1
|
Springstein BL, Paulo JA, Park H, Henry K, Fleming E, Feder Z, Harper JW, Hochschild A. Systematic analysis of nonprogrammed frameshift suppression in E. coli via translational tiling proteomics. Proc Natl Acad Sci U S A 2024; 121:e2317453121. [PMID: 38289956 PMCID: PMC10861913 DOI: 10.1073/pnas.2317453121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/20/2023] [Indexed: 02/01/2024] Open
Abstract
The synthesis of proteins as encoded in the genome depends critically on translational fidelity. Nevertheless, errors inevitably occur, and those that result in reading frame shifts are particularly consequential because the resulting polypeptides are typically nonfunctional. Despite the generally maladaptive impact of such errors, the proper decoding of certain mRNAs, including many viral mRNAs, depends on a process known as programmed ribosomal frameshifting. The fact that these programmed events, commonly involving a shift to the -1 frame, occur at specific evolutionarily optimized "slippery" sites has facilitated mechanistic investigation. By contrast, less is known about the scope and nature of error (i.e., nonprogrammed) frameshifting. Here, we examine error frameshifting by monitoring spontaneous frameshift events that suppress the effects of single base pair deletions affecting two unrelated test proteins. To map the precise sites of frameshifting, we developed a targeted mass spectrometry-based method called "translational tiling proteomics" for interrogating the full set of possible -1 slippage events that could produce the observed frameshift suppression. Surprisingly, such events occur at many sites along the transcripts, involving up to one half of the available codons. Only a subset of these resembled canonical "slippery" sites, implicating alternative mechanisms potentially involving noncognate mispairing events. Additionally, the aggregate frequency of these events (ranging from 1 to 10% in our test cases) was higher than we might have anticipated. Our findings point to an unexpected degree of mechanistic diversity among ribosomal frameshifting events and suggest that frameshifted products may contribute more significantly to the proteome than generally assumed.
Collapse
Affiliation(s)
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, BostonMA02115
| | - Hankum Park
- Department of Cell Biology, Harvard Medical School, BostonMA02115
| | - Kemardo Henry
- Department of Microbiology, Harvard Medical School, BostonMA02115
| | - Eleanor Fleming
- Department of Microbiology, Harvard Medical School, BostonMA02115
| | - Zoë Feder
- Department of Microbiology, Harvard Medical School, BostonMA02115
| | - J. Wade Harper
- Department of Cell Biology, Harvard Medical School, BostonMA02115
| | - Ann Hochschild
- Department of Microbiology, Harvard Medical School, BostonMA02115
| |
Collapse
|
2
|
Atkins JF, O’Connor KM, Bhatt PR, Loughran G. From Recoding to Peptides for MHC Class I Immune Display: Enriching Viral Expression, Virus Vulnerability and Virus Evasion. Viruses 2021; 13:1251. [PMID: 34199077 PMCID: PMC8310308 DOI: 10.3390/v13071251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/11/2021] [Accepted: 06/19/2021] [Indexed: 01/02/2023] Open
Abstract
Many viruses, especially RNA viruses, utilize programmed ribosomal frameshifting and/or stop codon readthrough in their expression, and in the decoding of a few a UGA is dynamically redefined to specify selenocysteine. This recoding can effectively increase viral coding capacity and generate a set ratio of products with the same N-terminal domain(s) but different C-terminal domains. Recoding can also be regulatory or generate a product with the non-universal 21st directly encoded amino acid. Selection for translation speed in the expression of many viruses at the expense of fidelity creates host immune defensive opportunities. In contrast to host opportunism, certain viruses, including some persistent viruses, utilize recoding or adventitious frameshifting as part of their strategy to evade an immune response or specific drugs. Several instances of recoding in small intensively studied viruses escaped detection for many years and their identification resolved dilemmas. The fundamental importance of ribosome ratcheting is consistent with the initial strong view of invariant triplet decoding which however did not foresee the possibility of transitory anticodon:codon dissociation. Deep level dynamics and structural understanding of recoding is underway, and a high level structure relevant to the frameshifting required for expression of the SARS CoV-2 genome has just been determined.
Collapse
Affiliation(s)
- John F. Atkins
- Schools of Biochemistry and Microbiology, University College Cork, T12 XF62 Cork, Ireland; (K.M.O.); (P.R.B.); (G.L.)
| | - Kate M. O’Connor
- Schools of Biochemistry and Microbiology, University College Cork, T12 XF62 Cork, Ireland; (K.M.O.); (P.R.B.); (G.L.)
| | - Pramod R. Bhatt
- Schools of Biochemistry and Microbiology, University College Cork, T12 XF62 Cork, Ireland; (K.M.O.); (P.R.B.); (G.L.)
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | - Gary Loughran
- Schools of Biochemistry and Microbiology, University College Cork, T12 XF62 Cork, Ireland; (K.M.O.); (P.R.B.); (G.L.)
| |
Collapse
|
3
|
L’Annunziata MF. Flow-cell radionuclide analysis. HANDBOOK OF RADIOACTIVITY ANALYSIS: VOLUME 2 2020:729-820. [DOI: 10.1016/b978-0-12-814395-7.00010-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Atkins JF, Loughran G, Bhatt PR, Firth AE, Baranov PV. Ribosomal frameshifting and transcriptional slippage: From genetic steganography and cryptography to adventitious use. Nucleic Acids Res 2016; 44:7007-78. [PMID: 27436286 PMCID: PMC5009743 DOI: 10.1093/nar/gkw530] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/26/2016] [Indexed: 12/15/2022] Open
Abstract
Genetic decoding is not ‘frozen’ as was earlier thought, but dynamic. One facet of this is frameshifting that often results in synthesis of a C-terminal region encoded by a new frame. Ribosomal frameshifting is utilized for the synthesis of additional products, for regulatory purposes and for translational ‘correction’ of problem or ‘savior’ indels. Utilization for synthesis of additional products occurs prominently in the decoding of mobile chromosomal element and viral genomes. One class of regulatory frameshifting of stable chromosomal genes governs cellular polyamine levels from yeasts to humans. In many cases of productively utilized frameshifting, the proportion of ribosomes that frameshift at a shift-prone site is enhanced by specific nascent peptide or mRNA context features. Such mRNA signals, which can be 5′ or 3′ of the shift site or both, can act by pairing with ribosomal RNA or as stem loops or pseudoknots even with one component being 4 kb 3′ from the shift site. Transcriptional realignment at slippage-prone sequences also generates productively utilized products encoded trans-frame with respect to the genomic sequence. This too can be enhanced by nucleic acid structure. Together with dynamic codon redefinition, frameshifting is one of the forms of recoding that enriches gene expression.
Collapse
Affiliation(s)
- John F Atkins
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland School of Microbiology, University College Cork, Cork, Ireland Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Gary Loughran
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Pramod R Bhatt
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Andrew E Firth
- Division of Virology, Department of Pathology, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
5
|
Caliskan N, Peske F, Rodnina MV. Changed in translation: mRNA recoding by -1 programmed ribosomal frameshifting. Trends Biochem Sci 2015; 40:265-74. [PMID: 25850333 PMCID: PMC7126180 DOI: 10.1016/j.tibs.2015.03.006] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/09/2015] [Accepted: 03/09/2015] [Indexed: 12/19/2022]
Abstract
–1PRF occurs when ribosomes move over a slippery sequence. A frameshifting pseudoknot/stem-loop element stalls ribosomes in a metastable state. –1PRF may contribute to the quality-control machinery in eukaryotes. Trans-acting factors (proteins, miRNAs, or antibiotics) can modulate –1PRF.
Programmed −1 ribosomal frameshifting (−1PRF) is an mRNA recoding event commonly utilized by viruses and bacteria to increase the information content of their genomes. Recent results have implicated −1PRF in quality control of mRNA and DNA stability in eukaryotes. Biophysical experiments demonstrated that the ribosome changes the reading frame while attempting to move over a slippery sequence of the mRNA – when a roadblock formed by a folded downstream segment in the mRNA stalls the ribosome in a metastable conformational state. The efficiency of −1PRF is modulated not only by cis-regulatory elements in the mRNA but also by trans-acting factors such as proteins, miRNAs, and antibiotics. These recent results suggest a molecular mechanism and new important cellular roles for −1PRF.
Collapse
Affiliation(s)
- Neva Caliskan
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany
| | - Frank Peske
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany.
| |
Collapse
|
6
|
Characterization and identification of alanine to serine sequence variants in an IgG4 monoclonal antibody produced in mammalian cell lines. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 908:1-8. [PMID: 23122394 DOI: 10.1016/j.jchromb.2012.09.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 09/04/2012] [Accepted: 09/13/2012] [Indexed: 12/17/2022]
Abstract
Low levels of alanine to serine sequence variants were identified in an IgG4 monoclonal antibody by ultra/high performance liquid chromatography and tandem mass spectrometry. The levels of the identified sequence variants A183S and A152S, both in the light chain, have been determined to be 7.8-9.9% and 0.5-0.6%, by extracted ion currents of the tryptic peptides L16 and L14, respectively. The A183S variant was confirmed through tryptic map spiking experiments using synthetic peptide, SDYEK, which incorporated Ser at the position of native Ala in the tryptic peptide L16. Both mutations were also observed by endoproteinase Asp-N peptide mapping. The variant level of A183S was also quantified by LC-UV with detection at 280nm and fluorescence detection of tyrosine residues on the tryptic peptides. The results from LC-MS, UV, and fluorescence detection are in close agreement with each other. The levels of the sequence variants are comparable among the antibody samples manufactured at different scales as well as locations, indicating that the variants' levels are not affected by manufacture scale or locations. DNA sequencing of the master cell bank revealed the presence of mixed bases at position 183 encoding both wild and mutated populations, whereas bases encoding the minor sequence variant at position 152 were not detected. The root cause for A152S mutation is not yet clearly understood at this moment.
Collapse
|
7
|
|
8
|
Gurvich OL, Näsvall SJ, Baranov PV, Björk GR, Atkins JF. Two groups of phenylalanine biosynthetic operon leader peptides genes: a high level of apparently incidental frameshifting in decoding Escherichia coli pheL. Nucleic Acids Res 2010; 39:3079-92. [PMID: 21177642 PMCID: PMC3082878 DOI: 10.1093/nar/gkq1272] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The bacterial pheL gene encodes the leader peptide for the phenylalanine biosynthetic operon. Translation of pheL mRNA controls transcription attenuation and, consequently, expression of the downstream pheA gene. Fifty-three unique pheL genes have been identified in sequenced genomes of the gamma subdivision. There are two groups of pheL genes, both of which are short and contain a run(s) of phenylalanine codons at an internal position. One group is somewhat diverse and features different termination and 5'-flanking codons. The other group, mostly restricted to Enterobacteria and including Escherichia coli pheL, has a conserved nucleotide sequence that ends with UUC_CCC_UGA. When these three codons in E. coli pheL mRNA are in the ribosomal E-, P- and A-sites, there is an unusually high level, 15%, of +1 ribosomal frameshifting due to features of the nascent peptide sequence that include the penultimate phenylalanine. This level increases to 60% with a natural, heterologous, nascent peptide stimulator. Nevertheless, studies with different tRNA(Pro) mutants in Salmonella enterica suggest that frameshifting at the end of pheL does not influence expression of the downstream pheA. This finding of incidental, rather than utilized, frameshifting is cautionary for other studies of programmed frameshifting.
Collapse
Affiliation(s)
- Olga L Gurvich
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA
| | | | | | | | | |
Collapse
|
9
|
Atkins JF, Björk GR. A gripping tale of ribosomal frameshifting: extragenic suppressors of frameshift mutations spotlight P-site realignment. Microbiol Mol Biol Rev 2009; 73:178-210. [PMID: 19258537 PMCID: PMC2650885 DOI: 10.1128/mmbr.00010-08] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutants of translation components which compensate for both -1 and +1 frameshift mutations showed the first evidence for framing malleability. Those compensatory mutants isolated in bacteria and yeast with altered tRNA or protein factors are reviewed here and are considered to primarily cause altered P-site realignment and not altered translocation. Though the first sequenced tRNA mutant which suppressed a +1 frameshift mutation had an extra base in its anticodon loop and led to a textbook "yardstick" model in which the number of anticodon bases determines codon size, this model has long been discounted, although not by all. Accordingly, the reviewed data suggest that reading frame maintenance and translocation are two distinct features of the ribosome. None of the -1 tRNA suppressors have anticodon loops with fewer than the standard seven nucleotides. Many of the tRNA mutants potentially affect tRNA bending and/or stability and can be used for functional assays, and one has the conserved C74 of the 3' CCA substituted. The effect of tRNA modification deficiencies on framing has been particularly informative. The properties of some mutants suggest the use of alternative tRNA anticodon loop stack conformations by individual tRNAs in one translation cycle. The mutant proteins range from defective release factors with delayed decoding of A-site stop codons facilitating P-site frameshifting to altered EF-Tu/EF1alpha to mutant ribosomal large- and small-subunit proteins L9 and S9. Their study is revealing how mRNA slippage is restrained except where it is programmed to occur and be utilized.
Collapse
Affiliation(s)
- John F Atkins
- BioSciences Institute, University College, Cork, Ireland.
| | | |
Collapse
|
10
|
Characterization of a T7-like lytic bacteriophage (phiSG-JL2) of Salmonella enterica serovar gallinarum biovar gallinarum. Appl Environ Microbiol 2008; 74:6970-9. [PMID: 18820072 DOI: 10.1128/aem.01088-08] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PhiSG-JL2 is a newly discovered lytic bacteriophage infecting Salmonella enterica serovar Gallinarum biovar Gallinarum but is nonlytic to a rough vaccine strain of serovar Gallinarum biovar Gallinarum (SG-9R), S. enterica serovar Enteritidis, S. enterica serovar Typhimurium, and S. enterica serovar Gallinarum biovar Pullorum. The phiSG-JL2 genome is 38,815 bp in length (GC content, 50.9%; 230-bp-long direct terminal repeats), and 55 putative genes may be transcribed from the same strand. Functions were assigned to 30 genes based on high amino acid similarity to known proteins. Most of the expected proteins except tail fiber (31.9%) and the overall organization of the genomes were similar to those of yersiniophage phiYeO3-12. phiSG-JL2 could be classified as a new T7-like virus and represents the first serovar Gallinarum biovar Gallinarum phage genome to be sequenced. On the basis of intraspecific ratios of nonsynonymous to synonymous nucleotide changes (Pi[a]/Pi[s]), gene 2 encoding the host RNA polymerase inhibitor displayed Darwinian positive selection. Pretreatment of chickens with phiSG-JL2 before intratracheal challenge with wild-type serovar Gallinarum biovar Gallinarum protected most birds from fowl typhoid. Therefore, phiSG-JL2 may be useful for the differentiation of serovar Gallinarum biovar Gallinarum from other Salmonella serotypes, prophylactic application in fowl typhoid control, and understanding of the vertical evolution of T7-like viruses.
Collapse
|
11
|
Baranov PV, Gesteland RF, Atkins JF. P-site tRNA is a crucial initiator of ribosomal frameshifting. RNA (NEW YORK, N.Y.) 2004; 10:221-30. [PMID: 14730021 PMCID: PMC1370534 DOI: 10.1261/rna.5122604] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2003] [Accepted: 10/09/2003] [Indexed: 05/22/2023]
Abstract
The expression of some genes requires a high proportion of ribosomes to shift at a specific site into one of the two alternative frames. This utilized frameshifting provides a unique tool for studying reading frame control. Peptidyl-tRNA slippage has been invoked to explain many cases of programmed frameshifting. The present work extends this to other cases. When the A-site is unoccupied, the P-site tRNA can be repositioned forward with respect to mRNA (although repositioning in the minus direction is also possible). A kinetic model is presented for the influence of both, the cognate tRNAs competing for overlapping codons in A-site, and the stabilities of P-site tRNA:mRNA complexes in the initial and new frames. When the A-site is occupied, the P-site tRNA can be repositioned backward. Whether frameshifting will happen depends on the ability of the A-site tRNA to subsequently be repositioned to maintain physical proximity of the tRNAs. This model offers an alternative explanation to previously published mechanisms of programmed frameshifting, such as out-of-frame tRNA binding, and a different perspective on simultaneous tandem tRNA slippage.
Collapse
Affiliation(s)
- Pavel V Baranov
- Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112-5330, USA
| | | | | |
Collapse
|
12
|
Pajunen MI, Kiljunen SJ, Söderholm ME, Skurnik M. Complete genomic sequence of the lytic bacteriophage phiYeO3-12 of Yersinia enterocolitica serotype O:3. J Bacteriol 2001; 183:1928-37. [PMID: 11222590 PMCID: PMC95087 DOI: 10.1128/jb.183.6.1928-1937.2001] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
phiYeO3-12 is a T3-related lytic bacteriophage of Yersinia enterocolitica serotype O:3. The nucleotide sequence of the 39,600-bp linear double-stranded DNA (dsDNA) genome was determined. The phage genome has direct terminal repeats of 232 bp, a GC content of 50.6%, and 54 putative genes, which are all transcribed from the same DNA strand. Functions were assigned to 30 genes based on the similarity of the predicted products to known proteins. A striking feature of the phiYeO3-12 genome is its extensive similarity to the coliphage T3 and T7 genomes; most of the predicted phiYeO3-12 gene products were >70% identical to those of T3, and the overall organizations of the genomes were similar. In addition to an identical promoter specificity, phiYeO3-12 shares several common features with T3, nonsubjectibility to F exclusion and growth on Shigella sonnei D(2)371-48 (M. Pajunen, S. Kiljunen, and M. Skurnik, J. Bacteriol. 182:5114-5120, 2000). These findings indicate that phiYeO3-12 is a T3-like phage that has adapted to Y. enterocolitica O:3 or vice versa. This is the first dsDNA yersiniophage genome sequence to be reported.
Collapse
Affiliation(s)
- M I Pajunen
- Department of Medical Biochemistry, Institute of Biomedicine, University of Turku, Turku, Finland
| | | | | | | |
Collapse
|
13
|
Metzler DE, Metzler CM, Sauke DJ. Ribosomes and the Synthesis of Proteins. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50032-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Hénaut A, Lisacek F, Nitschké P, Moszer I, Danchin A. Global analysis of genomic texts: the distribution of AGCT tetranucleotides in the Escherichia coli and Bacillus subtilis genomes predicts translational frameshifting and ribosomal hopping in several genes. Electrophoresis 1998; 19:515-27. [PMID: 9588797 DOI: 10.1002/elps.1150190411] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Present availability of the genomic text of bacteria allows assignment of biological known functions to many genes (typically, half of the genome's gene content). It is now time to try and predict new unexpected functions, using inductive procedures that allow correlating the content of the genomic text to possible biological functions. We show here that analysis of the genomes of Escherichia coli and Bacillus subtilis for the distribution of AGCT motifs predicts that genes exist for which the mRNA molecule can be translated as several different proteins synthesized after ribosomal frameshifting or hopping. Among these genes we found that several coded for the same function in E. coli and B. subtilis. We analyzed in depth the situation of the infB gene (experimentally known to specify synthesis of several proteins differing in their translation starts), the aceF/pdhC gene, the eno gene, and the rplI gene. In addition, genes specific to E. coli were also studied: ompA, ompFand tolA (predicting epigenetic variation that could help escape infection by phages or colicins).
Collapse
Affiliation(s)
- A Hénaut
- Université de Versailles Saint Quentin, France
| | | | | | | | | |
Collapse
|
15
|
Abstract
A statistical analysis with 12,288 autocorrelation functions applied in protein (coding) genes of prokaryotes and eukaryotes identifies three subsets of trinucleotides in their three frames: T0 = X0 [symbol: see text] {AAA, TTT} with X0 = {AAC, AAT, ACC, ATC, ATT, CAG, CTC, CTG, GAA, GAC, GAG, GAT, GCC, GGC, GGT, GTA, GTC, GTT, TAC, TTC} in frame 0 (the reading frame established by the ATG start trinucleotide), T1 = X1 [symbol: see text] {CCC} in frame 1 and T2 = X2 [symbol: see text] {GGG} in frame 2 (the frames 1 and 2 being the frame 0 shifted by one and two nucleotides, respectively, to the right). These three subsets are identical in these two gene populations and have five important properties: (i) the property of maximal (20 trinucleotides) circular code for X0 (resp. X1, X2) allowing to retrieve automatically the frame 0 (resp. 1, 2) in any region of the gene without start codon; (ii) the DNA complementarity property C (e.g. C(AAC) = GTT): C(T0) = T0, C(T1) = T2 and C(T2) = T1 allowing the two paired reading frames of a DNA double helix simultaneously to code for amino acids; (iii) the circular permutation property P (e.g. P(AAC) = ACA): P(X0) = X1 and P(X1) = X2 implying that the two subsets X1 and X2 can be deduced from X0; (iv) the rarity property with an occurrence probability of X0 = 6 x 10(-8); and (v) the concatenation properties in favour of an evolutionary code: a high frequency (27.5%) of misplaced trinucleotides in the shifted frames, a maximum (13 nucleotides) length of the minimal window to retrieve automatically the frame and an occurrence of the four types of nucleotides in the three trinucleotide sites. In Discussion, a simulation based on an independent mixing of the trinucleotides of T0 allows to retrieve the two subsets T1 and T2. Then, the identified subsets T0, T1 and T2 replaced in the 2-letter genetic alphabet {R, Y} (R = purine = A or G, Y = pyrimidine = C or T) allow to retrieve the RNY model (N = R or Y) and to explain previous works in the alphabet {R, Y}. Then, these three subsets are related to the genetic code. The trinucleotides of T0 code for 13 amino acids: Ala, Asn, Asp, Gln, Glu, Gly, Ile, Leu, Lys, Phe, Thr, Tyr and Val. Finally, a strong correlation between the usage of the trinucleotides of T0 in protein genes and the amino acid frequencies in proteins is observed as six among seven amino acids not coded by T0, have as expected the lowest frequencies in proteins of both prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- D G Arquès
- Université de Marne la Vallée, Institut Gaspard Monge, Noisy Le Grand, France.
| | | |
Collapse
|
16
|
Abstract
Errors that alter the reading frame occur extremely rarely during translation, yet some genes have evolved sequences that efficiently induce frameshifting. These sequences, termed programmed frameshift sites, manipulate the translational apparatus to promote non-canonical decoding. Frameshifts are mechanistically diverse. Most cause a -1 shift of frames; the first such site was discovered in a metazoan retrovirus, but they are now known to be dispersed quite widely among evolutionarily diverse species. +1 frameshift sites are much less common, but again dispersed widely. The rarest form are the translational hop sites which program the ribosome to bypass a region of several dozen nucleotides. Each of these types of events are stimulated by distinct mechanisms. All of the events share a common phenomenology in which the programmed frameshift site causes the ribosome to pause during elongation so that the kinetically unfavorable alternative decoding event can occur. During this pause most frameshifts occur because one or more ribosome-bound tRNAs slip between cognate or near-cognate codons. However, even this generalization is not entirely consistent, since some frameshifts occur without slippage. Because of their similarity to rarer translational errors, programmed frameshift sites provide a tool with which to probe the mechanism of frame maintenance.
Collapse
Affiliation(s)
- P J Farabaugh
- Department of Biological Sciences, University of Maryland, Baltimore 21228, USA
| |
Collapse
|
17
|
Olsthoorn RC, Garde G, Dayhuff T, Atkins JF, Van Duin J. Nucleotide sequence of a single-stranded RNA phage from Pseudomonas aeruginosa: kinship to coliphages and conservation of regulatory RNA structures. Virology 1995; 206:611-25. [PMID: 7831817 DOI: 10.1016/s0042-6822(95)80078-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We report the complete nucleotide sequence of the single-stranded RNA phage PP7 from Pseudomonas aeruginosa. There are three open reading frames which code for apparent protein homologues of the single-stranded RNA coliphages, i.e., maturation protein, coat protein, and replicase. A fourth overlapping reading frame exists that probably encodes a lysis protein, similar to what has been found in the group A coliphages such as MS2. The genetic map of PP7 is colinear with group A coliphages and we accordingly classify the phage as a levivirus. There is, generally speaking, no significant nucleotide sequence identity between PP7 and the coliphages except for a few regions where homologous parts of proteins are encoded, most notable in the replicase gene. In these regions the nucleotide sequence similarity between PP7 and MS2 is no greater than between PP7 and the group B coliphages such as Q beta. Surprisingly, Q beta and MS2 are no closer to each other than they are to PP7. Several regulatory RNA secondary structure features that are present in the coliphages were identified also in PP7 RNA although the sequences involved cannot be aligned. Among these are the coat protein binding helix at the start of the replicase gene, structures at the 5' and 3' terminus of the RNA, a replicase binding site, and the structure of the coat protein cistron start. Some of these features resemble MS2 type coliphages but others the Q beta type. These findings suggest that PP7 is related to the coliphages but branched off before the coliphages diverged into separate groups.
Collapse
Affiliation(s)
- R C Olsthoorn
- Department of Biochemistry, Leiden Institute of Chemistry (LIC), Leiden University, The Netherlands
| | | | | | | | | |
Collapse
|
18
|
Abstract
This chapter summarizes the present state of knowledge concerning translational suppression in retroviruses. Other viruses, using similar mechanisms, are mentioned only briefly and tangentially. Retroviruses are a unique class of viruses that have been found in all classes of vertebrates but not in other organisms. Perhaps, their most distinctive properties are the flow of information from RNA to DNA early in the infectious process, and the subsequent integration of the viral DNA into the chromosomal DNA of the host cell. Retroviruses are the causative agents of acquired immunodeficiency syndrome (AIDS) and of a variety of neoplastic diseases in man and domestic animals. Elements with striking similarities to retroviruses, termed retrotransposons, occur in yeast and many other eukaryotes; elements sharing some characteristics with retroviruses have also recently been observed in prokaryotes. Because of the apparent relationship between retroviruses and retrotransposons, this chapter discusses of retrotransposons as well as retroviruses. Though all retroviruses utilize translational suppression in pol-protein synthesis, different groups of retroviruses use two completely distinct types of translational suppression. One of these is in-frame or readthrough suppression and the other is ribosomal frameshifting.
Collapse
Affiliation(s)
- D L Hatfield
- Laboratory of Experimental Carcinogenesis, National Cancer Institute, Bethesda, Maryland 20892
| | | | | | | |
Collapse
|
19
|
Tuohy TM, Thompson S, Gesteland RF, Hughes D, Atkins JF. The role of EF-Tu and other translation components in determining translocation step size. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1050:274-8. [PMID: 2207156 DOI: 10.1016/0167-4781(90)90180-a] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The two EF-Tu encoding genes, tufA and tufB, of Salmonella typhimurium have been sequenced. Nearly all the differences from their Escherichia coli counterparts are third position changes which do not alter the encoded amino acids. Unexpectedly, most of the changes in one Salmonella tuf gene are paralleled by changes in the other tuf gene perhaps due to gene repair despite the distance separating the genes. Three mutants which cause mis-framing, have their substitutions at codon 375. Explanations for mutants which cause mis-framing are considered and the mechanism of normal reading frame maintenance discussed.
Collapse
Affiliation(s)
- T M Tuohy
- Howard Hughes Medical Institute, University of Utah, Salt Lake City 84132
| | | | | | | | | |
Collapse
|
20
|
Affiliation(s)
- J F Atkins
- Howard Hughes Medical Institute, University of Utah, Salt Lake City 84132
| | | | | |
Collapse
|
21
|
Hatfield DL, Smith DW, Lee BJ, Worland PJ, Oroszlan S. Structure and function of suppressor tRNAs in higher eukaryotes. Crit Rev Biochem Mol Biol 1990; 25:71-96. [PMID: 2183969 DOI: 10.3109/10409239009090606] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- D L Hatfield
- Laboratory of Experimental Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | | | | | | | | |
Collapse
|
22
|
Weiss RB, Dunn DM, Atkins JF, Gesteland RF. Ribosomal frameshifting from -2 to +50 nucleotides. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1990; 39:159-83. [PMID: 2247607 DOI: 10.1016/s0079-6603(08)60626-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- R B Weiss
- Howard Hughes Medical Institute, Salt Lake City, Utah
| | | | | | | |
Collapse
|
23
|
O'Mahony DJ, Hughes D, Thompson S, Atkins JF. Suppression of a -1 frameshift mutation by a recessive tRNA suppressor which causes doublet decoding. J Bacteriol 1989; 171:3824-30. [PMID: 2472379 PMCID: PMC210131 DOI: 10.1128/jb.171.7.3824-3830.1989] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
sufS was found to suppress the only known suppressible-1 frameshift mutation, trpE91, at a site identified as GGA and mapped within the single gene of the only tRNA that can decode GGA in Escherichia coli. It mapped to the same gene in Salmonella typhimurium. sufS alleles were recessive, and dominant alleles could not be isolated. This is in contrast to all other tRNA structural gene mutations identified thus far that cause frameshift suppression. The recessiveness implies that all sufS alleles are poor competitors against their wild-type tRNA(Gly2) counterparts. The base G immediately 5' of the GGA suppression site influenced the level but was not critical for suppression by sufS601. From this result, it is inferred that sufS601 causes frameshifting by doublet decoding.
Collapse
Affiliation(s)
- D J O'Mahony
- Department of Genetics, Trinity College, Dublin, Ireland
| | | | | | | |
Collapse
|
24
|
Condreay JP, Wright SE, Molineux IJ. Nucleotide sequence and complementation studies of the gene 10 region of bacteriophage T3. J Mol Biol 1989; 207:555-61. [PMID: 2760923 DOI: 10.1016/0022-2836(89)90464-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The nucleotide sequence of bacteriophage T3 gene 10 and surrounding regulatory elements has been determined and compared to the analogous region of bacteriophage T7. T3 genes 9, 10 and 11 have been shown to complement T7 mutants. The DNA sequences of T3 and T7 gene 10A are homologous, as are the amino acid sequences of the respective products. The translational shift to the -1 frame is predicted to occur at the same position in gene 10 of T3 and T7, though different nucleotide sequences are probably responsible. The resulting gp10B products have completely different C termini.
Collapse
Affiliation(s)
- J P Condreay
- Department of Microbiology, University of Texas, Austin 78712
| | | | | |
Collapse
|
25
|
Mutants of translational components that alter reading frame by two steps forward or one step back. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(19)81328-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
26
|
Weiss R, Lindsley D, Falahee B, Gallant J. On the mechanism of ribosomal frameshifting at hungry codons. J Mol Biol 1988; 203:403-10. [PMID: 3199440 DOI: 10.1016/0022-2836(88)90008-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In a few, rather rare cases, frameshift mutant alleles are phenotypically suppressed during limitation for particular aminoacyl-tRNA species. The simplest interpretation is compensatory ribosome frameshifting at a "hungry" codon in the vicinity of the suppressed frameshift mutation. We have now tested this interpretation directly by obtaining amino acid sequence data on such a phenotypically suppressed protein. We used a plasmid-borne lacZ gene, engineered to be in the (+) reading frame. Its background leakiness is increased by two orders of magnitude during lysyl-tRNA limitation. The enzyme made under this condition has the amino acid sequence expected from the DNA sequence up to the first lysine codon, then shifts in the (-) direction to recreate the correct lacZ reading frame. The lysine is replaced by serine, presumably due to cognate reading of an overlapping AGC codon displaced by one base to the 3' side of the AAG codon. When the 3' overlapping codon is AGA or AGG, there is no ribosome frameshifting; when it is AGU (read by the same serine tRNA) there is frameshifting, although less efficiently than in the case of AGC. The mechanism of cognate overlapping reading contradicts more elaborate models that two of the authors have suggested previously. However, the possibility remains that there is more than one mechanism of ribosome frameshifting at hungry codons.
Collapse
Affiliation(s)
- R Weiss
- Howard Hughes Medical Institute, University of Utah Medical Center, Salt Lake City 84132
| | | | | | | |
Collapse
|
27
|
Wilson PG, Culbertson MR. SUF12 suppressor protein of yeast. A fusion protein related to the EF-1 family of elongation factors. J Mol Biol 1988; 199:559-73. [PMID: 3280807 DOI: 10.1016/0022-2836(88)90301-4] [Citation(s) in RCA: 99] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mutations at the suf12 locus were isolated in Saccharomyces cerevisiae as extragenic suppressors of +1 frameshift mutations in glycine (GGX) and proline (CCX) codons, as well as UGA and UAG nonsense mutations. To identify the SUF12 function in translation and to understand the relationship between suf12-mediated misreading and translational frameshifting, we have isolated an SUF12+ clone from a centromeric plasmid library by complementation. SUF12+ is an essential, single-copy gene that is identical with the omnipotent suppressor gene SUP35+. The 2.3 x 10(3) base SUF12+ transcript contains an open reading frame sufficient to encode a 88 x 10(3) Mr protein. The pattern of codon usage and transcript abundance suggests that SUF12+ is not a highly expressed gene. The linear SUF12 amino acid sequence suggests that SUF12 has evolved as a fusion protein of unique N-terminal domains fused to domains that exhibit essentially co-linear homology to the EF-1 family of elongation factors. Beginning internally at amino acid 254, homology is more extensive between the SUF12 protein and EF-1 alpha of yeast (36% identity; 65% with conservative substitutions) than between EF-1 alpha of yeast and EF-Tu of Escherichia coli. The most extensive regions of SUF12/EF-1 alpha homology are those regions that have been conserved in the EF-1 family, including domains involved in GTP and tRNA binding. It is clear that SUF12 and EF-1 alpha are not functionally equivalent, since both are essential in vivo. The N-terminal domains of SUF12 are unique and may reflect, in part, the functional distinction between these proteins. These domains exhibit unusual amino acid composition and extensive repeated structure. The behavior of suf12-null/SUF12+ heterozygotes indicates that suf12 is co-dominantly expressed and suggests that suf12 allele-specific suppression may result from functionally distinct mutant proteins rather than variation in residual wild-type SUF12+ activity. We propose a model of suf12-mediated frameshift and nonsense suppression that is based on a primary defect in the normal process of codon recognition.
Collapse
Affiliation(s)
- P G Wilson
- Laboratory of Genetics, University of Wisconsin, Madison 53706
| | | |
Collapse
|
28
|
Buckley KJ, Hayashi M. Role of premature translational termination in the regulation of expression of the phi X174 lysis gene. J Mol Biol 1987; 198:599-607. [PMID: 2963134 DOI: 10.1016/0022-2836(87)90203-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Expression of the phi X174 lysis (E) gene, a member of an overlapping gene pair, appears to depend on a frameshift-induced chain termination by ribosomes translating the upstream D gene. A -1 reading frameshift, possibly induced by misreading of an alanine codon as a doublet, causes ribosomes to terminate translation at two different sites, suggesting two modes of regulating expression of the E gene. One frameshift can cause translational termination at a stop codon(s) near the E gene ribosome binding site (RBS), resulting in reinitiation by ribosomes at the E gene RBS. Termination at a second site some 70 bases upstream from the E gene RBS, while too far away to allow ribosomal re-initiation at the E gene RBS, probably results in an unmasking of the message, allowing entry of a new ribosome at the E gene RBS.
Collapse
Affiliation(s)
- K J Buckley
- Department of Biology, University of California, San Diego, La Jolla 92093
| | | |
Collapse
|