1
|
Chen W, Shen Z, Asteriti S, Chen Z, Ye F, Sun Z, Wan J, Montell C, Hardie RC, Liu W, Zhang M. Calmodulin binds to Drosophila TRP with an unexpected mode. Structure 2020; 29:330-344.e4. [PMID: 33326749 DOI: 10.1016/j.str.2020.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/16/2020] [Accepted: 11/20/2020] [Indexed: 02/04/2023]
Abstract
Drosophila TRP is a calcium-permeable cation channel essential for fly visual signal transduction. During phototransduction, Ca2+ mediates both positive and negative feedback regulation on TRP channel activity, possibly via binding to calmodulin (CaM). However, the molecular mechanism underlying Ca2+ modulated CaM/TRP interaction is poorly understood. Here, we discover an unexpected, Ca2+-dependent binding mode between CaM and TRP. The TRP tail contains two CaM binding sites (CBS1 and CBS2) separated by an ∼70-residue linker. CBS1 binds to the CaM N-lobe and CBS2 recognizes the CaM C-lobe. Structural studies reveal the lobe-specific binding of CaM to CBS1&2. Mutations introduced in both CBS1 and CBS2 eliminated CaM binding in full-length TRP, but surprisingly had no effect on the response to light under physiological conditions, suggesting alternative mechanisms governing Ca2+-mediated feedback on the channel activity. Finally, we discover that TRPC4, the closest mammalian paralog of Drosophila TRP, adopts a similar CaM binding mode.
Collapse
Affiliation(s)
- Weidi Chen
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China; Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Zeyu Shen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Sabrina Asteriti
- Department of Physiology, Development and Neuroscience, Cambridge University, Downing St, Cambridge CB2 3EG, UK; Department of Neurosciences, Biomedicine and Movement Science, University of Verona, Verona, Italy
| | - Zijing Chen
- Department of Molecular, Cellular and Developmental Biology, and the Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Fei Ye
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ziling Sun
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Jun Wan
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China; Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen 518055, China; Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Craig Montell
- Department of Molecular, Cellular and Developmental Biology, and the Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Roger C Hardie
- Department of Physiology, Development and Neuroscience, Cambridge University, Downing St, Cambridge CB2 3EG, UK
| | - Wei Liu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China.
| | - Mingjie Zhang
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China; Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen 518055, China; Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
2
|
Weininger U, Modig K, Ishida H, Vogel HJ, Akke M. Rotamer Jumps, Proton Exchange, and Amine Inversion Dynamics of Dimethylated Lysine Residues in Proteins Resolved by pH-Dependent 1H and 13C NMR Relaxation Dispersion. J Phys Chem B 2019; 123:9742-9750. [PMID: 31580078 DOI: 10.1021/acs.jpcb.9b06408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Post-translational methylation of lysine side chains is of great importance for protein regulation, including epigenetic control. Here, we present specific 13CHD2 labeling of dimethylated lysines as a sensitive probe of the structure, interactions, and dynamics of these groups, and outline a theoretical and experimental framework for analyzing their conformational dynamics using 1H and 13C CPMG relaxation dispersion experiments. Dimethylated lysine side chains in calcium-loaded calmodulin show a marked pH dependence of their Carr-Purcell-Meiboom-Gill (CPMG) dispersion profiles, indicating complex exchange behavior. Combined analysis of 1H and 13C CPMG relaxation dispersions requires consideration of 12-state correlated exchange of the two methyl groups due to circular three-state rotamer jumps around the Cε-Nζ axis combined with proton exchange and amine inversion. Taking into account a number of fundamental constraints, the exchange model can be reduced to include only three fitted parameters, namely, the geometric average of the rotamer-jump rate constants, the rate constant of deprotonation of Nζ, and the chemical shift difference between the trans and gauge positions of the 13C or 1H nuclei. The pH dependence indicates that protonation of the end group dramatically slows down rotamer exchange for some lysine residues, whereas deprotonation leads to rapid amine inversion coupled with rotamer scrambling. The observed variation among residues in their exchange behavior appears to depend on the structural environment of the side chain. Understanding this type of exchange process is critical to correctly interpreting NMR spectra of methylated lysine side chains. The exchange model presented here forms the basis for studying the structure and dynamics of epigenetically modified lysine side chains and perturbations caused by changes in pH or interactions with target proteins.
Collapse
Affiliation(s)
- Ulrich Weininger
- Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry , Lund University , P.O. Box 124, SE-221 00 Lund , Sweden
| | - Kristofer Modig
- Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry , Lund University , P.O. Box 124, SE-221 00 Lund , Sweden
| | - Hiroaki Ishida
- Department of Biological Sciences, Biochemistry Research Group , University of Calgary , 2500 University Drive NW , Calgary , Alberta , T2N 1N4 Canada
| | - Hans J Vogel
- Department of Biological Sciences, Biochemistry Research Group , University of Calgary , 2500 University Drive NW , Calgary , Alberta , T2N 1N4 Canada
| | - Mikael Akke
- Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry , Lund University , P.O. Box 124, SE-221 00 Lund , Sweden
| |
Collapse
|
3
|
Liu H, Li Z, Yang Q, Liu W, Wan J, Li J, Zhang M. Substrate docking-mediated specific and efficient lysine methylation by the SET domain-containing histone methyltransferase SETD7. J Biol Chem 2019; 294:13355-13365. [PMID: 31324717 DOI: 10.1074/jbc.ra119.009630] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/15/2019] [Indexed: 11/06/2022] Open
Abstract
Lysine methylation of cellular proteins is catalyzed by dozens of lysine methyltransferases (KMTs), occurs in thousands of different histone and nonhistone proteins, and regulates diverse biological processes. Dysregulation of KMT-mediated lysine methylations underlies many human diseases. A key unanswered question is how proteins, nonhistone proteins in particular, are specifically methylated by each KMT. Here, using several biochemical approaches, including analytical gel filtration chromatography, isothermal titration calorimetry, and in vitro methylation assays, we discovered that SET domain-containing 7 histone lysine methyltransferase (SETD7), a KMT capable of methylating both histone and nonhistone proteins, uses its N-terminal membrane occupation and recognition nexus (MORN) repeats to dock its substrates and subsequently juxtapose their Lys methylation motif for efficient and specific methylation by the catalytic SET domain. Such docking site-mediated methylation mechanism rationalizes binding and methylation of previously known substrates and predicts new SETD7 substrates. Our findings further suggest that other KMTs may also use docking-mediated substrate recognition mechanisms to achieve their catalytic specificity and efficiency.
Collapse
Affiliation(s)
- Haiyang Liu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Zhiwei Li
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Qingqing Yang
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Wei Liu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Jun Wan
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Jianchao Li
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Division of Cell, Developmental, and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, China.
| | - Mingjie Zhang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China.
| |
Collapse
|
4
|
Sun P, Wang Q, Yuan B, Zhu Q, Jiang B, Li C, Lan W, Cao C, Zhang X, Liu M. Monitoring alkaline transitions of yeast iso-1 cytochrome c at natural isotopic abundance using trimethyllysine as a native NMR probe. Chem Commun (Camb) 2018; 54:12630-12633. [PMID: 30351312 DOI: 10.1039/c8cc07605g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Spectral overlap makes it difficult to use NMR for mapping the conformational profile of heterogeneous conformational ensembles of macromolecules. Here, we apply a 1H-14N HSQC experiment to monitor the alkaline conformational transitions of yeast iso-1 cytochrome c (ycyt c) at natural isotopic abundance. Trimethylated Lys72 of ycyt c is selectively detected by a 1H-14N HSQC experiment, and used as a probe to trace conformational transitions of ycyt c under alkaline conditions. It was found that at least four different conformers of ycyt c coexisted under alkaline conditions. Besides the native structure, Lys73 or Lys79 coordinated conformers and a partially unfolded state with exposed heme were observed. These results indicate that the method is powerful at simplifying spectra of a trimethylated protein, which makes it possible to study complex conformational transitions of naturally extracted or chemically modified trimethylated protein at natural isotopic abundance.
Collapse
Affiliation(s)
- Peng Sun
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan National Center for Magnetic Resonance, CAS Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Application of Circular Dichroism Spectroscopy to the Analysis of the Interaction Between the Estrogen Receptor Alpha and Coactivators: The Case of Calmodulin. Methods Mol Biol 2015; 1366:241-259. [PMID: 26585140 DOI: 10.1007/978-1-4939-3127-9_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The estrogen receptor α ligand-binding domain (ERα-LBD) binds the natural hormone 17β-estradiol (E2) to induce transcription and cell proliferation. This process occurs with the contribution of protein and peptide partners (also called coactivators) that can modulate the structure of ERα, and therefore its specificity of action. As with most transcription factors, ERα exhibits a high content of α helix, making it difficult to routinely run spectroscopic studies capable of deciphering the secondary structure of the different partners under binding conditions. Ca(2+)-calmodulin, a protein also highly structured in α-helix, is a key coactivator for ERα activity. Here, we show how circular dichroism can be used to study the interaction of ERα with Ca(2+)-calmodulin. Our approach allows the determination not only of the conformational changes induced upon complex formation but also the dissociation constant (K d) of this interaction.
Collapse
|
6
|
Yang L, Ji W, Zhu Y, Gao P, Li Y, Cai H, Bai X, Guo D. GsCBRLK, a calcium/calmodulin-binding receptor-like kinase, is a positive regulator of plant tolerance to salt and ABA stress. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:2519-33. [PMID: 20400529 DOI: 10.1093/jxb/erq084] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Calcium/calmodulin-dependent kinases play vital roles in protein phosphorylation in eukaryotes, yet little is known about the phosphorylation process of calcium/calmodulin-dependent protein kinase and its role in stress signal transduction in plants. A novel plant-specific calcium-dependent calmodulin-binding receptor-like kinase (GsCBRLK) has been isolated from Glycine soja. A subcellular localization study using GFP fusion protein indicated that GsCBRLK is localized in the plasma membrane. Binding assays demonstrated that calmodulin binds to GsCBRLK with an affinity of 25.9 nM in a calcium-dependent manner and the binding motif lies between amino acids 147 to169 within subdomain II of the kinase domain. GsCBRLK undergoes autophosphorylation and Myelin Basis Protein phosphorylation in the presence of calcium. It was also found that calcium/calmodulin positively regulates GsCBRLK kinase activity through direct interaction between the calmodulin-binding domain and calmodulin. So, it is likely that GsCBRLK responds to an environmental stimulus in two ways: by increasing the protein expression level and by regulating its kinase activity through the calcium/calmodulin complex. Furthermore, cold, salinity, drought, and ABA stress induce GsCBRLK gene transcripts. Over-expression of GsCBRLK in transgenic Arabidopsis resulted in enhanced plant tolerance to high salinity and ABA and increased the expression pattern of a number of stress gene markers in response to ABA and high salt. These results identify GsCBRLK as a molecular link between the stress- and ABA-induced calcium/calmodulin signal and gene expression in plant cells.
Collapse
Affiliation(s)
- Liang Yang
- Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030, China
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Lund-Katz S, Zaiou M, Wehrli S, Dhanasekaran P, Baldwin F, Weisgraber KH, Phillips MC. Effects of lipid interaction on the lysine microenvironments in apolipoprotein E. J Biol Chem 2000; 275:34459-34464. [PMID: 10921925 DOI: 10.1074/jbc.m005265200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lysines in apolipoprotein (apo) E are key factors in the binding of apoE to the low density lipoprotein receptor, and high affinity binding requires that apoE be associated with lipid. To gain insight into this effect, we examined the microenvironments of the eight lysines in the 22-kDa fragment of apoE3 (residues 1-191) in the lipid-free and lipid-associated states. As shown by (1)H,(13)C heteronuclear single quantum coherence nuclear magnetic resonance, lysine resonances in the lipid-free fragment were poorly resolved over a wide pH range, whereas in apoE3.dimyristoyl phosphatidylcholine (DMPC) discs, the lysine microenvironments and protein conformation were significantly altered. Sequence-specific assignments of the lysine resonances in the spectrum of the lipidated 22-kDa fragment were made. In the lipid-free protein, six lysines could be resolved, and all had pK(a) values above 10. In apoE3.DMPC complexes, however, all eight lysines were resolved, and the pK(a) values were 9.2-11.1. Lys-143 and Lys-146, both in the receptor binding region in helix 4, had unusually low pK(a) values of 9.5 and 9.2, respectively, likely as a result of local increases in positive electrostatic potential with lipid association. Shift reagent experiments with potassium ferricyanide showed that Lys-143 and Lys-146 were much more accessible to the ferricyanide anion in the apoE3.DMPC complex than in the lipid-free state. The angle of the nonpolar face of helix 4 is smaller than the angles of helices 1, 2, and 3, suggesting that helix 4 cannot penetrate as deeply into the DMPC acyl chains at the edge of the complex and that its polar face protrudes from the edge of the disc. This increased exposure and the greater positive electrostatic potential created by interaction with DMPC may explain why lipid association is required for high affinity binding of apoE to the low density lipoprotein receptor.
Collapse
Affiliation(s)
- S Lund-Katz
- Joseph Stokes Jr. Research Institute, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104-4318, USA.
| | | | | | | | | | | | | |
Collapse
|
8
|
Xu AS, Macdonald JM, Labotka RJ, London RE. NMR study of the sites of human hemoglobin acetylated by aspirin. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1432:333-49. [PMID: 10407155 DOI: 10.1016/s0167-4838(99)00094-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Acetylation of hemoglobin by aspirin and other acetylating agents has been used to generate hemoglobin analogs with altered structural and functional properties, and may prove useful in the treatment of sickle cell disease. We have studied the acetylation of human hemoglobin using [1'-(13)C]acetylsalicylic acid in combination with two-dimensional HMQC and HSQC NMR analysis. The spectra of the acetylated hemoglobin exhibit a number of well resolved resonances. Several spectral assignment strategies were used: blocking the 2, 3-DPG binding site non-covalently with inositol hexaphosphate or covalently with a cross-linking agent, selective carbamylation of the N-terminal valine amino groups with cyanate, spin-labeling the hemoglobin at betaCys93, and analysis of a hemoglobin triple mutant: betaV1MH2DeltaK144R, in which betaLys144 is replaced by an arginine residue. These studies support the conclusion that the most rapidly acetylated residue is betaLys82 rather than betaLys144, as previously reported. Further, it is apparent that acetyl betaLys82 can give rise to several resonances due to additional acetylation of betaLys82' or other nearby residues. An additional assignment strategy involving comparison of the chemical shifts of the acetyl resonances observed for adducts of diamagnetic carbonmonoxyhemoglobin with the shifts observed in paramagnetic cyanomethemoglobin provides information about the location of the acetyl derivatives relative to the heme irons. This approach is limited, however, by the lack of well defined structural information for the lysine residues on the protein surface. Additional tentative assignments have also been made, using the above approaches.
Collapse
Affiliation(s)
- A S Xu
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, P.O. Box 12233, Research Triangle Park, NC 27709-2233, USA
| | | | | | | |
Collapse
|
9
|
Macdonald JM, LeBlanc DA, Haas AL, London RE. An NMR analysis of the reaction of ubiquitin with [acetyl-1-13C]aspirin. Biochem Pharmacol 1999; 57:1233-44. [PMID: 10230767 DOI: 10.1016/s0006-2952(99)00039-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The acetylation of ubiquitin by [acetyl-1-13C]aspirin has been studied using 2D NMR methods. Studies performed in a 50:50 H2O:D2O medium show doubling of the acetyl carbonyl resonances, indicating that all of the stable adducts formed involved amide linkages. Assignment of the heteronuclear multiple quantum coherence (HMQC) resonances was accomplished based on comparison of resonance intensities with the results of an Edman degradation analysis, pH titration studies of acetylated ubiquitin, and analysis of two ubiquitin mutants, K33R and K63R. The presence of a single tyrosine residue in close proximity to lysine-48 suggested another assignment strategy. Nitration of tyrosine-59 resulted in a small, pH-dependent shift of the resonance assigned to lysine-48, with a pK of 7.0, close to that expected for the nitrotyrosyl hydroxyl group. An additional adduct resonance with very low intensity also was observed and tentatively assigned to the acetylated N-terminal methionine residue. The relative rates of acetylation of the various lysine residues were obtained from time-dependent HMQC studies. Since no sample preparation artifacts were introduced, the levels of modification of the various residues could be determined with relatively high accuracy. Based on the time-dependent intensity data, the relative rate constants for modification of K6, K48, K63, K11, K33, and M1 were 1.0, 0.59, 0.43, 0.26, 0.23, and 0.03, respectively. These results were in much better agreement with amino accessibility predictions based on the crystal structure of the ubiquitin monomer than with predictions based on the ubiquitin structure in the crystallized dimeric and tetrameric forms. This approach provides a useful basis for understanding how local environmental factors can influence protein adduct formation, as well as for comparing the extent and specificity of various acetylation reagents.
Collapse
Affiliation(s)
- J M Macdonald
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | | | | | |
Collapse
|
10
|
Brockbank RL, Vogel HJ. NMR studies of the RRsrc peptide, a tyrosine kinase substrate. Biochem Cell Biol 1997. [DOI: 10.1139/o97-028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
11
|
Han CH, Roberts DM. Altered methylation substrate kinetics and calcium binding of a calmodulin with a Val136-->Thr substitution. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 244:904-12. [PMID: 9108264 DOI: 10.1111/j.1432-1033.1997.00904.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Calmodulin is trimethylated on Lys115 by a specific calmodulin methyltransferase. Previously, it was shown that the cam2 mutant (Ile136-->Thr) of Paramecium has a decreased level of methylated Lys115 [Lukas, T. J., Friedman, M. W., Kung, C. & Watterson, D. M. (1989) Proc. Natl Acad. Sci. USA 86, 7331-7335]. To investigate how this substitution affects calmodulin structure, function and recognition by the calmodulin methyltransferase, a calmodulin with a Thr136 substitution ([Thr136]calmodulin) was expressed in Escherichia coli in an unmethylated form for in vitro enzyme activator, calcium binding and methylation kinetic analyses. [Thr136]calmodulin was indistinguishable from wild-type calmodulin in saturating (1 mM) calcium in its ability to activate calmodulin-dependent enzymes and in its steady-state kinetic properties with isolated calmodulin methyltransferase. However, [Thr136]calmodulin did show two defects: a complete inability to be methylated in the absence of calcium; and defective calcium binding. As a result, an approximate 10-fold shift in the K0.5 values for calcium dependence of enzyme activation (shifted from 1.1 microM to 9.1 microM of Ca2+ for NAD kinase) and methylation (from 0.71 microM to 7.2 microM of Ca2+ in 0.15 M K+, 2 mM Mg2+) were observed. Non-denaturing electrophoresis and Tyr138 spectroscopic measurements suggest a difference in the conformation of the calcium-depleted structures of normal calmodulin and [Thr136]calmodulin. Overall, the results suggest that the mutation in this conserved position in the COOH-terminal hydrophobic core lowers calcium-binding affinity and alters the calcium-depleted structure leading to decreased methylation at physiological Ca2+ concentrations.
Collapse
Affiliation(s)
- C H Han
- Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, Knoxville 37996-0840, USA
| | | |
Collapse
|
12
|
Abstract
The calcium regulatory protein calmodulin (CaM) plays a role as an on-off switch in the activation of many enzymes and proteins. CaM has a dumbbell shaped structure with two folded domains, which are connected by a flexible linker in solution. The calmodulin-binding domains of the target proteins are contained in 20 residue long amino acid sequences, that share no obvious amino acid sequence homology. In this contribution, we discuss the features of CaM, which allow it to be rather promiscuous, and bind effectively to all these distinct domains. In particular, we describe the role of the methionine-rich hydrophobic surfaces of the protein in providing a malleable and sticky surface for binding many hydrophobic peptides. The enzyme activation properties of various Met --> Leu mutants of CaM are discussed. In addition, the role of the flexible linker region that connects the two domains is also analyzed. Finally, we describe various NMR and spectroscopic experiments that aid in determining the CaM-bound structures of synthetic peptides containing various CaM-binding domains. All structures analyzed to date are alpha-helical when bound to CaM, and they interact with CaM only through amino acid sidechains. This form of protein-protein interaction is rather unique, and may contribute to CaM's capacity to bind effectively to such a wide range of distinct partners.
Collapse
Affiliation(s)
- H J Vogel
- Department of Biological Sciences, University of Calgary, Canada
| | | |
Collapse
|
13
|
Zhang M, Thulin E, Vogel HJ. Reductive methylation and pKa determination of the lysine side chains in calbindin D9k. JOURNAL OF PROTEIN CHEMISTRY 1994; 13:527-35. [PMID: 7832981 DOI: 10.1007/bf01901534] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The Lys residues in the 75-residue Ca(2+)-binding protein calbindin D9k were reductively methylated with 13C-enriched formaldehyde. The possible structural effects resulting from the chemical modification were critically investigated by comparing two-dimensional NMR spectra and the exchange rates of some of the amide protons of the native and the modified protein. Our results show that the protein retains its structure even though 10 Lys out of a total of 75 amino acid residues were modified. In the Ca(2+)- and apo-forms of the protein, the 13C-methylated Lys residues can be detected with high sensitivity and resolution using two-dimensional (1H, 13C)-heteronuclear multiple quantum coherence (HMQC) NMR spectroscopy. The pKa values of the individual Lys residues in Ca(2+)-calbindin D9k and apo-calbindin D9k were obtained by combining pH titration experiments and (1H, 13C)-HMQC NMR spectroscopy. Each Lys residue in the Ca(2+)- and apo-forms of calbindin D9k has a unique pKa value. The Lys pKa values in the calcium protein range from 9.3 to 10.9, while those in the apo-protein vary between 9.7 and 10.7. Although apo-calbindin D9k has a very similar structure compared to Ca(2+)-calbindin D9k, the removal of two Ca2+ ions from the protein leads to an increase of the pKa values of the Lys residues.
Collapse
Affiliation(s)
- M Zhang
- Department of Biological Sciences, University of Calgary, Alberta, Canada
| | | | | |
Collapse
|
14
|
Zhang M, Li M, Wang J, Vogel H. The effect of Met–>Leu mutations on calmodulin's ability to activate cyclic nucleotide phosphodiesterase. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)40714-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|