1
|
Moir RD, Lavados C, Lee J, Willis IM. Functional characterization of Polr3a hypomyelinating leukodystrophy mutations in the S. cerevisiae homolog, RPC160. Gene 2020; 768:145259. [PMID: 33148458 DOI: 10.1016/j.gene.2020.145259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/23/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022]
Abstract
Mutations in RNA polymerase III (Pol III) cause hypomeylinating leukodystrophy (HLD) and neurodegeneration in humans. POLR3A and POLR3B, the two largest Pol III subunits, together form the catalytic center and carry the majority of disease alleles. Disease-causing mutations include invariant and highly conserved residues that are predicted to negatively affect Pol III activity and decrease transcriptional output. A subset of HLD missense mutations in POLR3A cluster in the pore region that provides nucleotide access to the Pol III active site. These mutations were engineered at the corresponding positions in the Saccharomyces cerevisiae homolog, Rpc160, to evaluate their functional deficits. None of the mutations caused a growth or transcription phenotype in yeast. Each mutation was combined with a frequently occurring pore mutation, POLR3A G672E, which was also wild-type for growth and transcription. The double mutants showed a spectrum of phenotypes from wild-type to lethal, with only the least fit combinations showing an effect on Pol III transcription. In one slow-growing temperature-sensitive mutant the steady-state level of tRNAs was unaffected, however global tRNA synthesis was compromised, as was the synthesis of RPR1 and SNR52 RNAs. Affinity-purified mutant Pol III was broadly defective in both factor-independent and factor-dependent transcription in vitro across genes that represent the yeast Pol III transcriptome. Thus, the robustness of yeast Rpc160 to single Pol III leukodystrophy mutations in the pore domain can be overcome by a second mutation in the domain.
Collapse
Affiliation(s)
- Robyn D Moir
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Christian Lavados
- Graduate Program in Biomedical Science, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - JaeHoon Lee
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ian M Willis
- Departments of Biochemistry and Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
2
|
Ohira T, Suzuki T. Precursors of tRNAs are stabilized by methylguanosine cap structures. Nat Chem Biol 2016; 12:648-55. [PMID: 27348091 DOI: 10.1038/nchembio.2117] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 05/20/2016] [Indexed: 01/30/2023]
Abstract
Efficient maturation of transfer RNAs (tRNAs) is required for rapid cell growth. However, the precise timing of tRNA processing in coordination with the order of tRNA modifications has not been thoroughly elucidated. To analyze the modification status of tRNA precursors (pre-tRNAs) during maturation, we isolated pre-tRNAs at various stages from Saccharomyces cerevisiae and subjected them to MS analysis. We detected methylated guanosine cap structures at the 5' termini of pre-tRNAs bearing 5' leader sequences. These capped pre-tRNAs accumulated substantially after inhibition of RNase P activity. Upon depletion of the capping enzyme Ceg1p, the steady state level of capped pre-tRNA was markedly reduced. In addition, a population of capped pre-tRNAs accumulated in strains in which 5' exonucleases were inhibited, indicating that the 5' cap structures protect pre-tRNAs from 5'-exonucleolytic degradation during maturation.
Collapse
Affiliation(s)
- Takayuki Ohira
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Rijal K, Maraia RJ, Arimbasseri AG. A methods review on use of nonsense suppression to study 3' end formation and other aspects of tRNA biogenesis. Gene 2014; 556:35-50. [PMID: 25447915 DOI: 10.1016/j.gene.2014.11.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 12/26/2022]
Abstract
Suppressor tRNAs bear anticodon mutations that allow them to decode premature stop codons in metabolic marker gene mRNAs, that can be used as in vivo reporters of functional tRNA biogenesis. Here, we review key components of a suppressor tRNA system specific to Schizosaccharomyces pombe and its adaptations for use to study specific steps in tRNA biogenesis. Eukaryotic tRNA biogenesis begins with transcription initiation by RNA polymerase (pol) III. The nascent pre-tRNAs must undergo folding, 5' and 3' processing to remove the leader and trailer, nuclear export, and splicing if applicable, while multiple complex chemical modifications occur throughout the process. We review evidence that precursor-tRNA processing begins with transcription termination at the oligo(T) terminator element, which forms a 3' oligo(U) tract on the nascent RNA, a sequence-specific binding site for the RNA chaperone, La protein. The processing pathway bifurcates depending on a poorly understood property of pol III termination that determines the 3' oligo(U) length and therefore the affinity for La. We thus review the pol III termination process and the factors involved including advances using gene-specific random mutagenesis by dNTP analogs that identify key residues important for transcription termination in certain pol III subunits. The review ends with a 'technical approaches' section that includes a parts lists of suppressor-tRNA alleles, strains and plasmids, and graphic examples of its diverse uses.
Collapse
Affiliation(s)
- Keshab Rijal
- Intramural Research Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Richard J Maraia
- Intramural Research Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| | - Aneeshkumar G Arimbasseri
- Intramural Research Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
4
|
Maraia RJ, Lamichhane TN. 3' processing of eukaryotic precursor tRNAs. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 2:362-75. [PMID: 21572561 DOI: 10.1002/wrna.64] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Biogenesis of eukaryotic tRNAs requires transcription by RNA polymerase III and subsequent processing. 5' processing of precursor tRNA occurs by a single mechanism, cleavage by RNase P, and usually occurs before 3' processing although some conditions allow observation of the 3'-first pathway. 3' processing is relatively complex and is the focus of this review. Precursor RNA 3'-end formation begins with pol III termination generating a variable length 3'-oligo(U) tract that represents an underappreciated and previously unreviewed determinant of processing. Evidence that the pol III-intrinsic 3'exonuclease activity mediated by Rpc11p affects 3'oligo(U) length is reviewed. In addition to multiple 3' nucleases, precursor tRNA(pre-tRNA) processing involves La and Lsm, distinct oligo(U)-binding proteins with proposed chaperone activities. 3' processing is performed by the endonuclease RNase Z or the exonuclease Rex1p (possibly others) along alternate pathways conditional on La. We review a Schizosaccharomyces pombe tRNA reporter system that has been used to distinguish two chaperone activities of La protein to its two conserved RNA binding motifs. Pre-tRNAs with structural impairments are degraded by a nuclear surveillance system that mediates polyadenylation by the TRAMP complex followed by 3'-digestion by the nuclear exosome which appears to compete with 3' processing. We also try to reconcile limited data on pre-tRNA processing and Lsm proteins which largely affect precursors but not mature tRNAs.A pathway is proposed in which 3' oligo(U) length is a primary determinant of La binding with subsequent steps distinguished by 3'-endo versus exo nucleases,chaperone activities, and nuclear surveillance.
Collapse
Affiliation(s)
- Richard J Maraia
- Intramural Research Program, Eunice Kennedy Shriver NationalInstitute of Child Health and Human Development, NationalInstitutes of Health, Bethesda, MD, USA.
| | | |
Collapse
|
5
|
Huang Y, Intine RV, Mozlin A, Hasson S, Maraia RJ. Mutations in the RNA polymerase III subunit Rpc11p that decrease RNA 3' cleavage activity increase 3'-terminal oligo(U) length and La-dependent tRNA processing. Mol Cell Biol 2005; 25:621-36. [PMID: 15632064 PMCID: PMC543423 DOI: 10.1128/mcb.25.2.621-636.2005] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Revised: 10/01/2004] [Accepted: 10/15/2004] [Indexed: 11/20/2022] Open
Abstract
Termination by RNA polymerase III (Pol III) produces RNAs whose 3' oligo(U) termini are bound by La protein, a chaperone that protects RNAs from 3' exonucleases and promotes their maturation. Multiple reports indicate that yeasts use La-dependent and -independent pathways for tRNA maturation, with defective pre-tRNAs being most sensitive to decay and most dependent on La for maturation and function. The Rpc11p subunit of Pol III shows homology with the zinc ribbon of TFIIS and is known to mediate RNA 3' cleavage and to be important for termination. We used a La-dependent opal suppressor, tRNASerUGAM, which suppresses ade6-704 and the accumulation of red pigment, to screen Schizosaccaromyces pombe for rpc11 mutants that increase tRNA-mediated suppression. Analyses of two zinc ribbon mutants indicate that they are deficient in Pol III RNA 3' cleavage activity and produce pre-tRNASerUGAM transcripts with elongated 3'-oligo(U) tracts that are better substrates for La. A substantial fraction of pre-tRNASerUGAM contains too few 3' Us for efficient La binding and appears to decay in wild-type cells but has elongated oligo(U) tracts and matures along the La-dependent pathway in the mutants. The data indicate that Rpc11p limits RNA 3'-U length and that this significantly restricts pre-tRNAs to a La-independent pathway of maturation in fission yeast.
Collapse
Affiliation(s)
- Ying Huang
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, NIH, 31 Center Dr., Room 2A25, Bethesda, MD 20892-2426, USA
| | | | | | | | | |
Collapse
|
6
|
Intine RV, Dundr M, Misteli T, Maraia RJ. Aberrant nuclear trafficking of La protein leads to disordered processing of associated precursor tRNAs. Mol Cell 2002; 9:1113-23. [PMID: 12049746 DOI: 10.1016/s1097-2765(02)00533-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Eukaryotic precursor tRNAs undergo extensive processing prior to nuclear export. The first of multiple factors to interact with pre-tRNAs and other nascent transcripts is the La protein. Using suppressor and wild-type tRNAs, we demonstrate that the normal distribution of cellular end-processed and spliced tRNA species is disordered by La proteins that lack a conserved nuclear retention element. Fission yeast or human La mutants that lack this element enter nuclei and stabilize nascent pre-tRNA but are aberrantly exported and fail to support normal tRNA processing. Instead, anomalous 5' and 3' end-containing, spliced tRNAs accumulate, complexed with the mutant La protein. Thus, appropriate nuclear trafficking by La affects the normal order of pre-tRNA processing.
Collapse
Affiliation(s)
- Robert V Intine
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
7
|
Huang Y, Hamada M, Maraia RJ. Isolation and cloning of four subunits of a fission yeast TFIIIC complex that includes an ortholog of the human regulatory protein TFIIICbeta. J Biol Chem 2000; 275:31480-7. [PMID: 10906331 DOI: 10.1074/jbc.m004635200] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic tRNA genes are controlled by proximal and downstream elements that direct transcription by RNA polymerase (pol) III. Transcription factors (TFs) that reside near the initiation site are related in Saccharomyces cerevisiae and humans, while those that reside at or downstream of the B box share no recognizable sequence relatedness. Human TFIIICbeta is a transcriptional regulator that exhibits no homology to S. cerevisiae sequences on its own. We cloned an essential Schizosaccharomyces pombe gene that encodes a protein, Sfc6p, with homology to the S. cerevisiae TFIIIC subunit, TFC6p, that extends to human TFIIICbeta. We also isolated and cloned S. pombe homologs of three other TFIIIC subunits, Sfc3p, Sfc4p, and Sfc1p, the latter two of which are conserved from S. cerevisiae to humans, while the former shares homology with the S. cerevisiae B box-binding homolog only. Sfc6p is a component of a sequence-specific DNA-binding complex that also contains the B box-binding homolog, Sfc3p. Immunoprecipitation of Sfc3p further revealed that Sfc1p, Sfc3p, Sfc4p, and Sfc6p are associated in vivo and that the isolated Sfc3p complex is active for pol III-mediated transcription of a S. pombe tRNA gene in vitro. These results establish a link between the downstream pol III TFs in yeast and humans.
Collapse
Affiliation(s)
- Y Huang
- Laboratory of Molecular Growth Regulation, NICHD, National Institutes of Health, Bethesda, Maryland 20892-2753, USA
| | | | | |
Collapse
|
8
|
Intine RV, Sakulich AL, Koduru SB, Huang Y, Pierstorff E, Goodier JL, Phan L, Maraia RJ. Control of transfer RNA maturation by phosphorylation of the human La antigen on serine 366. Mol Cell 2000; 6:339-48. [PMID: 10983981 DOI: 10.1016/s1097-2765(00)00034-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Conversion of a nascent precursor tRNA to a mature functional species is a multipartite process that involves the sequential actions of several processing and modifying enzymes. La is the first protein to interact with pre-tRNAs in eukaryotes. An opal suppressor tRNA served as a functional probe to examine the activities of yeast and human (h)La proteins in this process in fission yeast. An RNA recognition motif and Walker motif in the metazoan-specific C-terminal domain (CTD) of hLa maintain pre-tRNA in an unprocessed state by blocking the 5'-processing site, impeding an early step in the pathway. Faithful phosphorylation of hLa on serine 366 reverses this block and promotes tRNA maturation. The results suggest that regulation of tRNA maturation at the level of RNase P cleavage may occur via phosphorylation of serine 366 of hLa.
Collapse
Affiliation(s)
- R V Intine
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Hartmann RK, Krupp G, Hardt WD. Towards a new concept of gene inactivation: specific RNA cleavage by endogenous ribonuclease P. BIOTECHNOLOGY ANNUAL REVIEW 1998; 1:215-65. [PMID: 9704090 DOI: 10.1016/s1387-2656(08)70053-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In the first part of this chapter, general concepts for gene inactivation, antisense techniques and catalytic RNAs (ribozymes) are presented. The requirements for modified oligonucleotides are discussed with their effects on the stability of base-paired hybrids and on resistance against nuclease attack. This also includes the problems in the choice of an optimal target sequence within the inactivated RNA and the options of cellular delivery systems. The second part describes the recently introduced antisense concept based on the ubiquitous cellular enzyme ribonuclease P. This system is unique, since the substrate recognition requires the proper tertiary structure of the cleaved RNA. General properties and possible advantages of this approach are discussed.
Collapse
Affiliation(s)
- R K Hartmann
- Institut für Biochemie, Freie Universität Berlin, Germany
| | | | | |
Collapse
|
10
|
Abstract
Mature tRNAs are remarkably similar in all cells. However, the primary transcripts from tRNA genes can vary considerably due to differences in gene organization. RNase P must be able to recognize the elements that are common to all tRNA precursors to accurately remove the 5'-leader sequences.
Collapse
Affiliation(s)
- C J Green
- SRI International, Menlo Park, CA, USA
| |
Collapse
|
11
|
Chamberlain JR, Tranguch AJ, Pagán-Ramos E, Engelke DR. Eukaryotic nuclear RNase P: structures and functions. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1996; 55:87-119. [PMID: 8787607 DOI: 10.1016/s0079-6603(08)60190-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- J R Chamberlain
- Program in Cellular and Molecular Biology, The University of Michigan Medical School, Ann Arbor 48109, USA
| | | | | | | |
Collapse
|
12
|
Surratt CK, Carter BJ, Payne RC, Hecht SM. Metal ion and substrate structure dependence of the processing of tRNA precursors by RNase P and M1 RNA. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)45735-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
13
|
|
14
|
Abstract
S. cerevisae tRNA introns interrupt the gene at a constant position in the anticodon loop. Pre-tRNAs are matured by an endonuclease and a ligase. The endonuclease alone can accurately release the intron from the pre-tRNA. Here, we investigate the mechanism of splice site selection by the endonuclease. We propose that it initially recognizes features in the mature domain common to all tRNAs. Once positioned on the enzyme, the splice sites are recognizable because they are a fixed distance from the mature domain. To test this hypothesis, we developed a system for synthesizing pre-tRNA by bacteriophage T7 RNA polymerase. To search for recognition sites, we made several mutations. Mutations of C56 and U8 strongly affect endonuclease recognition of pre-tRNA. With insertion and deletion mutations, we show that the anticodon stem determines splicing specificity. The sequence and structure of the intron are not strong determinants of splice site selection.
Collapse
Affiliation(s)
- V M Reyes
- Division of Chemistry, California Institute of Technology, Pasadena 91125
| | | |
Collapse
|
15
|
|
16
|
|
17
|
Abstract
M1 RNA, the catalytic RNA subunit of Escherichia coli ribonuclease P, can cleave novel transfer RNA (tRNA) precursors that lack specific domains of the normal tRNA sequence. The smallest tRNA precursor that was cleaved efficiently retained only the domain of the amino acid acceptor stem and the T stem and loop. The importance of the 3' terminal CCA nucleotide residues in the processing of both novel and normal tRNA precursors implies that the same enzymatic function of M1 RNA is involved.
Collapse
Affiliation(s)
- W H McClain
- Department of Bacteriology, University of Wisconsin, Madison 53706
| | | | | |
Collapse
|