Genome, Fungal
- Genomic Library
- Introns
- Molecular Sequence Data
- Physical Chromosome Mapping
- RNA, Transfer/genetics
- Sequence Analysis, DNA
- Sequence Homology
- Sordariales/genetics
- Synteny
Collapse
Affiliation(s)
- Philippe Silar
- Institut de Génétique et Microbiologie, UMR CNRS 8621, Bât. 400, Université de Paris Sud, 91405 Orsay Cedex, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Barreau C, Sellem C, Silar P, Sainsard-Chanet A, Turcq B. A rapid and efficient method using chromoslots to assign any newly cloned DNA sequence to its cognate chromosome in the filamentous fungus Podospora anserina. FEMS Microbiol Lett 2002; 216:55-60. [PMID: 12423752 DOI: 10.1111/j.1574-6968.2002.tb11414.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
An efficient method was developed to assign cloned genes to individual chromosomes of the fungus Podospora anserina. The chromosomes were separated by pulsed-field gel electrophoresis and the DNA was isolated from the gel bands. The DNA from the isolated chromosomes was slotted onto membranes; the resulting chromoslots were used to confirm that genetically mapped genes could be detected in the expected position. Then, 20 genes, not yet assigned to a linkage group, were attributed to individual chromosomes while six were attributed to a band containing two chromosomes.
Collapse
Affiliation(s)
- Christian Barreau
- Laboratoire de Biologie et Génomique de Podospora, Institut de Biochimie et Génétique Cellulaires, UMR CNRS 5095, Université de Bordeaux 2, France.
| | | | | | | | | |
Collapse
|
10
|
Dequard-Chablat M, Allandt C. Two copies of mthmg1, encoding a novel mitochondrial HMG-like protein, delay accumulation of mitochondrial DNA deletions in Podospora anserina. EUKARYOTIC CELL 2002; 1:503-13. [PMID: 12455999 PMCID: PMC118004 DOI: 10.1128/ec.1.4.503-513.2002] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the filamentous fungus Podospora anserina, two degenerative processes which result in growth arrest are associated with mitochondrial genome (mitochondrial DNA [mtDNA]) instability. Senescence is correlated with mtDNA rearrangements and amplification of specific regions (senDNAs). Premature death syndrome is characterized by the accumulation of specific mtDNA deletions. This accumulation is due to indirect effects of the AS1-4 mutation, which alters a cytosolic ribosomal protein gene. The mthmg1 gene has been identified as a double-copy suppressor of premature death. It greatly delays premature death and the accumulation of deletions when it is present in two copies in an ASI-4 context. The duplication of mthmg1 has no significant effect on the wild-type life span or on senDNA patterns. In anAS1+ context, deletion of the mthmg1 gene alters germination, growth, and fertility and reduces the life span. The deltamthmg1 senescent strains display a particular senDNA pattern. This deletion is lethal in an AS1-4 context. According to its physical properties (very basic protein with putative mitochondrial targeting sequence and HMG-type DNA-binding domains) and the cellular localization of an mtHMG1-green fluorescent protein fusion, mtHMG1 appears to be a mitochondrial protein possibly associated with mtDNA. It is noteworthy that it is the first example of a protein combining the two DNA-binding domains, AT-hook motif and HMG-1 boxes. It may be involved in the stability and/or transmission of the mitochondrial genome. To date, no structural homologues have been found in other organisms. However, mtHMG1 displays functional similarities with the Saccharomyces cerevisiae mitochondrial HMG-box protein Abf2.
Collapse
Affiliation(s)
- Michelle Dequard-Chablat
- Institut de Génétique et Microbiologie, CNRS UMR 8621, Bâtiment 400, Université Paris-Sud, 91405 Orsay Cedex, France.
| | | |
Collapse
|
11
|
Coppin E. The fle1 gene encoding a C2H2 zinc finger protein co-ordinates male and female sexual differentiation in Podospora anserina. Mol Microbiol 2002; 43:1255-68. [PMID: 11918811 DOI: 10.1046/j.1365-2958.2002.02819.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The flexuosa (fle1-1) mutant, isolated in Podospora anserina, displays vegetative defects and two antagonistic sexual phenotypes: it produces several 1000-fold fewer microconidia (male gametes) than the wild-type strain and, conversely, more abundant protoperithecia (female organs). Cloning and sequencing of the fle1 gene and of cDNA identified an open reading frame encoding a 382-amino-acid polypeptide with two C2H2 zinc finger motifs. The predicted FLE1 protein shares 46% identity with the FlbC protein of Aspergillus nidulans and 68% identity with a putative protein identified by a search in the Neurospora crassa database. The nuclear localization of FLE1 was demonstrated by fusion with the green fluorescent protein. Sequencing of the fle1-1 mutant allele revealed a frameshift mutation upstream of the zinc finger domain. The fle1-1 mutant was a null mutant, as targeted disruption of fle1 sequence led to the same pleiotropic phenotype. When fle1 was overexpressed by introduction of a transgenic copy of the native fle1 gene or a fusion with a strong promoter, formation of protoperithecia was impaired, leading to partial or complete female sterility. We propose that fle1 acts as a repressor of female sexual differentiation in order to maintain the balance between male and female sexual pathways.
Collapse
Affiliation(s)
- Evelyne Coppin
- Institut de Génétique et Microbiologie, UMR 8621 CNRS-Université Paris Sud, Bâtiment 400, 91405 Orsay cedex, France.
| |
Collapse
|
12
|
Graïa F, Lespinet O, Rimbault B, Dequard-Chablat M, Coppin E, Picard M. Genome quality control: RIP (repeat-induced point mutation) comes to Podospora. Mol Microbiol 2001; 40:586-95. [PMID: 11359565 DOI: 10.1046/j.1365-2958.2001.02367.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
RIP (repeat-induced point mutation) is a silencing process discovered in Neurospora crassa and so far clearly established only in this species as a currently occurring process. RIP acts premeiotically on duplicated sequences, resulting in C-G to T-A mutations, with a striking preference for CpA/TpG dinucleotides. In Podospora anserina, an RIP-like event was observed after several rounds of sexual reproduction in a strain with a 40 kb tandem duplication resulting from homologous integration of a cosmid in the mating-type region. The 9 kb sequenced show 106 C-G to T-A transitions, with 80% of the replaced cytosines located in CpA dinucleotides. This led to the alteration of at least six genes, two of which were unidentified. This RIP-like event extended to single-copy genes between the two members of the repeat. The overall data show that the silencing process is strikingly similar to a light form of RIP, unaccompanied by C-methylation. Interestingly, the N. crassa zeta-eta sequence, which acts as a potent de novo C-methylation RIP signal in this species, is weakly methylated when introduced into P. anserina. These results demonstrate that RIP, at least in light forms, can occur beyond N. crassa.
Collapse
Affiliation(s)
- F Graïa
- Institut de Génétique et Microbiologie, UMR-CNRS 8621, Batiment 400, Université Paris-Sud, 91405 Orsay cedex, France
| | | | | | | | | | | |
Collapse
|
13
|
Silar P, Lalucque H, Haedens V, Zickler D, Picard M. eEF1A Controls ascospore differentiation through elevated accuracy, but controls longevity and fruiting body formation through another mechanism in Podospora anserina. Genetics 2001; 158:1477-89. [PMID: 11514440 PMCID: PMC1461745 DOI: 10.1093/genetics/158.4.1477] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Antisuppressor mutations in the eEF1A gene of Podospora anserina were previously shown to impair ascospore formation, to drastically increase life span, and to permit the development of the Crippled Growth degenerative process. Here, we show that eEF1A controls ascospore formation through accuracy level maintenance. Examination of antisuppressor mutant perithecia reveals two main cytological defects, mislocalization of spindle and nuclei and nuclear death. Antisuppression levels are shown to be highly dependent upon both the mutation site and the suppressor used, precluding any correlation between antisuppression efficiency and severity of the sporulation impairment. Nevertheless, severity of ascospore differentiation defect is correlated with resistance to paromomycin. We also show that eEF1A controls fruiting body formation and longevity through a mechanism(s) different from accuracy control. In vivo, GFP tagging of the protein in a way that partly retains its function confirmed earlier cytological observation; i.e., this factor is mainly diffuse within the cytosol, but may transiently accumulate within nuclei or in defined regions of the cytoplasm. These data emphasize the fact that the translation apparatus exerts a global regulatory control over cell physiology and that eEF1A is one of the key factors involved in this monitoring.
Collapse
Affiliation(s)
- P Silar
- Institut de Génétique et Microbiologie de l'Université de Paris Sud, C.N.R.S. UMR 8621, 91405 Orsay Cedex, France.
| | | | | | | | | |
Collapse
|
14
|
Arnaise S, Zickler D, Poisier C, Debuchy R. pah1: a homeobox gene involved in hyphal morphology and microconidiogenesis in the filamentous ascomycete Podospora anserina. Mol Microbiol 2001; 39:54-64. [PMID: 11123688 DOI: 10.1046/j.1365-2958.2001.02163.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Homeobox-containing genes are widely described among eukaryotic species other than filamentous ascomycetes. We describe here the isolation and characterization of the first homeobox gene (pah1) identified in a filamentous ascomycete. It encodes a putative protein of 610 amino acids containing a typical homeodomain with 60 amino acids. Deletion of the pah1 gene enhances the number of male gametes (microconidia), whereas overexpression of pah1 results in a decrease in microconidia. These results led us to suppose that pah1 may be a repressor of genes involved in the microconidiation process. Moreover, pah1 is involved in hyphal branching and possibly in the development of female organs.
Collapse
Affiliation(s)
- S Arnaise
- Institut de Génétique et Microbiologie, Bâtiment 400, Université Paris-Sud, UMR 8621, 91405 Orsay Cedex, France.
| | | | | | | |
Collapse
|
15
|
Contamine V, Picard M. Maintenance and integrity of the mitochondrial genome: a plethora of nuclear genes in the budding yeast. Microbiol Mol Biol Rev 2000; 64:281-315. [PMID: 10839818 PMCID: PMC98995 DOI: 10.1128/mmbr.64.2.281-315.2000] [Citation(s) in RCA: 225] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Instability of the mitochondrial genome (mtDNA) is a general problem from yeasts to humans. However, its genetic control is not well documented except in the yeast Saccharomyces cerevisiae. From the discovery, 50 years ago, of the petite mutants by Ephrussi and his coworkers, it has been shown that more than 100 nuclear genes directly or indirectly influence the fate of the rho(+) mtDNA. It is not surprising that mutations in genes involved in mtDNA metabolism (replication, repair, and recombination) can cause a complete loss of mtDNA (rho(0) petites) and/or lead to truncated forms (rho(-)) of this genome. However, most loss-of-function mutations which increase yeast mtDNA instability act indirectly: they lie in genes controlling functions as diverse as mitochondrial translation, ATP synthase, iron homeostasis, fatty acid metabolism, mitochondrial morphology, and so on. In a few cases it has been shown that gene overexpression increases the levels of petite mutants. Mutations in other genes are lethal in the absence of a functional mtDNA and thus convert this petite-positive yeast into a petite-negative form: petite cells cannot be recovered in these genetic contexts. Most of the data are explained if one assumes that the maintenance of the rho(+) genome depends on a centromere-like structure dispensable for the maintenance of rho(-) mtDNA and/or the function of mitochondrially encoded ATP synthase subunits, especially ATP6. In fact, the real challenge for the next 50 years will be to assemble the pieces of this puzzle by using yeast and to use complementary models, especially in strict aerobes.
Collapse
Affiliation(s)
- V Contamine
- Institut de Génétique et Microbiologie, UMR 8621, Université Paris-Sud, 91405 Orsay Cedex, France
| | | |
Collapse
|
16
|
|
17
|
Gagny B, Silar P. Identification of the genes encoding the cytosolic translation release factors from Podospora anserina and analysis of their role during the life cycle. Genetics 1998; 149:1763-75. [PMID: 9691035 PMCID: PMC1460253 DOI: 10.1093/genetics/149.4.1763] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In an attempt to decipher their role in the life history and senescence process of the filamentous fungus Podospora anserina, we have cloned the su1 and su2 genes, previously identified as implicated in cytosolic translation fidelity. We show that these genes are the equivalents of the SUP35 and SUP45 genes of Saccharomyces cerevisiae, which encode the cytosolic translation termination factors eRF3 and eRF1, respectively. Mutations in these genes that suppress nonsense mutations may lead to drastic mycelium morphology changes and sexual impairment but have little effect on life span. Deletion of su1, coding for the P. anserina eRF3, is lethal. Diminution of its expression leads to a nonsense suppressor phenotype whereas its overexpression leads to an antisuppressor phenotype. P. anserina eRF3 presents an N-terminal region structurally related to the yeast eRF3 one. Deletion of the N-terminal region of P. anserina eRF3 does not cause any vegetative alteration; especially life span is not changed. However, it promotes a reproductive impairment. Contrary to what happens in S. cerevisiae, deletion of the N terminus of the protein promotes a nonsense suppressor phenotype. Genetic analysis suggests that this domain of eRF3 acts in P. anserina as a cis-activator of the C-terminal portion and is required for proper reproduction.
Collapse
Affiliation(s)
- B Gagny
- Institut de Génétique et Microbiologie, Université de Paris-Sud, 91405 Orsay cedex, France
| | | |
Collapse
|
18
|
Contamine V, Picard M. Escape from Premature Death Due to Nuclear Mutations in Podospora anserina: Repeal versus Respite. Fungal Genet Biol 1998; 23:223-36. [PMID: 9693024 DOI: 10.1006/fgbi.1998.1040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Premature death has been defined as a growth stoppage linked to the accumulation of specific deletions of the mitochondrial genome (mtDNA) in Podospora anserina. This occurs only in strains carrying the AS1-4 mutation which lies in a gene encoding a cytosolic ribosomal protein. Here we describe the isolation and genetic characterization of 10 nuclear mutations which either delay the appearance of this syndrome (respite from premature death) or cause a switch to the classical senescence process (repeal of premature death). These mutations lie in at least six genes. Some cause defects at the levels of ascospore germination, growth rates, and/or sensitivity toward inhibitors of protein syntheses. All modify the onset of senescence in wild-type (AS1+) strains. The role played by these genes is discussed with respect to the control of diseases due to mtDNA rearrangements in filamentous fungi. Copyright 1998 Academic Press.
Collapse
Affiliation(s)
- V Contamine
- Institut de Génétique et Microbiologie, de l'Université Paris-Sud, C.N.R.S.-URA 2225, Orsay, 91405, France
| | | |
Collapse
|
19
|
Borghouts C, Kimpel E, Osiewacz HD. Mitochondrial DNA rearrangements of Podospora anserina are under the control of the nuclear gene grisea. Proc Natl Acad Sci U S A 1997; 94:10768-73. [PMID: 9380708 PMCID: PMC23480 DOI: 10.1073/pnas.94.20.10768] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Podospora anserina is a filamentous fungus with a limited life span. Life span is controlled by nuclear and extranuclear genetic traits. Herein we report the nature of four alterations in the nuclear gene grisea that lead to an altered morphology, a defect in the formation of female gametangia, and an increased life span. Three sequence changes are located in the 5' upstream region of the grisea ORF. One mutation is a G --> A transition at the 5' splice site of the single intron of the gene, leading to a RNA splicing defect. This loss-of-function affects the amplification of the first intron of the mitochondrial cytochrome c oxidase subunit I gene (COI) and the specific mitochondrial DNA rearrangements that occur during senescence of wild-type strains. Our results indicate that the nuclear gene grisea is part of a molecular machinery involved in the control of mitochondrial DNA reorganizations. These DNA instabilities accelerate but are not a prerequisite for the aging of P. anserina cultures.
Collapse
Affiliation(s)
- C Borghouts
- Molekulare Entwicklungsbiologie und Biotechnologie, Johann Wolfgang Goethe-Universität, Botanisches Institut, Marie-Curie-Str. 9, D-60439 Frankfurt am Main, Germany
| | | | | |
Collapse
|
20
|
Béziat F, Touraille S, Debise R, Morel F, Petit N, Lécher P, Alziari S. Biochemical and molecular consequences of massive mitochondrial gene loss in different tissues of a mutant strain of Drosophila subobscura. J Biol Chem 1997; 272:22583-90. [PMID: 9278413 DOI: 10.1074/jbc.272.36.22583] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In the studied mutant strain of Drosophila subobscura, 78% of the mitochondrial genomes lost >30% of the coding region by deletion. The mutations was genetically stable. Despite this massive loss of mitochondrial genes, the mutant did not seem to be affected. Distribution of the two genome types, cell levels of mitochondrial DNA, steady-state concentrations of the mitochondrial gene transcripts, mitochondrial enzymatic activities, and ATP synthesis capacities were measured in the head, thorax, and abdomen fractions of the mutant strain in comparison with a wild type strain. Results indicate that the deleted genomes are detected in all fractions but to a lesser extent in the male and female abdomen. In all fractions, there is a 50% increase in cellular mitochondrial DNA content. Although there is a decrease in steady-state concentrations of mitochondrial transcripts of genes affected by deletion, this is smaller than expected. The variations in mitochondrial biochemical activities in the different fractions of the wild strain are upheld in the mutant strain. Activity of complex I (involved in mutation) nevertheless shows a decrease in all fractions; activity of complex III (likewise involved) shows little or no change; finally, mitochondrial ATP synthesis capacity is identical to that observed in the wild strain. This latter finding possibly accounts for the lack of phenotype. This mutant is a good model for studying mitochondrial genome alterations and the role of the nuclear genome in these phenomena.
Collapse
Affiliation(s)
- F Béziat
- Equipe Génome Mitochondrial, UMR CNRS 6547, Université Blaise-Pascal, 63177 Aubière Cédex, France
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Two genetic methods were used to estimate the number of genes that potentially modulate longevity in the filamentous fungus Podospora anserina. First, life span of strains carrying mutations selected on criteria unrelated to senescence was measured. Second, strains bearing random mutations were generated by insertional mutagenesis. Life span of these strains was then measured. Surprisingly, both methods lead to the conclusion that a large number of genes (between 600 and 3000) can modulate life span. Among, the mutations that affect longevity, 50% increase life span and 50% diminish it.
Collapse
Affiliation(s)
- M Rossignol
- Centre de Génétique moléculaire du CNRS, Gif sur Yvette, France
| | | |
Collapse
|
22
|
Belcour L, Sainsard-Chanet A, Sellem CH. Mobile group II introns, DNA circles, reverse transcriptase and senescence (group II introns, transposition, aging, mitochondria, fungi). Genetica 1994; 93:225-8. [PMID: 7529208 DOI: 10.1007/bf01435254] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- L Belcour
- Centre de Génétique Moléculaire, Université Pierre et Marie Curie, Gif-sur-Yvette, France
| | | | | |
Collapse
|