1
|
Lee CK, Wang FT, Huang CH, Chan WH. Prevention of methylmercury-triggered ROS-mediated impairment of embryo development by co-culture with adult adipose-derived mesenchymal stem cells. Toxicol Res (Camb) 2024; 13:tfad122. [PMID: 38162594 PMCID: PMC10753290 DOI: 10.1093/toxres/tfad122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/19/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024] Open
Abstract
Methylmercury (MeHg) is a potent toxin that exerts deleterious effects on human health via environmental contamination. Significant effects of MeHg on neuronal development in embryogenesis have been reported. Recently, our group demonstrated that MeHg exerts toxic effects on pre- and post-implantation embryonic development processes from zygote to blastocyst stage. Our results showed that MeHg impairs embryo development by induction of apoptosis through reactive oxygen species (ROS) generation that triggers caspase-3 cleavage and activation, which, in turn, stimulates p21-activated kinase 2 (PAK2) activity. Importantly, ROS were identified as a key upstream regulator of apoptotic events in MeHg-treated blastocysts. Data from the current study further confirmed that MeHg exerts hazardous effects on cell proliferation, apoptosis, implantation, and pre- and post-implantation embryo development. Notably, MeHg-induced injury was markedly prevented by co-culture with adipose-derived mesenchymal stem cells (ADMSCs) in vitro. Furthermore, ADMSC injection significantly reduced MeHg-mediated deleterious effects on embryo, placenta, and fetal development in vivo. Further investigation of the regulatory mechanisms by which co-cultured ADMSCs could prevent MeHg-induced impairment of embryo development revealed that ADMSCs effectively reduced ROS generation and its subsequent downstream apoptotic events, including loss of mitochondrial membrane potential and activation of caspase-3 and PAK2. The collective findings indicate that co-culture with mesenchymal stem cells (MSCs) or utilization of MSC-derived cell-conditioned medium offers an effective potential therapeutic strategy to prevent impairment of embryo development by MeHg.
Collapse
Affiliation(s)
- Cheng-Kai Lee
- Department of Obstetrics and Gynecology, Taoyuan General Hospital, Ministry of Health & Welfare, Zhongshan Road, Taoyuan District, Taoyuan City 33004, Taiwan
| | - Fu-Ting Wang
- Rehabilitation and Technical Aid Center, Taipei Veterans General Hospital, Section 2, Shipai Road, Beitou District, Taipei City 11217, Taiwan
| | - Chien-Hsun Huang
- Hungchi Gene IVF Center, Daxing West Road, Taoyuan District, Taoyuan City 330012, Taiwan
| | - Wen-Hsiung Chan
- Department of Bioscience Technology and Center for Nanotechnology, Chung Yuan Christian University, Zhongbei Road, Zhongli District, Taoyuan City 32023, Taiwan
| |
Collapse
|
2
|
Lee CK, Wang FT, Huang CH, Chan WH. Role of activated p21-activated kinase 2 in methylmercury-induced embryotoxic effects on mouse blastocysts. Toxicol Res (Camb) 2023; 12:433-445. [PMID: 37397923 PMCID: PMC10311136 DOI: 10.1093/toxres/tfad030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/09/2023] [Accepted: 04/06/2023] [Indexed: 07/04/2023] Open
Abstract
Methylmercury (MeHg), a biotransformation product derived from mercury or inorganic mercury compounds in waterways, is a potent toxin that exerts hazardous effects on human health via environmental contamination. Previous studies have reported MeHg-induced impairment of nerve development in embryogenesis and placental development. However, the potential deleterious effects and regulatory mechanisms of action of MeHg on pre- and post-implantation embryo development are yet to be established. Experiments from the current study clearly demonstrate that MeHg exerts toxic effects on early embryonic development processes, including the zygote to blastocyst stage. Induction of apoptosis and decrease in embryo cell number were clearly detected in MeHg-treated blastocysts. Additionally, intracellular reactive oxygen species (ROS) generation and activation of caspase-3 and p21-activated protein kinase 2 (PAK2) were observed in MeHg-treated blastocysts. Importantly, prevention of ROS generation by pre-treatment with Trolox, a potent antioxidant, significantly attenuated MeHg-triggered caspase-3 and PAK2 activation as well as apoptosis. Notably, the downregulation of PAK2 via transfection of specifically targeted siRNA (siPAK2) led to marked attenuation of PAK2 activity and apoptosis and the deleterious effects of MeHg on embryonic development in blastocysts. Our findings strongly suggest that ROS serve as an important upstream regulator to trigger the activation of caspase-3, which further cleaves and activates PAK2 in MeHg-treated blastocysts. Activated PAK2 promotes apoptotic processes that, in turn, cause sequent impairment of embryonic and fetal development.
Collapse
Affiliation(s)
- Cheng-Kai Lee
- Department of Obstetrics and Gynecology, Taoyuan General Hospital, Ministry of Health & Welfare, Taoyuan City 33004, Taiwan
| | - Fu-Ting Wang
- Rehabilitation and Technical Aid Center, Taipei Veterans General Hospital, Taipei City 11217, Taiwan
| | - Chien-Hsun Huang
- Hungchi Gene IVF Center, Taoyuan District, Taoyuan City 330012, Taiwan
| | - Wen-Hsiung Chan
- Corresponding author: Department of Bioscience Technology and Center for Nanotechnology, Chung Yuan Christian University, Chung Li District, Taoyuan City 32023, Taiwan. Fax: +886-3-2653599; E-mail:
| |
Collapse
|
3
|
Huang CH, Wang FT, Chan WH. Role of caspase-3-cleaved/activated PAK2 in brusatol-triggered apoptosis of human lung cancer A549 cells. Toxicol Res (Camb) 2022; 11:791-803. [PMID: 36337251 PMCID: PMC9623572 DOI: 10.1093/toxres/tfac057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 09/01/2023] Open
Abstract
Brusatol, a major quassinoid extract of Bruceae fructus, is an important bioactive component with antineoplastic capacity. Several beneficial pharmacological and biological properties of brusatol have been uncovered to date, including anti-inflammatory, anticolitis, antimalarial, and anticancer activities. To confer anticancer benefits, brusatol is reported to effectively inhibit the Nrf2-mediated antioxidant response and trigger apoptotic signaling. In this study, we investigated the regulatory mechanisms underlying apoptotic processes in brusatol-treated A549 cells in detail. Our experiments showed that brusatol induces cell death through intracellular ROS-triggered mitochondria-dependent apoptotic events and does not involve necrosis. Mechanistically, p21-activated protein kinase 2 (PAK2) was cleaved by caspase-3 to generate an activated p34 fragment involved in brusatol-induced apoptosis of A549 cells. Notably, PAK2 knockdown led to downregulation of caspase-3-mediated PAK2 activity, in turn, effectively attenuating brusatol-induced apoptosis, highlighting a crucial role of caspase-3-activated PAK2 in this process. Moreover, knockdown of PAK2 resulted in significant inhibition of c-Jun N-terminal kinase (JNK) activity in brusatol-treated A549 cells, clearly suggesting that JNK serves as a downstream substrate of caspase-3-cleaved/activated PAK2 in the apoptotic cascade. SP600125, a specific JNK inhibitor, significantly suppressed brusatol-induced JNK activity but only partially prevented apoptosis, implying that JNK serves as only one of a number of substrates for PAK2 in the brusatol-triggered apoptotic cascade. Based on the collective results, we propose a signaling cascade model for brusatol-induced apoptosis in human A549 cells involving ROS, caspases, PAK2, and JNK.
Collapse
Affiliation(s)
- Chien-Hsun Huang
- Department of Obstetrics and Gynecology, Taoyuan General Hospital, Ministry of Health & Welfare, Zhongshan Road, Taoyuan District, Taoyuan City 33004, Taiwan
| | - Fu-Ting Wang
- Rehabilitation and Technical Aid Center, Taipei Veterans General Hospital, Section 2, Shipai Road, Beitou District, Taipei City 11217, Taiwan
| | - Wen-Hsiung Chan
- Department of Bioscience Technology and Center for Nanotechnology, Chung Yuan Christian University, Zhongbei Road, Zhongli District, Taoyuan City 32023, Taiwan
| |
Collapse
|
4
|
Liu CC, Lin CC, Hsiao YC, Wang PJ, Yu JS. Proteomic characterization of six Taiwanese snake venoms: Identification of species-specific proteins and development of a SISCAPA-MRM assay for cobra venom factors. J Proteomics 2018; 187:59-68. [PMID: 29929037 DOI: 10.1016/j.jprot.2018.06.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/28/2018] [Accepted: 06/13/2018] [Indexed: 01/07/2023]
|
5
|
Huang YT, Lai CY, Lou SL, Yeh JM, Chan WH. Activation of JNK and PAK2 is essential for citrinin-induced apoptosis in a human osteoblast cell line. ENVIRONMENTAL TOXICOLOGY 2009; 24:343-356. [PMID: 18767140 DOI: 10.1002/tox.20434] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The mycotoxin citrinin (CTN), a natural contaminant in foodstuffs and animal feeds, exerts cytotoxic and genotoxic effects on various mammalian cells. CTN causes cell injury, including apoptosis. Previous studies by our group showed that CTN triggers apoptosis in mouse embryonic stem cells, as well as embryonic developmental injury. Here, we investigated the precise mechanisms governing this apoptotic effect in osteoblasts. CTN induced apoptotic biochemical changes in a human osteoblast cell line, including activation of c-Jun N-terminal kinase (JNK), loss of mitochondrial membrane potential, and caspase-3 and p21-activated protein kinase 2 (PAK2) activation. Experiments using a JNK-specific inhibitor, SP600125, and antisense oligonucleotides against JNK reduced CTN-induced activation of both JNK and caspase-3 in osteoblasts, indicating that JNK is required for caspase activation in this apoptotic pathway. Experiments using caspase-3 inhibitors and antisense oligonucleotides against PAK2 revealed that active caspase-3 is essential for PAK2 activation. Moreover, both caspase-3 and PAK2 require activation for CTN-induced apoptosis of osteoblasts. Interestingly, CTN stimulates two-stage activation of JNK in human osteoblasts. Early-stage JNK activation is solely ROS-dependent, whereas late-stage activation is dependent on ROS-mediated caspase activity, and regulated by caspase-induced activation of PAK2. On the basis of these results, we propose a signaling cascade model for CTN-induced apoptosis in human osteoblasts involving ROS, JNK, caspases, and PAK2.
Collapse
Affiliation(s)
- Yu-Ting Huang
- Department of Bioscience Technology, Center for Nanotechnology, Chung Yuan Christian University, Chung Li, Taiwan
| | | | | | | | | |
Collapse
|
6
|
Ni MH, Wu CC, Chan WH, Chien KY, Yu JS. GSK-3 mediates the okadaic acid-induced modification of collapsin response mediator protein-2 in human SK-N-SH neuroblastoma cells. J Cell Biochem 2008; 103:1833-48. [PMID: 17902168 DOI: 10.1002/jcb.21575] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Collapsin response mediator protein-2 (CRMP-2), a phosphoprotein involved in axonal outgrowth and microtubule dynamics, is aberrantly phosphorylated in Alzheimer's disease (AD) brain. Alteration of glycogen synthase kinase-3 (GSK-3) activity is associated with the pathogenesis of AD. Here, we show that CRMP-2 is one of the major substrates for GSK-3 in pig brain extracts. Both GSK-3alpha and 3beta phosphorylate purified pig brain CRMP-2 and significantly alter its mobility in SDS-gels, resembling the CRMP-2 modification observed in AD brain. Interestingly, this modification can be detected in SK-N-SH neuroblastoma cells treated with a phosphatase inhibitor, okadaic acid (OA), and GSK-3 inhibitors completely block this OA-induced event. Knockdown of both GSK-3alpha and 3beta, but not either kinase alone, impairs OA-induced modification of CRMP-2. Mutation of Ser-518 or Ser-522 of CRMP-2, which are highly phosphorylated in AD brain, to Ala blocks the OA-induced modification of CRMP-2 in SK-N-SH cells. Ser-522 prephosphorylated by Cdk5 is required for subsequent GSK-3alpha-mediated phosphorylation of CRMP-2 in vitro. Collectively, our results demonstrate for the first time that OA can induce phosphorylation of CRMP-2 in SK-N-SH cells at sites aberrantly phosphorylated in AD brain, and both GSK-3alpha and 3beta and Ser-522 kinase(s) are involved in this process.
Collapse
Affiliation(s)
- Mei-Hui Ni
- Graduate Institute of Basic Medical Sciences, Medical College of Chang Gung University, Tao-Yuan, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
7
|
Tucker DE, Gijón MA, Spencer DM, Qiu ZH, Gelb MH, Leslie CC. Regulation of cytosolic phospholipase A2alpha by hsp90 and a p54 kinase in okadaic acid-stimulated macrophages. J Leukoc Biol 2008; 84:798-806. [PMID: 18550790 DOI: 10.1189/jlb.0308197] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In resident mouse peritoneal macrophages, group IVA cytosolic phospholipase A(2) (cPLA(2)alpha) mediates arachidonic acid (AA) release and eicosanoid production in response to diverse agonists such as A23187, phorbol myristate acetate, zymosan, and the enterotoxin, okadaic acid (OA). cPLA(2)alpha is regulated by phosphorylation and by calcium that binds to the C2 domain and induces translocation from the cytosol to membranes. In contrast, OA activates cPLA(2)alpha-induced AA release and translocation to the Golgi in macrophages without an apparent increase in calcium. Inhibitors of heat shock protein 90 (hsp90), geldanamycin, and herbimycin blocked AA release in response to OA but not to A23187, PMA, or zymosan. OA, but not the other agonists, induced activation of a cytosolic serine/threonine 54-kDa kinase (p54), which phosphorylated cPLA(2)alpha in in-gel kinase assays and was associated with cPLA(2)alpha in immunoprecipitates. Activation of the p54 kinase was inhibited by geldanamycin. The kinase coimmunoprecipitated with hsp90 in unstimulated macrophages, and OA induced its loss from hsp90, concomitant with its association with cPLA(2)alpha. The results demonstrate a role for hsp90 in regulating cPLA(2)alpha-mediated AA release that involves association of a p54 kinase with cPLA(2)alpha upon OA stimulation.
Collapse
Affiliation(s)
- Dawn E Tucker
- Program in Cell Biology, National Jewish Medical and Research Center, 1400 Jackson St., Denver, CO 80206, USA
| | | | | | | | | | | |
Collapse
|
8
|
Chan WH, Wu HJ, Shiao NH. Apoptotic signaling in methylglyoxal-treated human osteoblasts involves oxidative stress, c-Jun N-terminal kinase, caspase-3, and p21-activated kinase 2. J Cell Biochem 2007; 100:1056-69. [PMID: 17131386 DOI: 10.1002/jcb.21114] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Methylglyoxal (MG) is a reactive dicarbonyl compound endogenously produced mainly from glycolytic intermediates. MG is cytotoxic through induction of cell death, and elevated MG levels in diabetes patients are believed to contribute to diabetic complications. In this report, we show for the first time that MG treatment triggers apoptosis in human osteoblasts. We further show that MG-induced apoptosis of osteoblasts involves specific apoptotic biochemical changes, including oxidative stress, c-Jun N-terminal kinase (JNK) activation, mitochondrial membrane potential changes, cytochrome C release, increased Bax/Bcl-2 protein ratios, and activation of caspases (caspase-9, caspase-3) and p21-activated protein kinase 2 (PAK2). Treatment of osteoblasts with SP600125, a JNK-specific inhibitor, led to a reduction in MG-induced apoptosis and decreased activation of caspase-3 and PAK2, indicating that JNK activity is upstream of these events. Experiments using anti-sense oligonucleotides against PAK2 further showed that PAK2 activation is required for MG-induced apoptosis in osteoblasts. Interestingly, we also found that MG treatment triggered nuclear translocation of NF-kappaB, although the precise regulatory role of NF-kappaB activation in MG-induced apoptosis remains unclear. Lastly, we examined the effect of MG on osteoblasts in vivo, and found that exposure of rats to dietary water containing 100-200 microM MG caused bone mineral density (BMD) loss. Collectively, these results reveal for the first time that MG treatment triggers apoptosis in osteoblasts via specific apoptotic signaling, and causes BMD loss in vivo.
Collapse
Affiliation(s)
- Wen-Hsiung Chan
- Department of Bioscience Technology and Center for Nanotechnology, Chung Yuan Christian University, Chung Li, Taiwan.
| | | | | |
Collapse
|
9
|
Chan WH, Wu CC, Yu JS. Curcumin inhibits UV irradiation-induced oxidative stress and apoptotic biochemical changes in human epidermoid carcinoma A431 cells. J Cell Biochem 2003; 90:327-38. [PMID: 14505349 DOI: 10.1002/jcb.10638] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Ultraviolet (UV) light is a strong apoptotic trigger that induces caspase-dependent biochemical changes in cells. Previously we showed that UV irradiation can activate caspase-3, and the subsequent cleavage and activation of p21(Cdc42/Rac)-activated kinase 2 (PAK2) in human epidermoid carcinoma A431 cells. In this study we demonstrate that curcumin (Cur), the yellow pigment of Curcuma longa with known anti-oxidant and anti-inflammatory properties, can prevent UV irradiation-induced apoptotic changes, including c-Jun N-terminal kinase (JNK) activation, loss of mitochondrial membrane potential (MMP), mitochondrial release of cytochrome C, caspase-3 activation, and cleavage/activation of PAK2 in A431 cells. Flow cytometric analysis using the cell permeable dye 2',7'-dichlorofluorescin diacetate (DCF-DA) as an indicator of reactive oxygen species (ROS) generation revealed that the increase in intracellular oxidative stress caused by UV irradiation could be abolished by Cur. In addition, we found that SP600125, a JNK-specific inhibitor, reduced UV irradiation-induced JNK activation as well as caspase-3 activation, indicating that JNK activity is required for UV irradiation-induced caspase activation. Collectively, our results demonstrate that Cur significantly attenuates UV irradiation-induced ROS formation, and suggest that ROS triggers JNK activation, which in turn causes MMP change, cytochrome C release, caspase activation, and subsequent apoptotic biochemical changes.
Collapse
Affiliation(s)
- Wen-Hsiung Chan
- Department of Bioscience Technology and Center for Nanotechnology, Chung Yuan Christian University, Chung Li, Taiwan, Republic of China.
| | | | | |
Collapse
|
10
|
Abstract
Glycogen synthase kinase 3 (GSK-3) is a serine/threonine protein kinase that has recently emerged as a key target in drug discovery. It has been implicated in multiple cellular processes and linked with the pathogenesis of several diseases. GSK-3 inhibitors might prove useful as therapeutic compounds in the treatment of conditions associated with elevated levels of enzyme activity, such as type 2 diabetes and Alzheimer's disease. The pro-apoptotic feature of GSK-3 activity suggests a potential role for its inhibitors in protection against neuronal cell death, and in the treatment of traumatic head injury and stroke. Finally, selective inhibitors of GSK-3 could mimic the action of mood stabilizers such as lithium and valproic acid and be used in the treatment of bipolar mood disorders.
Collapse
Affiliation(s)
- Hagit Eldar-Finkelman
- Dept of Human Genetics and Molecular Medicine, Sackler Institute of Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Israel.
| |
Collapse
|
11
|
Cromlish WA, Payette P, Kennedy BP. Development and validation of an intact cell assay for protein tyrosine phosphatases using recombinant baculoviruses. Biochem Pharmacol 1999; 58:1539-46. [PMID: 10535744 DOI: 10.1016/s0006-2952(99)00242-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We have developed an intact cell assay to be used in the direct quantitation of protein tyrosine phosphatase (PTP) activity. Utilizing the baculovirus expression system, the assay readily allows for a direct activity readout for PTPs such as PTP1B or CD45. Infected Sf9 cells expressing either full-length PTP1B, full-length CD45, CD45 catalytic domain, or hCOX-1 (mock-infected) are harvested 29 hr post-infection, at which time cells are viable and the expressed proteins are processed, as well as localized to their predicted subcellular compartments. Assays are carried out in a 96-well format, with cells expressing the PTP of interest. Cells are preincubated with or without inhibitor and challenged with substrate, and the phosphatase activity is determined spectrophotometrically by monitoring the conversion of p-nitrophenyl phosphate to p-nitrophenol at OD405. Documented PTP inhibitors have been used to validate this assay system. This study demonstrates that a direct readout of PTP activity in intact cells can be achieved, thus providing a useful cell-based screen for determining selective inhibitors of PTPs.
Collapse
Affiliation(s)
- W A Cromlish
- Department of Biochemistry and Molecular Biology, Merck Frosst Center for Therapeutic Research, Merck Frosst Canada Inc., Pointe-Claire-Dorval, Quebec.
| | | | | |
Collapse
|
12
|
Chan WH, Yu JS, Yang SD. PAK2 is cleaved and activated during hyperosmotic shock-induced apoptosis via a caspase-dependent mechanism: evidence for the involvement of oxidative stress. J Cell Physiol 1999; 178:397-408. [PMID: 9989786 DOI: 10.1002/(sici)1097-4652(199903)178:3<397::aid-jcp14>3.0.co;2-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hyperosmotic shock elicits a stress response in mammalian cells and can lead to apoptotic cell death. In the present study, we report that hyperosmotic shock can induce activation of a 36 kDa kinase detected by an in-gel kinase assay in several cell types, including mouse Balb/c 3T3 fibroblasts, and human Hep 3B and A431 cells. This 36 kDa kinase can be recognized by an antibody against the C-terminal region of a family of p21Cdc42/Rac-activated kinases (PAKs) on immunoblot. Further studies with this antibody and a PAK2-specific antibody against the N-terminal region of PAK2 demonstrate that hyperosmotic shock can induce cleavage of PAK2 to generate a 36 kDa C-terminal catalytic fragment in cells. The cleavage and activation of PAK2 was found to be closely associated with both DNA fragmentation and activation of an ICE/CED-3 family cysteine protease termed caspase-3 in hyperosmotically shocked cells. Furthermore, pretreating the cells with two caspase inhibitors (Ac-DEVD-cho and Ac-YVAD-cmk) could inhibit both cleavage/activation of PAK2 and DNA fragmentation induced by hyperosmotic shock. Moreover, all these hyperosmotic shock-induced changes (i.e., activation of caspase-3, cleavage/activation of PAK2, and DNA fragmentation) in cells could be blocked by antioxidants such as ascorbic acid (vitamine C), alpha-tocopherol (vitamine E), dithiothreitol, beta-mercaptoethanol, and glutathione. Taken together, our results show that PAK2 is cleaved and activated via a caspase-dependent mechanism during hyperosmotic shock-induced apoptosis and suggest the involvement of antioxidant-preventable oxidative stress in inducing this process.
Collapse
Affiliation(s)
- W H Chan
- Department of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | | | | |
Collapse
|
13
|
Tang TK, Chang WC, Chan WH, Yang SD, Ni MH, Yu JS. Proteolytic cleavage and activation of PAK2 during UV irradiation-induced apoptosis in A431 cells. J Cell Biochem 1998. [DOI: 10.1002/(sici)1097-4644(19980915)70:4<442::aid-jcb2>3.0.co;2-j] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Ueki K, Yamamoto-Honda R, Kaburagi Y, Yamauchi T, Tobe K, Burgering BM, Coffer PJ, Komuro I, Akanuma Y, Yazaki Y, Kadowaki T. Potential role of protein kinase B in insulin-induced glucose transport, glycogen synthesis, and protein synthesis. J Biol Chem 1998; 273:5315-22. [PMID: 9478990 DOI: 10.1074/jbc.273.9.5315] [Citation(s) in RCA: 288] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Various biological responses stimulated by insulin have been thought to be regulated by phosphatidylinositol 3-kinase, including glucose transport, glycogen synthesis, and protein synthesis. However, the molecular link between phosphatidylinositol 3-kinase and these biological responses has been poorly understood. Recently, it has been shown that protein kinase B (PKB/c-Akt/Rac) lies immediately downstream from phosphatidylinositol 3-kinase. Here, we show that expression of a constitutively active form of PKB induced glucose uptake, glycogen synthesis, and protein synthesis in L6 myotubes downstream of phosphatidylinositol 3-kinase and independent of Ras and mitogen-activated protein kinase activation. Introduction of constitutively active PKB induced glucose uptake and protein synthesis but not glycogen synthesis in 3T3L-1 adipocytes, which lack expression of glycogen synthase kinase 3 different from L6 myotubes. Furthermore, we show that deactivation of glycogen synthase kinase 3 and activation of rapamycin-sensitive serine/threonine kinase by PKB in L6 myotubes might be involved in the enhancement of glycogen synthesis and protein synthesis, respectively. These results suggest that PKB acts as a key enzyme linking phosphatidylinositol 3-kinase activation to multiple biological functions of insulin through regulation of downstream kinases in skeletal muscle, a major target tissue of insulin.
Collapse
Affiliation(s)
- K Ueki
- Third Department of Internal Medicine, Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Shaw M, Cohen P, Alessi DR. Further evidence that the inhibition of glycogen synthase kinase-3beta by IGF-1 is mediated by PDK1/PKB-induced phosphorylation of Ser-9 and not by dephosphorylation of Tyr-216. FEBS Lett 1997; 416:307-11. [PMID: 9373175 DOI: 10.1016/s0014-5793(97)01235-0] [Citation(s) in RCA: 188] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
293 cells were transfected with wild-type GSK3beta (WT-GSK3beta) or a mutant in which the PKB phosphorylation site (Ser-9) was altered to Ala (A9-GSK3beta). Upon stimulation with IGF-1 or insulin, WT-GSK3beta was inhibited 75% or 60%, respectively, whereas the activity of the A9-GSK3beta mutant was unaffected. Incubation of WT-GSK3beta with PP2A1 (a Ser/Thr-specific phosphatase) completely reversed the IGF-1- or insulin-induced inhibition. IGF-1 stimulation did not induce any tyrosine dephosphorylation of WT-GSK3beta or A9-GSK3beta. Coexpression of WT-GSK3beta in 293 cells with either PKB alpha (also known as AKT) or PDK1 (the 'upstream' activator of PKB) mimicked the IGF-1- or insulin-induced phosphorylation of Ser-9 and inactivation of GSK3beta.
Collapse
Affiliation(s)
- M Shaw
- Department of Biochemistry, University of Dundee, UK
| | | | | |
Collapse
|
16
|
Yu JS, Chan WH, Yang SD. Selective interaction of protein kinase FA/glycogen synthase kinase-3alpha with membrane phospholipids. Biochem Biophys Res Commun 1997; 237:331-5. [PMID: 9268710 DOI: 10.1006/bbrc.1997.7147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Previously we reported that the activity of protein kinase FA/glycogen synthase kinase-3alpha (kinase FA/GSK-3alpha) can be detected in several brain membrane fractions. In this report, we examined whether kinase FA/GSK-3alpha can directly interact with membrane phospholipids by using anti-kinase FA/GSK-3alpha antibody as a more specific studying tool. It was found that kinase FA/GSK-3alpha can associate with NaOH-extracted brain membranes and selectively interact with several kinds of reconstituted phospholipid vesicles including phosphatidic acid (PA), phosphatidyl ethanolamine (PE), phosphatidyl inositol (PI), and phosphatidyl serine (PS) vesicles. Increasing ionic strength in the reaction could disrupt the interaction between kinase FA/GSK-3alpha and PA, PI, or PE vesicles but had no effect on the interaction between kinase FA/GSK-3alpha and PS vesicles, indicating that both ionic and non-ionic interactions are involved in this process, respectively. Moreover, both kinase activity and protease sensitivity of kinase FA/GSK-3alpha can be affected profoundly by these phospholipid vesicles and different forms of the kinase can be produced when it binds to distinct types of phospholipid vesicles. Taken together, the results demonstrate a direct interaction of kinase FA/GSK-3alpha with membrane phospholipids and suggest that membrane phospholipids may be directly involved in regulating kinase FA/GSK-3alpha activity.
Collapse
Affiliation(s)
- J S Yu
- Institute of Basic Medicine, Chang Gung College of Medicine and Technology, Tao-Yuan, Taiwan, Republic of China.
| | | | | |
Collapse
|
17
|
Yang SD, Lee SC, Chang HC. Heat stress induces tyrosine phosphorylation/activation of kinase Fa/GSK-3α (a human carcinoma dedifferentiation modulator) in A431 cells. J Cell Biochem 1997. [DOI: 10.1002/(sici)1097-4644(19970701)66:1<16::aid-jcb3>3.0.co;2-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
18
|
Yu JS, Chen HC, Yang SD. Reversible tyrosine phosphorylation/dephosphorylation of proline-directed protein kinase FA/glycogen synthase kinase-3alpha in A431 cells. J Cell Physiol 1997; 171:95-103. [PMID: 9119896 DOI: 10.1002/(sici)1097-4652(199704)171:1<95::aid-jcp11>3.0.co;2-n] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Modulation of protein kinase FA/glycogen synthase kinase-3alpha (kinase FA/GSK-3alpha) by reversible tyrosine phosphorylation/dephosphorylation was investigated. In addition to genistein, other protein tyrosine kinase (PTK) inhibitors, such as tyrphostin A47 and B42, also could induce tyrosine dephosphorylation and inactivation of kinase FA/GSK-3alpha in A431 cells, and this process was found to be reversible. Pretreatment of the cells with 100 microM orthovanadate, a protein tyrosine phosphatase (PTP) inhibitor, could diminish significantly the effects of PTK inhibitors on both enzyme activity and phosphotyrosine content of the kinase, suggesting that the PTK inhibitors induced tyrosine dephosphorylation/inactivation of this kinase is mediated by orthovanadate-sensitive PTP(s) in A431 cells. Moreover, the phosphotyrosine moiety of kinase FA/GSK-3alpha was found to be highly turned over in resting cells. Interestingly, we found that the less active, tyrosine-dephosphorylated form of kinase FA/GSK-3alpha immunoprecipitated from genistein-treated cells was able to reactivate partially with concomitant rephosphorylation of tyrosine residue in vitro. Taken together, these findings demonstrate that tyrosine phosphorylation and concomitant activation of kinase FA/GSK-3alpha can be carried out both in vitro and in vivo and an in vivo phosphatase activity may function in antagonism to PTK activation of kinase FA/GSK-3alpha.
Collapse
Affiliation(s)
- J S Yu
- Department of Cell and Molecular Biology, Chang Gung College of Medicine and Technology, Tao-Yuan, Taiwan, Republic of China
| | | | | |
Collapse
|
19
|
Murai H, Okazaki M, Kikuchi A. Tyrosine dephosphorylation of glycogen synthase kinase-3 is involved in its extracellular signal-dependent inactivation. FEBS Lett 1996; 392:153-60. [PMID: 8772194 DOI: 10.1016/0014-5793(96)00806-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We examined whether extracellular signals regulate glycogen synthase kinase-3 (GSK-3) activity through tyrosine dephosphorylation of GSK-3. In resting Chinese hamster ovary cells overexpressing the human insulin receptor (CHO-IR cells), GSK-3 was tyrosine-phosphorylated and active. Insulin and 12-0-tetradecanoylphorbol 13-acetate (TPA) induced inactivation and tyrosine dephosphorylation of GSK-3. It is known that Ser-9 of GSK-3beta is phosphorylated in response to insulin and that the phosphorylation of this amino acid residue causes inactivation of GSK-3beta. However, the ectopically expressed GSK-3beta(delta9), in which the N-terminal nine amino acids of GSK-3beta were deleted, was still inactivated and tyrosine-dephosphorylated in response to insulin. Protein phosphatase 2A treatment partially reversed insulin-induced GSK-3beta inactivation, but did not change GSK-3beta(delta9) inactivation. In CHO-IR cells where protein kinase C was down-regulated, TPA neither inactivated nor tyrosine-dephosphorylated GSK-3. However, insulin inactivated and tyrosine-dephosphorylated GSK-3, although to a lesser degree than in the control cells. These results suggest that in addition to serine phosphorylation, tyrosine dephosphorylation of GSK-3 is also important for the regulation of GSK-3 activity in response to extracellular signals and that insulin regulates GSK-3 activity through both protein kinase C-dependent as well as protein kinase C-independent pathways.
Collapse
Affiliation(s)
- H Murai
- Department of Biochemistry, Hiroshima University School of Medicine, Japan
| | | | | |
Collapse
|
20
|
Ho LT, Chou YC, Yu JS, Yang SD. Endothelin-1 and Insulin Induce Cellular Inactivation of Protein Kinase F(A)/Glycogen Synthase Kinase-3alpha in a Common Signaling Pathway. J Biomed Sci 1996; 3:275-279. [PMID: 11725108 DOI: 10.1007/bf02253707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
In this study, we investigate the effects of endothelin-1 (ET-1) and insulin on the cellular activity of protein kinase F(A)/glycogen synthase kinase-3alpha (kinase F(A)/GSK-3alpha) in rat adipocytes. The cellular activity of kinase F(A)/GSK-3alpha is inhibited to approximately 50% of control within 30 min when cells are treated with 1 nM ET-1 at 37 degrees C; in addition, significant inhibition to approximately 60% of control is observed at as low as 1 pM ET-1. Conversely, ET-1 at concentrations up to 1 nM has no direct effect on purified kinase F(A)/GSK-3alpha in vitro. Immunoblotting analysis further reveals that the protein level of this kinase is not significantly changed when treated with 1 nM ET-1 for 30 min. Similar to ET-1, insulin as low as 10 nM can also induce inactivation of kinase F(A)/GSK-3alpha to approximately 50% of control in adipocytes when processed under identical conditions. Most importantly, when treated with both insulin and ET-1, the activity of kinase F(A)/GSK-3alpha can be decreased only to approximately 50% of control. Taken together, the results provide initial evidence that ET-1 and insulin may regulate this important multisubstrate/multifunctional protein kinase in a common signaling pathway in cells. Copyright 1996 S. Karger AG, Basel
Collapse
Affiliation(s)
- L.-T. Ho
- Department of Medical Research and Education, Veterans General Hospital-Taipei, Taipei, Taiwan
| | | | | | | |
Collapse
|
21
|
Abstract
Glycogen synthase kinase 3 was discovered in mammals several years ago but only recently has it become clear that this enzyme is acutely regulated by hormones such as insulin and by growth factors. In mammals, it appears to be controlled by a signalling pathway linked to phosphoinositide 3-kinase and may regulate a range of biosynthetic processes. Evidence is now accumulating that GSK3 plays a key role in the regulation of cell fate and differentiation in many eukaryotic species.
Collapse
Affiliation(s)
- G I Welsh
- Research School of Biosciences, University of Kent at Canterbury, Canterbury, UK CT2 7NJ
| | | | | |
Collapse
|
22
|
Yang SD, Yu JS, Yang CC, Lee SC, Lee TT, Ni MH, Kuan CY, Chen HC. Overexpression of protein kinase FA/GSK-3α (a proline-directed protein kinase) correlates with human hepatoma dedifferentiation/progression. J Cell Biochem 1996. [DOI: 10.1002/(sici)1097-4644(19960501)61:2<238::aid-jcb7>3.0.co;2-v] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Yang SD, Yu JS, Yang CC, Lee SC, Lee TT, Ni MH, Kuan CY, Chen HC. Overexpression of protein kinase FA/GSK-3 alpha (a proline-directed protein kinase) correlates with human hepatoma dedifferentiation/progression. J Cell Biochem 1996; 61:238-45. [PMID: 9173087 DOI: 10.1002/(sici)1097-4644(19960501)61:2%3c238::aid-jcb7%3e3.0.co;2-v] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Computer analysis of protein phosphorylation sites sequence revealed that transcriptional factors and viral oncoproteins are prime targets for regulation of proline-directed protein phosphorylation, suggesting an association of the proline-directed protein kinase (PDPK) family with neoplastic transformation and tumorigenesis. In this report, an immunoprecipitate activity assay of protein kinase FA/glycogen synthase kinase-3 alpha (kinase F(A)/GSK-3 alpha) (a member of PDPK family) has been optimized for human hepatoma and used to demonstrate for the first time significantly increased (P < 0.01) activity in poorly differentiated SK-Hep-1 hepatoma (24.2 +/- 2.8 units/mg) and moderately differentiated Mahlavu hepatoma (14.5 +/- 2.2 units/mg) when compared to well differentiated Hep 3B hepatoma (8.0 +/- 2.4 units/mg). Immunoblotting analysis revealed that increased activity of kinase FA/GSK-3 alpha is due to overexpression of the protein. Elevated kinase FA/GSK-3 alpha expression in human hepatoma biopsies relative to normal liver tissue was found to be even more profound. This kinase appeared to be fivefold overexpressed in well differentiated hepatoma and 13-fold overexpressed in poorly differentiated hepatoma when compared to normal liver tissue. Taken together, the results provide initial evidence that overexpression of kinase FA/GSK-3 alpha is involved in human hepatoma dedifferentiation/progression. Since kinase FA/GSK-3 alpha is a PDPK, the results further support a potential role of this kinase in human liver tumorigenesis, especially in its dedifferentiation/progression.
Collapse
Affiliation(s)
- S D Yang
- Department of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Yang S, Chang H, Lee S. Okadaic acid, sphingosine, and phorbol ester reversibly modulate heat induction on protein kinase F
a
/GSK‐3α in A431 cells. J Cell Biochem 1996. [DOI: 10.1002/(sici)1097-4644(19960201)60:2<218::aid-jcb6>3.0.co;2-#] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Shiaw‐Der Yang
- Institute of Biomedical Sciences, National Tsing Hua University, Hsinchu, Taiwan, ROC, and Institute of Basic Medicine, Chang Gung Medical College, Tao‐Yuan, Taiwan, ROC
| | - Hsiou‐Chen Chang
- Institute of Biomedical Sciences, National Tsing Hua University, Hsinchu, Taiwan, ROC, and Institute of Basic Medicine, Chang Gung Medical College, Tao‐Yuan, Taiwan, ROC
| | - Shan‐Chih Lee
- Institute of Biomedical Sciences, National Tsing Hua University, Hsinchu, Taiwan, ROC, and Institute of Basic Medicine, Chang Gung Medical College, Tao‐Yuan, Taiwan, ROC
| |
Collapse
|
25
|
Lee SC, Yang SD. Calphostin C induces tyrosine dephosphorylation/inactivation of protein kinase FA/GSK-3 alpha in a pathway independent of tumor promoter phorbol ester-mediated down-regulation of protein kinase C. J Cell Biochem 1996; 60:121-9. [PMID: 8825421 DOI: 10.1002/(sici)1097-4644(19960101)60:1%3c121::aid-jcb14%3e3.0.co;2-s] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The signal transduction mechanism of protein kinase FA/GSK-3 alpha by tyrosine phosphorylation in A431 cells was investigated using calphostin C as an inhibitor for protein kinase C (PKC). Kinase FA/GSK-3 alpha could be tyrosine-dephosphorylated and inactivated to approximately 10% of control in a concentration-dependent manner by 0.1-10 microM calphostin C (IC50, approximately 1 microM), as demonstrated by immunoprecipitation of kinase FA/GSK-3 alpha from cell extracts, followed by phosphoamino acid analysis and by immunodetection in an antikinase FA/GSK-3 alpha immunoprecipitate kinase assay. In sharp contrast, down-regulation of PKC by 0.05 microM calphostin C (IC50, approximately 0.05 microM for inhibiting PKC in cells) or by tumor promoter phorbol ester TPA was found to have stimulatory effect on the cellular activity of kinase FA/GSK-3 alpha, when processed under identical conditions. Furthermore, TPA-mediated down-regulation of PKC was found to have no effect on calphostin C-mediated tyrosine dephosphorylation/inactivation of kinase FA/GSK-3 alpha. Taken together, the results provide initial evidence that the PKC inhibitor calphostin C may induce tyrosine dephosphorylation/inactivation of kinase FA/GSK-3 alpha in a pathway independent of TPA-mediated down-regulation of PKC, representing a new mode of signal transduction for the regulation of this multisubstrate/multifunctional protein kinase by calphostin C in cells. Since kinase FA/GSK-3 alpha is a possible carcinoma dedifferentiation/progression-promoting factor, the results further suggest calphostin C as a potential anticancer drug involved in blocking carcinoma dedifferentiation/progression, possibly via inactivation of protein kinase FA/GSK-3 alpha in tumor cells.
Collapse
Affiliation(s)
- S C Lee
- Institute of Life and Biomedical Sciences, National Tsing Hua University, Hsinchu, Taiwan, R.O.C
| | | |
Collapse
|
26
|
Lee SC, Yang SD. Calphostin C induces tyrosine dephosphorylation/inactivation of protein kinase Fa/GSK-3α in a pathway independent of tumor promoter phorbol ester-mediated down-regulation of protein kinase C. J Cell Biochem 1996. [DOI: 10.1002/(sici)1097-4644(19960101)60:1<121::aid-jcb14>3.0.co;2-s] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
Yang SD, Yu JS, Lee TT, Ni MH, Yang CC, Ho YS, Tsen TZ. Association of protein kinase FA/GSK-3alpha (a proline-directed kinase and a regulator of protooncogenes) with human cervical carcinoma dedifferentiation/progression. J Cell Biochem 1995; 59:143-50. [PMID: 8904308 DOI: 10.1002/jcb.240590203] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Computer analysis of protein phosphorylation-sites sequence revealed that most transcriptional factors and viral oncoproteins are prime targets for regulation of proline-directed protein phosphorylation, suggesting an association of proline-directed protein kinase (PDPK) family with neoplastic transformation and tumorigenesis. In this report, an immunoprecipitate activity assay of protein kinase FA/glycogen synthase kinase-3alpha (kinase FA/GSK-3alpha) (a particular member of PDPK family) has been optimized for human cervical tissue and used to demonstrate for the first time significantly increased (P < 0.001) activity in poorly differentiated cervical carcinoma (82.8 +/- 6.6 U/mg of protein), moderately differentiated carcinoma (36.2 +/- 3.4 U/mg of protein), and well-differentiated carcinoma (18.3 +/- 2.4 U/mg of protein) from 36 human cervical carcinoma samples when compared to 12 normal controls (4.9 +/- 0.6 U/mg of protein). Immunoblotting analysis further revealed that increased activity of kinase FA/GSK-3alpha in cervical carcinoma is due to overexpression of protein synthesis of the kinase. Taken together, the results provide initial evidence that overexpression of protein synthesis and cellular activity of kinase FA/GSK-3alpha may be involved in human cervical carcinoma dedifferentiation/progression, supporting an association of proline-directed protein kinase with neoplastic transformation and tumorigenesis. Since protein kinase FA/GSK-3alpha may function as a possible regulator of transcription factors/proto-oncogenes, the results further suggest that kinase FA/GSK-3alpha may play a potential role in human cervical carcinogenesis, especially in its dedifferentiation and progression.
Collapse
Affiliation(s)
- S D Yang
- Department of Cell and Molecular Biology, Institute of Basic Medicine, Chang Gung Medical College, Tao-Yuan, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
28
|
Yang SD, Yu JS, Lee TT, Yang CC, Ni MH, Yang YY. Dysfunction of protein kinase FA/GSK-3 alpha in lymphocytes of patients with schizophrenic disorder. J Cell Biochem 1995; 59:108-16. [PMID: 8530529 DOI: 10.1002/jcb.240590112] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
As compared to normal people, the lymphocytes of patients with schizophrenia were found to have an impairment of ATP.Mg-dependent protein phosphatase activation. More importantly, the impaired protein phosphatase activation in the lymphocytes of schizophrenic patients could be consistently and completely restored to normal by exogenous pure protein kinase FA/glycogen synthase kinase-3 alpha (kinase FA/GSK-3 alpha) (the activating factor of ATP.Mg-dependent protein phosphatase), indicating that the molecular mechanism for the impaired protein phosphatase activation in schizophrenic patients may be due to a functional loss of kinase FA/GSK-3 alpha. Immunoblotting and kinase activity analysis in an anti-kinase FA/GSK-3 alpha immunoprecipitate further demonstrate that both cellular activities and protein levels of kinase FA/GSK-3 alpha in the lymphocytes of schizophrenic patients were greatly impared as compared to normal controls. Statistical analysis revealed that the lymphocytes isolated from 37 normal people contain kinase FA/GSK-3 alpha activity in the high levels of 14.8 +/- 2.4 units/mg of cell protein, whereas the lymphocytes of 48 patients with schizophrenic disorder contain kinase FA/GSK-3 alpha activity in the low levels of 2.8 +/- 1.6 units/mg, indicating that the different levels of kinase FA/GSK-3 alpha activity between schizophrenic patients and normal people are statistically significant. Taken together, the results provide initial evidence that patients with schizophrenic disorder may have a common impairment in the protein levels and cellular activities of kinase FA/GSK-3 alpha, a multisubstrate protein kinase and a multisubstrate protein phosphatase activator in their lymphocytes.
Collapse
Affiliation(s)
- S D Yang
- Institute of Basic Medicine, Chang Gung Medical College, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
29
|
Song JS, Yang SD. Tau protein kinase I/GSK-3 beta/kinase FA in heparin phosphorylates tau on Ser199, Thr231, Ser235, Ser262, Ser369, and Ser400 sites phosphorylated in Alzheimer disease brain. JOURNAL OF PROTEIN CHEMISTRY 1995; 14:95-105. [PMID: 7786411 DOI: 10.1007/bf01888367] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Previously, tau protein kinase I/glycogen synthase kinase-3 beta/kinase FA(TPKI/GSK-3 beta/FA) was identified as a brain microtubule-associated tau kinase possibly involved in the Alzheimer disease-like phosphorylation of tau. In this report, we find that the TPKI/GSK-3 beta/FA can be stimulated to phosphorylate brain tau up to 8.5 mol of phosphates per mol of protein by heparin, a polyanion compound. Tryptic digestion of 32P-labeled tau followed by high-performance liquid chromatography and high-voltage electrophoresis/thin-layer chromatography reveals 12 phosphopeptides. Phosphoamino acid analysis together with sequential manual Edman degradation and peptide sequence analysis further reveals that TPKI/GSK-3 beta/FA after heparin potentiation phosphorylates tau on sites of Ser199, Thr231, Ser235, Ser262, Ser396, and Ser400, which are potential sites abnormally phosphorylated in Alzheimer tau and potent sites responsible for reducing microtubule binding possibly involved in neuronal degeneration. The results provide initial evidence that TPKI/GSK-3 beta/FA after heparin potentiation may represent one of the most potent systems possibly involved in the abnormal phosphorylation of PHF-tau and neuronal degeneration in Alzheimer disease brains.
Collapse
Affiliation(s)
- J S Song
- Institute of Life and Biomedical Sciences, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | | |
Collapse
|
30
|
Eldar-Finkelman H, Seger R, Vandenheede JR, Krebs EG. Inactivation of glycogen synthase kinase-3 by epidermal growth factor is mediated by mitogen-activated protein kinase/p90 ribosomal protein S6 kinase signaling pathway in NIH/3T3 cells. J Biol Chem 1995; 270:987-90. [PMID: 7836418 DOI: 10.1074/jbc.270.3.987] [Citation(s) in RCA: 173] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The role of the p90 ribosomal protein S6 kinase/mitogen-activated protein kinase (RSK/MAPK) signaling pathway in regulating glycogen synthase kinase-3 (GSK-3) activity was investigated. In vitro studies showed that GSK-3 was inactivated by 50% upon incubation with RSK purified from epidermal growth factor (EGF)-stimulated NIH/3T3 cells. Subsequently, the effect of EGF on GSK-3 activity was measured in NIH/3T3 cells that stably overexpressed mutated forms of MAPK kinase (MAPKK). The activation of RSK by EGF was markedly decreased in cell lines expressing the dominant negative MAPKK mutants S222A and K97A and was increased in cells expressing the S222E mutant as compared with control cell lines. EGF induced a rapid decrease in GSK-3 beta activity (50%) in control and S222E cells; however, only 25 and 10% inhibition in GSK-3 beta activity was observed in cell lines expressing the dominant negative mutants K97A and S222A, respectively, suggesting that inhibition of GSK-3 was partially blocked in these cells. Taken together, these results suggest that the action of EGF on GSK-3 inactivation is mediated by the RSK/MAPK signaling pathway in NIH/3T3 cells and provide evidence for a mechanism regulating GSK-3 activity in intact cells.
Collapse
|