1
|
Svidritskiy E, Demo G, Korostelev AA. Mechanism of premature translation termination on a sense codon. J Biol Chem 2018; 293:12472-12479. [PMID: 29941456 DOI: 10.1074/jbc.aw118.003232] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Accurate translation termination by release factors (RFs) is critical for the integrity of cellular proteomes. Premature termination on sense codons, for example, results in truncated proteins, whose accumulation could be detrimental to the cell. Nevertheless, some sense codons are prone to triggering premature termination, but the structural basis for this is unclear. To investigate premature termination, we determined a cryo-EM structure of the Escherichia coli 70S ribosome bound with RF1 in response to a UAU (Tyr) sense codon. The structure reveals that RF1 recognizes a UAU codon similarly to a UAG stop codon, suggesting that sense codons induce premature termination because they structurally mimic a stop codon. Hydrophobic interaction between the nucleobase of U3 (the third position of the UAU codon) and conserved Ile-196 in RF1 is important for misreading the UAU codon. Analyses of RNA binding in ribonucleoprotein complexes or by amino acids reveal that Ile-U packing is a frequent protein-RNA-binding motif with key functional implications. We discuss parallels with eukaryotic translation termination by the release factor eRF1.
Collapse
Affiliation(s)
- Egor Svidritskiy
- From the RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Gabriel Demo
- From the RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Andrei A Korostelev
- From the RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| |
Collapse
|
2
|
Mitroshin IV, Garber MB, Gabdulkhakov AG. Investigation of Structure of the Ribosomal L12/P Stalk. BIOCHEMISTRY (MOSCOW) 2017; 81:1589-1601. [PMID: 28260486 DOI: 10.1134/s0006297916130022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review contains recent data on the structure of the functionally important ribosomal domain, L12/P stalk, of the large ribosomal subunit. It is the most mobile site of the ribosome; it has been found in ribosomes of all living cells, and it is involved in the interaction between ribosomes and translation factors. The difference between the structures of the ribosomal proteins forming this protuberance (despite their general resemblance) determines the specificity of interaction between eukaryotic and prokaryotic ribosomes and the respective protein factors of translation. In this review, works on the structures of ribosomal proteins forming the L12/P-stalk in bacteria, archaea, and eukaryotes and data on structural aspects of interactions between these proteins and rRNA are described in detail.
Collapse
Affiliation(s)
- I V Mitroshin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | | | |
Collapse
|
3
|
Mitroshin I, Garber M, Gabdulkhakov A. Crystallographic analysis of archaeal ribosomal protein L11. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2015; 71:1083-7. [PMID: 26249704 DOI: 10.1107/s2053230x15011395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 06/12/2015] [Indexed: 11/10/2022]
Abstract
Ribosomal protein L11 is an important part of the GTPase-associated centre in ribosomes of all organisms. L11 is a highly conserved two-domain ribosomal protein. The C-terminal domain of L11 is an RNA-binding domain that binds to a fragment of 23S rRNA and stabilizes its structure. The complex between L11 and 23S rRNA is involved in the GTPase activity of the translation elongation and release factors. Bacterial and archaeal L11-rRNA complexes are targets for peptide antibiotics of the thiazole class. To date, there is no complete structure of archaeal L11 owing to the mobility of the N-terminal domain of the protein. Here, the crystallization and X-ray analysis of the ribosomal protein L11 from Methanococcus jannaschii are reported. Crystals of the native protein and its selenomethionine derivative belonged to the orthorhombic space group I222 and were suitable for structural studies. Native and single-wavelength anomalous dispersion data sets have been collected and determination of the structure is in progress.
Collapse
Affiliation(s)
- Ivan Mitroshin
- Laboratory for Structural Studies of the Translation Apparatus, Institute of Protein Research, Russian Academy of Sciences, Institutskaya 4, 142290 Pushchino, Moscow Region, Russian Federation
| | - Maria Garber
- Laboratory for Structural Studies of the Translation Apparatus, Institute of Protein Research, Russian Academy of Sciences, Institutskaya 4, 142290 Pushchino, Moscow Region, Russian Federation
| | - Azat Gabdulkhakov
- Laboratory for Structural Studies of the Translation Apparatus, Institute of Protein Research, Russian Academy of Sciences, Institutskaya 4, 142290 Pushchino, Moscow Region, Russian Federation
| |
Collapse
|
4
|
Poole ES, Young DJ, Askarian-Amiri ME, Scarlett DJG, Tate WP. Accommodating the bacterial decoding release factor as an alien protein among the RNAs at the active site of the ribosome. Cell Res 2007; 17:591-607. [PMID: 17621307 DOI: 10.1038/cr.2007.56] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The decoding release factor (RF) triggers termination of protein synthesis by functionally mimicking a tRNA to span the decoding centre and the peptidyl transferase centre (PTC) of the ribosome. Structurally, it must fit into a site crafted for a tRNA and surrounded by five other RNAs, namely the adjacent peptidyl tRNA carrying the completed polypeptide, the mRNA and the three rRNAs. This is achieved by extending a structural domain from the body of the protein that results in a critical conformational change allowing it to contact the PTC. A structural model of the bacterial termination complex with the accommodated RF shows that it makes close contact with the first, second and third bases of the stop codon in the mRNA with two separate loops of structure: the anticodon loop and the loop at the tip of helix alpha5. The anticodon loop also makes contact with the base following the stop codon that is known to strongly influence termination efficiency. It confirms the close contact of domain 3 of the protein with the key RNA structures of the PTC. The mRNA signal for termination includes sequences upstream as well as downstream of the stop codon, and this may reflect structural restrictions for specific combinations of tRNA and RF to be bound onto the ribosome together. An unbiased SELEX approach has been investigated as a tool to identify potential rRNA-binding contacts of the bacterial RF in its different binding conformations within the active centre of the ribosome.
Collapse
Affiliation(s)
- Elizabeth S Poole
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | | | | | | | |
Collapse
|
5
|
Jonker HRA, Ilin S, Grimm SK, Wöhnert J, Schwalbe H. L11 domain rearrangement upon binding to RNA and thiostrepton studied by NMR spectroscopy. Nucleic Acids Res 2006; 35:441-54. [PMID: 17169991 PMCID: PMC1802607 DOI: 10.1093/nar/gkl1066] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Ribosomal proteins are assumed to stabilize specific RNA structures and promote compact folding of the large rRNA. The conformational dynamics of the protein between the bound and unbound state play an important role in the binding process. We have studied those dynamical changes in detail for the highly conserved complex between the ribosomal protein L11 and the GTPase region of 23S rRNA. The RNA domain is compactly folded into a well defined tertiary structure, which is further stabilized by the association with the C-terminal domain of the L11 protein (L11ctd). In addition, the N-terminal domain of L11 (L11ntd) is implicated in the binding of the natural thiazole antibiotic thiostrepton, which disrupts the elongation factor function. We have studied the conformation of the ribosomal protein and its dynamics by NMR in the unbound state, the RNA bound state and in the ternary complex with the RNA and thiostrepton. Our data reveal a rearrangement of the L11ntd, placing it closer to the RNA after binding of thiostrepton, which may prevent binding of elongation factors. We propose a model for the ternary L11–RNA–thiostrepton complex that is additionally based on interaction data and conformational information of the L11 protein. The model is consistent with earlier findings and provides an explanation for the role of L11ntd in elongation factor binding.
Collapse
Affiliation(s)
- Hendrik R. A. Jonker
- Johann Wolfgang Goethe-University, Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic ResonanceMax-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany
| | - Serge Ilin
- Johann Wolfgang Goethe-University, Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic ResonanceMax-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany
| | - S. Kaspar Grimm
- Johann Wolfgang Goethe-University, Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic ResonanceMax-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany
- University of Texas Health Science Center SA, Department of Biochemistry7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Jens Wöhnert
- Johann Wolfgang Goethe-University, Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic ResonanceMax-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany
- University of Texas Health Science Center SA, Department of Biochemistry7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Harald Schwalbe
- Johann Wolfgang Goethe-University, Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic ResonanceMax-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany
- To whom correspondence should be addressed. Tel: +69 7982 9737; Fax: +69 7982 9515;
| |
Collapse
|
6
|
Jenvert RM, Schiavone LH. The flexible N-terminal domain of ribosomal protein L11 from Escherichia coli is necessary for the activation of stringent factor. J Mol Biol 2006; 365:764-72. [PMID: 17095013 DOI: 10.1016/j.jmb.2006.10.065] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Revised: 10/09/2006] [Accepted: 10/19/2006] [Indexed: 11/18/2022]
Abstract
The stringent response is activated by the binding of stringent factor to stalled ribosomes that have an unacylated tRNA in the ribosomal aminoacyl-site. Ribosomes lacking ribosomal protein L11 are deficient in stimulating stringent factor. L11 consists of a dynamic N-terminal domain (amino acid residues 1-72) connected to an RNA-binding C-terminal domain (amino acid residues 76-142) by a flexible linker (amino acid residues 73-75). In vivo data show that mutation of proline 22 in the N-terminal domain is important for initiation of the stringent response. Here, six different L11 point and deletion-mutants have been constructed to determine which regions of L11 are necessary for the activation of stringent factor. The different mutants were reconstituted with programmed 70 S(DeltaL11) ribosomes and tested for their ability to stimulate stringent factor in a sensitive in vitro pppGpp synthesis assay. It was found that a single-site mutation at proline 74 in the linker region between the two domains did not affect the stimulatory activity of the reconstituted ribosomes, whereas the single-site mutation at proline 22 reduced the activity of SF to 33% compared to ribosomes reconstituted with wild-type L11. Removal of the entire linker between the N and C-terminal domains or removal of the entire proline-rich helix beginning at proline 22 in L11 resulted in an L11 protein, which was unable to stimulate stringent factor in the ribosome-dependent assay. Surprisingly, the N-terminal domain of L11 on its own activated stringent factor in a ribosome-dependent manner without restoring the L11 footprint in 23 S rRNA in the 50 S subunit. This suggests that the N-terminal domain can activate stringent factor in trans. It is also shown that this activation is dependent on unacylated tRNA.
Collapse
|
7
|
Sato H, Ito K, Nakamura Y. Ribosomal protein L11 mutations in two functional domains equally affect release factors 1 and 2 activity. Mol Microbiol 2006; 60:108-20. [PMID: 16556224 DOI: 10.1111/j.1365-2958.2006.05094.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Bacterial release factors (RFs) 1 and 2 catalyse translation termination at UAG/UAA and UGA/UAA stop codons respectively. It has been shown that limiting the amount of ribosomal protein L11 affects translation termination at UAG and UGA differently. To understand the functional interplay between L11 and RF1/RF2, we isolated 21 distinct mutations in L11 as suppressors of either temperature-sensitive (ts) RF1/RF2 strains or read-through mutants of lacZ nonsense (UAG or UGA) strains. 10 of 21 mutants restored ts lethal growth of RF1 and/or RF2 strains. All the selected L11 mutants, including the RF1ts- and RF2ts-specific suppressors, had the same effect, either enhancing or reducing, on UAG and UGA termination efficiency in vivo. The specific properties of the selected L11 mutations remained unchanged in an RF3 deletion strain. Moreover, ribosomes absent of L11 had equally reduced activity for both RF1- and RF2-mediated peptide release in vitro. These results suggest that, unlike the previous notion, L11 has a common, cooperative role with RF1 and RF2. These L11 mutations were located on the surface of two domains of L11, and interpreted to affect the interaction between L11 and rRNA or the RFs thereby leading to the altered translation termination.
Collapse
Affiliation(s)
- Hanae Sato
- Department of Basic Medical Sciences, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | |
Collapse
|
8
|
Rawat U, Gao H, Zavialov A, Gursky R, Ehrenberg M, Frank J. Interactions of the release factor RF1 with the ribosome as revealed by cryo-EM. J Mol Biol 2006; 357:1144-53. [PMID: 16476444 DOI: 10.1016/j.jmb.2006.01.038] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Revised: 01/10/2006] [Accepted: 01/11/2006] [Indexed: 10/25/2022]
Abstract
In eubacteria, termination of translation is signaled by any one of the stop codons UAA, UAG, and UGA moving into the ribosomal A site. Two release factors, RF1 and RF2, recognize and bind to the stop codons with different affinities and trigger the hydrolysis of the ester bond that links the polypeptide with the P-site tRNA. Cryo-electron microscopy (cryo-EM) results obtained in this study show that ribosome-bound RF1 is in an open conformation, unlike the closed conformation observed in the crystal structure of the free factor, allowing its simultaneous access to both the decoding center and the peptidyl-transferase center. These results are similar to those obtained for RF2, but there is an important difference in how the factors bind to protein L11, which forms part of the GTPase-associated center of the large ribosomal subunit. The difference in the binding position, C-terminal domain for RF2 versus N-terminal domain for RF1, explains a body of L11 mutation studies that revealed differential effects on the activity of the two factors. Very recent data obtained with small-angle X-ray scattering now reveal that the solution structure of RF1 is open, as here seen on the ribosome by cryo-EM, and not closed, as seen in the crystal.
Collapse
Affiliation(s)
- Urmila Rawat
- Howard Hughes Medical Institute, University of Michigan School of Medicine, 1150 West Medical Ctr. Drive, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
9
|
Ilin S, Hoskins A, Ohlenschläger O, Jonker HRA, Schwalbe H, Wöhnert J. Domain reorientation and induced fit upon RNA binding: solution structure and dynamics of ribosomal protein L11 from Thermotoga maritima. Chembiochem 2006; 6:1611-8. [PMID: 16094695 DOI: 10.1002/cbic.200500091] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
L11, a protein of the large ribosomal subunit, binds to a highly conserved domain of 23S rRNA and mediates ribosomal GTPase activity. Its C-terminal domain is the main determinant for rRNA binding, whereas its N-terminal domain plays only a limited role in RNA binding. The N-terminal domain is thought to be involved in interactions with elongation and release factors as well as with the antibiotics thiostrepton and micrococcin. This report presents the NMR solution structure of the full-length L11 protein from the thermophilic eubacterium Thermotoga maritima in its free form. The structure is based on a large number of orientational restraints derived from residual dipolar couplings in addition to conventional NOE-based restraints. The solution structure of L11 demonstrates that, in contrast to many other multidomain RNA-binding proteins, the relative orientation of the two domains is well defined. This is shown both by heteronuclear 15N-relaxation and residual dipolar-coupling data. Comparison of this NMR structure with the X-ray structure of RNA-bound L11, reveals that binding not only induces a rigidification of a flexible loop in the C-terminal domain, but also a sizeable reorientation of the N-terminal domain. The domain orientation in free L11 shows limited similarity to that of ribosome-bound L11 in complex with elongation factor, EF-G.
Collapse
Affiliation(s)
- Sergey Ilin
- Institute of Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe Universität, Marie-Curie-Strasse 11, 60439 Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
10
|
Bouakaz L, Bouakaz E, Murgola EJ, Ehrenberg M, Sanyal S. The role of ribosomal protein L11 in class I release factor-mediated translation termination and translational accuracy. J Biol Chem 2005; 281:4548-56. [PMID: 16371360 DOI: 10.1074/jbc.m510433200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It has been suggested from in vivo and cryoelectron micrographic studies that the large ribosomal subunit protein L11 and its N-terminal domain play an important role in peptide release by, in particular, the class I release factor RF1. In this work, we have studied in vitro the role of L11 in translation termination with ribosomes from a wild type strain (WT-L11), an L11 knocked-out strain (DeltaL11), and an L11 N terminus truncated strain (Cter-L11). Our data show 4-6-fold reductions in termination efficiency (k(cat)/K(m)) of RF1, but not of RF2, on DeltaL11 and Cter-L11 ribosomes compared with wild type. There is, at the same time, no effect of these L11 alterations on the maximal rate of ester bond cleavage by either RF1 or RF2. The rates of dissociation of RF2 but not of RF1 from the ribosome after peptide release are somewhat reduced by the L11 changes irrespective of the presence of RF3, and they cause a 2-fold decrease in the missense error. Our results suggest that the L11 modifications increase nonsense suppression at UAG codons because of the reduced termination efficiency of RF1 and that they decrease nonsense suppression at UGA codons because of a decreased missense error level.
Collapse
Affiliation(s)
- Lamine Bouakaz
- Institute of Cell and Molecular Biology, Uppsala University, Sweden
| | | | | | | | | |
Collapse
|
11
|
Abstract
It was first suggested that the ribosome is associated with protein synthesis in the 1950s. Initially, its components were revealed as surface-accessible proteins and as molecules of RNA apparently providing a scaffold for subunit shape. Attributing function to the proteins proved difficult, although bacterial protein L11 proved essential for binding one of the decoding protein release factors (RFs). With the discovery that RNA could be a catalyst, interest focussed on the rRNA that, in partnership with mRNA and tRNAs, could potentially mediate the chemical reaction underlying protein synthesis. rRNA interactions and conformational changes were invoked as key elements that facilitated function. The decoding RFs, which are proteins, are exceptions to this rule because they usurp a tRNA function in mediating stop signal recognition. Cryoelectron microscopy and associated image reconstruction technology have now given dramatic snapshots of almost every step of protein synthesis, and X-ray crystallography has revealed, at last, the subunits and monomeric ribosome in exquisite atomic detail.
Collapse
Affiliation(s)
- Warren P Tate
- Department of Biochemistry, University of Otago, Dunedin, New Zealand.
| | | |
Collapse
|
12
|
Scarlett DJG, McCaughan KK, Wilson DN, Tate WP. Mapping functionally important motifs SPF and GGQ of the decoding release factor RF2 to the Escherichia coli ribosome by hydroxyl radical footprinting. Implications for macromolecular mimicry and structural changes in RF2. J Biol Chem 2003; 278:15095-104. [PMID: 12458201 DOI: 10.1074/jbc.m211024200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The function of the decoding release factor (RF) in translation termination is to couple cognate recognition of the stop codon in the mRNA with hydrolysis of the completed polypeptide from its covalently linked tRNA. For this to occur, the RF must interact with specific A-site components of the active centers within both the small and large ribosomal subunits. In this work, we have used directed hydroxyl radical footprinting to map the ribosomal binding site of the Escherichia coli class I release factor RF2, during translation termination. In the presence of the cognate UGA stop codon, residues flanking the universally conserved (250)GGQ(252) motif of RF2 were each shown to footprint to the large ribosomal subunit, specifically to conserved elements of the peptidyltransferase and GTPase-associated centers. In contrast, residues that flank the putative "peptide anticodon" of RF2, (205)SPF(207), were shown to make a footprint in the small ribosomal subunit at positions within well characterized 16 S rRNA motifs in the vicinity of the decoding center. Within the recently solved crystal structure of E. coli RF2, the GGQ and SPF motifs are separated by 23 A only, a distance that is incompatible with the observed cleavage sites that are up to 100 A apart. Our data suggest that RF2 may undergo gross conformational changes upon ribosome binding, the implications of which are discussed in terms of the mechanism of RF-mediated termination.
Collapse
Affiliation(s)
- Debbie-Jane G Scarlett
- Department of Biochemistry and Centre for Gene Research, University of Otago, P. O. Box 56, Dunedin, New Zealand
| | | | | | | |
Collapse
|
13
|
Rawat UBS, Zavialov AV, Sengupta J, Valle M, Grassucci RA, Linde J, Vestergaard B, Ehrenberg M, Frank J. A cryo-electron microscopic study of ribosome-bound termination factor RF2. Nature 2003; 421:87-90. [PMID: 12511960 DOI: 10.1038/nature01224] [Citation(s) in RCA: 206] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2002] [Accepted: 10/04/2002] [Indexed: 11/09/2022]
Abstract
Protein synthesis takes place on the ribosome, where genetic information carried by messenger RNA is translated into a sequence of amino acids. This process is terminated when a stop codon moves into the ribosomal decoding centre (DC) and is recognized by a class-1 release factor (RF). RFs have a conserved GGQ amino-acid motif, which is crucial for peptide release and is believed to interact directly with the peptidyl-transferase centre (PTC) of the 50S ribosomal subunit. Another conserved motif of RFs (SPF in RF2) has been proposed to interact directly with stop codons in the DC of the 30S subunit. The distance between the DC and PTC is approximately 73 A. However, in the X-ray structure of RF2, SPF and GGQ are only 23 A apart, indicating that they cannot be at DC and PTC simultaneously. Here we show that RF2 is in an open conformation when bound to the ribosome, allowing GGQ to reach the PTC while still allowing SPF-stop-codon interaction. The results indicate new interpretations of accuracy in termination, and have implications for how the presence of a stop codon in the DC is signalled to PTC.
Collapse
Affiliation(s)
- Urmila B S Rawat
- Howard Hughes Medical Institute, Health Research, Inc., Empire State Plaza, Albany NY 12201-0509, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Poole ES, Askarian-Amiri ME, Major LL, McCaughan KK, Scarlett DJG, Wilson DN, Tate WP. Molecular Mimicry in the Decoding of Translational Stop Signals. ACTA ACUST UNITED AC 2003; 74:83-121. [PMID: 14510074 DOI: 10.1016/s0079-6603(03)01011-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
Abstract
Molecular mimicry was a concept that was revived as we understood more about the ligands that bound to the active center of the ribosome, and the characteristics of the active center itself. It has been particularly useful for the termination phase of protein synthesis, because for many years this major process seemed not only to be out of step) with the initiation and elongation phases but also there were no common features of the process between eubacteria and eukaryotes. As the facts that supported molecular mimicry emerged, it was seen that the protein factors that facilitated polypeptide chain release when the decoding of an mRNA was complete had common features with the ligands involved in the other phases. Moreover, now common features and mechanisms began to emerge between the eubacterial and eukaryotic RFs and suddenly there seemed to be remarkable synergy between the external ligands and commonality in at least some features of the mechanistic prnciples. Almost 10 years after molecular mimicry took hold as a framework concept, we can now see that this idea is probably too simple. For example, structural mimicry can be apparent if there are extensive conformational changes either in the ribosome active center or in the ligand itself or, most likely, both. Early indications are that the bacterial RF may indeed undergo extensive conformational changes from its solution structure to achieve this accommodation. Thus, as important if not more important than structural and functional mimicry among the ligands, might be their accomodation of a common single active center made up of at least three parts to carry out a complex series of reactions. One part of the ribosomal active center is committed to decoding, a second is committed to the chemistry of putting the protein together and releasing it, and a third part, perhaps residing in the subdomains, is committed to binding ligands so that they can perform their respective single or multiple functions. It might be more accurate to regard the decoding RF as the cuckoo taking over the nest that was crafted and honed through evolution by another, the tRNA. A somewhat ungainly RF, perhaps bigger in dimensions than the tRNA, is able, nevertheless, like the cuckoo, to maneuvre into the nest. Perhaps it pushes the nest a little out of shape, but is still able to use the site for its own functions of stop signal decoding and for facilitating the release of the polypeptide. The term molecular mimicry has been dominant in the literature for a period of important advances in the understanding of protein synthesis. When the first structures of the ribosome appeared, the concept survived and was seen to be valid still. Now, we are at the stage of understanding the more detailed molecular interactions between ligands and the rRNA in particular, and how subtle changes in localized spatial orientations of atoms occur within these interactions. The simplicity of the original concept of mimicry will inevitably be blurred by this more detailed analysis. Nevertheless, it has provided a significant set of principles that allowed development of experimental programs to enhance our understanding of the dynamic events at this remarkable active site at the interface between the two subunits of this fascinating cell organelle, the ribosome.
Collapse
Affiliation(s)
- Elizabeth S Poole
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | | | | | | | | | | | |
Collapse
|
15
|
Agrawal RK, Linde J, Sengupta J, Nierhaus KH, Frank J. Localization of L11 protein on the ribosome and elucidation of its involvement in EF-G-dependent translocation. J Mol Biol 2001; 311:777-87. [PMID: 11518530 DOI: 10.1006/jmbi.2001.4907] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
L11 protein is located at the base of the L7/L12 stalk of the 50 S subunit of the Escherichia coli ribosome. Because of the flexible nature of the region, recent X-ray crystallographic studies of the 50 S subunit failed to locate the N-terminal domain of the protein. We have determined the position of the complete L11 protein by comparing a three-dimensional cryo-EM reconstruction of the 70 S ribosome, isolated from a mutant lacking ribosomal protein L11, with the three-dimensional map of the wild-type ribosome. Fitting of the X-ray coordinates of L11-23 S RNA complex and EF-G into the cryo-EM maps combined with molecular modeling, reveals that, following EF-G-dependent GTP hydrolysis, domain V of EF-G intrudes into the cleft between the 23 S ribosomal RNA and the N-terminal domain of L11 (where the antibiotic thiostrepton binds), causing the N-terminal domain to move and thereby inducing the formation of the arc-like connection with the G' domain of EF-G. The results provide a new insight into the mechanism of EF-G-dependent translocation.
Collapse
Affiliation(s)
- R K Agrawal
- Wadsworth Center, Empire State Plaza, Albany, NY 12201-0509, USA.
| | | | | | | | | |
Collapse
|
16
|
Poole E, Tate W. Release factors and their role as decoding proteins: specificity and fidelity for termination of protein synthesis. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1493:1-11. [PMID: 10978500 DOI: 10.1016/s0167-4781(00)00162-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The decoding of stop signals in mRNA requires protein release factors. Two classes of factor are found in both prokaryotes and eukaryotes, a decoding factor and a stimulatory recycling factor. These factors form complexes at the active centre of the ribosome and mimic in overall shape the complexes found at other stages of protein synthesis. The decoding release factor is shaped like a tRNA and has a domain for codon recognition at the decoding site of the ribosome, and a domain for peptidyl-tRNA hydrolysis that is inferred to be near the peptidyltransferase centre. Initial interaction of the decoding factor with the ribosome is a low fidelity event involving multiple contacts with the ribosomal components. A subsequent discrimination step, at present poorly defined, ensures high fidelity of codon recognition.
Collapse
Affiliation(s)
- E Poole
- Department of Biochemistry and the Centre for Gene Research, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | | |
Collapse
|
17
|
Arkov AL, Freistroffer DV, Pavlov MY, Ehrenberg M, Murgola EJ. Mutations in conserved regions of ribosomal RNAs decrease the productive association of peptide-chain release factors with the ribosome during translation termination. Biochimie 2000; 82:671-82. [PMID: 11018283 DOI: 10.1016/s0300-9084(00)01162-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Early studies provided evidence that peptide-chain release factors (RFs) bind to both ribosomal subunits and trigger translation termination. Although many ribosomal proteins have been implicated in termination, very few data present direct biochemical evidence for the involvement of rRNA. Particularly absent is direct evidence for a role of a large subunit rRNA in RF binding. Previously we demonstrated in vitro that mutations in Escherichia coli rRNAs, known to cause nonsense codon readthrough in vivo, reduce the efficiency of RF2-driven catalysis of peptidyl-tRNA hydrolysis. This reduction was consistent with the idea that in vivo defective termination at the mutant ribosomes contributes to the readthrough. Nevertheless, other explanations were also possible, because still missing was essential biochemical evidence for that idea, namely, decrease in productive association of RFs with the mutant ribosomes. Here we present such evidence using a new realistic in vitro termination assay. This study directly supports in vivo involvement in termination of conserved rRNA regions that also participate in other translational events. Furthermore, this study provides the first strong evidence for involvement of large subunit rRNA in RF binding, indicating that the same rRNA region interacts with factors that determine both elongation and termination of translation.
Collapse
Affiliation(s)
- A L Arkov
- Department of Molecular Genetics (Box 11), The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, TX 77030, Houston, USA
| | | | | | | | | |
Collapse
|
18
|
Hinck AP, Markus MA, Huang S, Grzesiek S, Kustonovich I, Draper DE, Torchia DA. The RNA binding domain of ribosomal protein L11: three-dimensional structure of the RNA-bound form of the protein and its interaction with 23 S rRNA. J Mol Biol 1997; 274:101-13. [PMID: 9398519 DOI: 10.1006/jmbi.1997.1379] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The three-dimensional solution structure has been determined by NMR spectroscopy of the 75 residue C-terminal domain of ribosomal protein L11 (L11-C76) in its RNA-bound state. L11-C76 recognizes and binds tightly to a highly conserved 58 nucleotide domain of 23 S ribosomal RNA, whose secondary structure consists of three helical stems and a central junction loop. The NMR data reveal that the conserved structural core of the protein, which consists of a bundle of three alpha-helices and a two-stranded parallel beta-sheet four residues in length, is nearly the same as the solution structure determined for the non-liganded form of the protein. There are however, substantial chemical shift perturbations which accompany RNA binding, the largest of which map onto an extended loop which bridges the C-terminal end of alpha-helix 1 and the first strand of parallel beta-sheet. Substantial shift perturbations are also observed in the N-terminal end of alpha-helix 1, the intervening loop that bridges helices 2 and 3, and alpha-helix 3. The four contact regions identified by the shift perturbation data also displayed protein-RNA NOEs, as identified by isotope-filtered three-dimensional NOE spectroscopy. The shift perturbation and NOE data not only implicate helix 3 as playing an important role in RNA binding, but also indicate that regions flanking helix 3 are involved as well. Loop 1 is of particular interest as it was found to be flexible and disordered for L11-C76 free in solution, but not in the RNA-bound form of the protein, where it appears rigid and adopts a specific conformation as a result of its direct contact to RNA.
Collapse
Affiliation(s)
- A P Hinck
- National Institute of Dental Research, Bethesda, MD 20892-4326, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Tate WP, Dalphin ME, Pel HJ, Mannering SA. The stop signal controls the efficiency of release factor-mediated translational termination. GENETIC ENGINEERING 1996; 18:157-82. [PMID: 8785120 DOI: 10.1007/978-1-4899-1766-9_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- W P Tate
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | | | | | |
Collapse
|
20
|
Vanet A, Plumbridge JA, Guérin MF, Alix JH. Ribosomal protein methylation in Escherichia coli: the gene prmA, encoding the ribosomal protein L11 methyltransferase, is dispensable. Mol Microbiol 1994; 14:947-58. [PMID: 7715456 DOI: 10.1111/j.1365-2958.1994.tb01330.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The prmA gene, located at 72 min on the Escherichia coli chromosome, is the genetic determinant of ribosomal protein L11-methyltransferase activity. Mutations at this locus, prmA1 and prmA3, result in a severely undermethylated form of L11. No effect, other than the lack of methyl groups on L11, has been ascribed to these mutations. DNA sequence analysis of the mutant alleles prmA1 and prmA3 detected point mutations near the C-terminus of the protein and plasmids overproducing the wild-type and the two mutant proteins have been constructed. The wild-type PrmA protein could be crosslinked to its radiolabelled substrate, S-adenosyl-L-methionine (SAM), by u.v. irradiation indicating that it is the gene for the methyltransferase rather than a regulatory protein. One of the mutant proteins, PrmA3, was also weakly crosslinked to SAM. Both mutant enzymes when expressed from the overproducing plasmids were capable of catalysing the incorporation of 3H-labelled methyl groups from SAM to L11 in vitro. This confirmed the observation that the mutant proteins possess significant residual activity which could account for their lack of growth phenotype. However, a strain carrying an in vitro-constructed null mutation of the prmA gene, transferred to the E. coli chromosome by homologous recombination, was perfectly viable.
Collapse
Affiliation(s)
- A Vanet
- Institut de Biologie Physico-Chimique, URA1139 CNRS, Paris, France
| | | | | | | |
Collapse
|
21
|
A single proteolytic cleavage in release factor 2 stabilizes ribosome binding and abolishes peptidyl-tRNA hydrolysis activity. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32252-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
22
|
Vanet A, Plumbridge JA, Alix JH. Cotranscription of two genes necessary for ribosomal protein L11 methylation (prmA) and pantothenate transport (panF) in Escherichia coli K-12. J Bacteriol 1993; 175:7178-88. [PMID: 8226664 PMCID: PMC206859 DOI: 10.1128/jb.175.22.7178-7188.1993] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Genetic complementation and enzyme assays have shown that the DNA region between panF, which encodes pantothenate permease, and orf1, the first gene of the fis operon, encodes prmA, the genetic determinant for the ribosomal protein L11 methyltransferase. Sequencing of this region identified one long open reading frame that encodes a protein of 31,830 Da and corresponds to the prmA gene. We found, both in vivo and in vitro, that prmA is expressed from promoters located upstream of panF and thus that the panF and prmA genes constitute a bifunctional operon. We located the major 3' end of prmA transcripts 90 nucleotides downstream of the stop codon of prmA in the DNA region upstream of the fis operon, a region implicated in the control of the expression of the fis operon. Although no promoter activity was detected immediately upstream of prmA, S1 mapping detected 5' ends of mRNA in this region, implying that some mRNA processing occurs within the bicistronic panF-prmA mRNA.
Collapse
Affiliation(s)
- A Vanet
- Institut de Biologie Physico-Chimique, (URA 1139), Centre National de la Recherche Scientifique, Paris, France
| | | | | |
Collapse
|
23
|
Moffat JG, Timms KM, Trotman CN, Tate WP. Interaction of the release factors with the Escherichia coli ribosome: structurally and functionally-important domains. Biochimie 1991; 73:1113-20. [PMID: 1742355 DOI: 10.1016/0300-9084(91)90154-s] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
There are two major domains of interaction between the Escherichia coli release factors (RF-1 and RF-2) and each subunit of the ribosome. RF-2 has a binding domain on the shoulder and lower head region of the small subunit at the small lobe distant from the decoding site. This is in close proximity to one of the domains on the large subunit which includes the body dimer of L7/L12 and L11. The other domains of interaction, at the decoding site on the small subunit, and at the peptidyltransferase centre of the large subunit of the ribosome, are some distance from the first two, although the evidence for direct contact with the ribosome is less comprehensive. The release factors may therefore have two distinct structural domains, and in support of this concept RF-1 and RF-2 can both be cleaved into two fragments by papain. Region-specific antibodies, and antibodies against defined peptide within the RF sequences have given an indication that a significant part of an interacting RF molecule is in close proximity to the ribosome surface, confirming an observation by immunoelectron microscopy which suggested that the RF penetrates deeply into the cleft between the two subunits. A region of highly conserved primary sequence between the two release factors from E coli is also conserved in those from B subtilis suggesting it forms an important structural or functional domain. Antibodies against peptides from the N-terminal end of this region strongly inhibit binding of the RF to the ribosome.
Collapse
Affiliation(s)
- J G Moffat
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | | | | | |
Collapse
|
24
|
Abstract
We have isolated and characterized mutants which lack one or two of sixteen of the proteins of the Escherichia coli ribosome. The mutation responsible in each case mapped close to, and probably in, the corresponding gene. A conditional lethal phenotype and a variable degree of impairment in growth was observed. The missing protein was readily restored to the organelle if E coli or other eubacterial ribosomal proteins were added to a suspension of the mutant particles. The mutants have been used to investigate the role of individual proteins in ribosome function and assembly. They have also aided in the topographic pinpointing of proteins on the surface of the organelle.
Collapse
Affiliation(s)
- E R Dabbs
- Department of Genetics, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
25
|
Kastner B, Trotman CN, Tate WP. Localization of the release factor-2 binding site on 70 S ribosomes by immuno-electron microscopy. J Mol Biol 1990; 212:241-5. [PMID: 2181146 DOI: 10.1016/0022-2836(90)90120-b] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In protein synthesis Escherichia coli release factor-2 binds to 70 S ribosomes when the termination codon UAA or UGA appears at the decoding site. The weak interaction between factor and ribosome has been stabilized in vitro by chemical cross-linking. Factor so bound can still be recognized by a specific antibody to release factor-2. Examination of the resulting immuno-complexes by electron microscopy revealed 70 S ribosomes in different projection forms, and the occasional dissociated subunit labelled with antibody. The antibody-binding site was localized on previously characterized 70 S projection forms, and its three-dimensional localization on the 70 S model established. The release factor-2-binding site was found to be positioned at the ribosomal subunit interface, comprising the stalk-protuberance region of the large subunit and the head-neck region of the concave side of the small subunit.
Collapse
Affiliation(s)
- B Kastner
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
26
|
Tate WP, Kastner B, Edgar CD, McCaughan KK, Timms KM, Trotman CN, Stoffler-Meilicke M, Stoffler G, Nag B, Traut RR. The ribosomal domain of the bacterial release factors. The carboxyl-terminal domain of the dimer of Escherichia coli ribosomal protein L7/L12 located in the body of the ribosome is important for release factor interaction. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 187:543-8. [PMID: 1689243 DOI: 10.1111/j.1432-1033.1990.tb15335.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
1. Polyclonal antibodies (pAb 1-73 and pAb 26-120) have been raised against both an N-terminal fragment of Escherichia coli ribosomal protein L7/L12 (amino acids 1-73), and a fragment lacking part of the N-terminal domain (amino acids 26-120). 2. Only pAb 26-120 inhibited release-factor-dependent in vitro termination functions on the ribosome. This antibody binds over the length of the stalk of the large subunit of the ribosome as determined by immune electron microscopy, thereby not distinguishing between the C-terminal domains of the two L7/L12 dimers, those in the stalk or those in the body of the subunit. 3. A monoclonal antibody against an epitope of the C-terminal two thirds of the protein (mAb 74-120), which binds both to the distal tip of the stalk as well as to a region at its base, reflecting the positions of the two dimers is strongly inhibitory of release factor function. 4. A monoclonal antibody against an epitope of the N-terminal fragment of L7/L12 (mAb 1-73), previously shown to remove the dimer of L7/L12 in the 50S subunit stalk but still bind to the body of the particle, partially inhibited release-factor-mediated events. 5. The mAb 74-120 inhibited in vitro termination with a similar profile when the stalk dimer of L7/L12 was removed with mAb 1-73, indicating that the body L7/L12 dimer, and in particular its C-terminal domains, are important for release factor/ribosome interaction. 6. The two release factors have subtle differences in their binding domains with respect to L7/L12.
Collapse
Affiliation(s)
- W P Tate
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Götz F, Fleischer C, Pon CL, Gualerzi CO. Subunit association defects in Escherichia coli ribosome mutants lacking proteins S20 and L11. EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 183:19-24. [PMID: 2666133 DOI: 10.1111/j.1432-1033.1989.tb14890.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The subunit association capacity of 30S and 50S ribosomal subunits from Escherichia coli mutants lacking protein S20 or L11 as well as of 50S subunits depleted of L7/L12 was tested by sucrose gradient centrifugation and by a nitrocellulose filtration method based on the protection from hydrolysis with peptidyl-tRNA hydrolase of ribosome-bound AcPhe-tRNA. It was found that the subunits lacking either S20 or L11 display an altered association capacity, while the 50S subunits lacking L7/L12 have normal association behavior. The association of S20-lacking 30S subunits is quantitatively reduced, especially at low Mg2+ concentrations (5-12 mM), and produces loosely interacting particles which dissociate during sucrose gradient centrifugation. The association of L11-lacking 50S subunits is quantitatively near-normal at all Mg2+ concentrations and produces loosely associating particles only at low Mg2+ concentrations (5-8 mM); the mechanism of their association with 30S subunits, however, or the structure of the resulting 30S-50S couples is altered in such a way as to cause the ejection of an AcPhe-tRNA molecule pre-bound to the 30S subunits in response to poly(U).
Collapse
Affiliation(s)
- F Götz
- Max-Planck-Institut für Molekulare Genetik, Abteilung Wittmann, Berlin-Dahlem
| | | | | | | |
Collapse
|
28
|
Lotti M, Noah M, Stöffler-Meilicke M, Stöffler G. Localization of proteins L4, L5, L20 and L25 on the ribosomal surface by immuno-electron microscopy. MOLECULAR & GENERAL GENETICS : MGG 1989; 216:245-53. [PMID: 2664451 DOI: 10.1007/bf00334363] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Ribosomal proteins L4, L5, L20 and L25 have been localized on the surface of the 50S ribosomal subunit of Escherichia coli by immuno-electron microscopy. The two 5S RNA binding proteins L5 and L25 were both located at the central protuberance extending towards its base, at the interface side of the 50S particle. L5 was localized on the side of the central protuberance that faces the L1 protuberance, whereas L25 was localized on the side that faces the L7/L12 stalk. Proteins L4 and L20 were both located at the back of the 50S subunit; L4 was located in the vicinity of proteins L23 and L29, and protein L20 was localized between proteins L17 and L10 and is thus located below the origin of the L7/L12 stalk.
Collapse
Affiliation(s)
- M Lotti
- Max-Planck-Institut für Molekulare Genetik, Abteilung Wittmann, Berlin, Dahlem, Federal Republic of Germany
| | | | | | | |
Collapse
|
29
|
Lotti M, Stöffler-Meilicke M, Stöffler G. Localization of ribosomal protein L27 at the peptidyl transferase centre of the 50 S subunit, as determined by immuno-electron microscopy. MOLECULAR & GENERAL GENETICS : MGG 1987; 210:498-503. [PMID: 3123891 DOI: 10.1007/bf00327203] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Protein L27 has been localized on the ribosomal surface by immuno-electron microscopy by using antibodies specific for Escherichia coli L27, and by reconstituting 50 S subunits from an E. coli mutant, which lacks protein L27, with the homologous protein from Bacillus subtilis and using antibodies specific for the B. subtilis protein. With both approaches, protein L27 has been located at the base of the central protuberance at the interface side of the 50 S particle and thus in proximity to the peptidyl transferase centre. The immuno-electron microscopic data also suggest that the interface region of the 50 S particle is not as flat as most of the proposed three-dimensional models suggest, but instead there is a significant depression.
Collapse
Affiliation(s)
- M Lotti
- Max-Planck-Institut für Molekulare Genetik, Berlin
| | | | | |
Collapse
|
30
|
Stöffler-Meilicke M, Stöffler G. The topography of ribosomal proteins on the surface of the 30S subunit of Escherichia coli. Biochimie 1987; 69:1049-64. [PMID: 3126824 DOI: 10.1016/0300-9084(87)90005-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Eight ribosomal proteins, S6, S10, S11, S15, S16, S18, S19 and S21 have been localized on the surface of the 30S subunit from Escherichia coli by immuno electron microscopy. The specificity of the antibody binding sites was demonstrated by stringent absorption experiments. In addition we have reinvestigated and refined the locations of proteins S5, S13 and S14 on the ribosomal surface which had previously been localized in our laboratory (Tischendorf et al., Mol. Gen. Genet. 134, 209-223, 1974). Thus altogether 16 out of the 21 ribosomal proteins of the small subunit from E. coli have been mapped in our laboratory.
Collapse
Affiliation(s)
- M Stöffler-Meilicke
- Max-Planck-Institut für Molekulare Genetik, Abteilung Wittmann, Berlin, Germany
| | | |
Collapse
|
31
|
el-Baradi TT, de Regt VC, Einerhand SW, Teixido J, Planta RJ, Ballesta JP, Raué HA. Ribosomal proteins EL11 from Escherichia coli and L15 from Saccharomyces cerevisiae bind to the same site in both yeast 26 S and mouse 28 S rRNA. J Mol Biol 1987; 195:909-17. [PMID: 3309345 DOI: 10.1016/0022-2836(87)90494-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The heterologous interaction of Escherichia coli ribosomal protein EL11 with yeast 26 S and mouse 28 S rRNA was studied by analysing the ability of this protein to form a specific complex with various synthetic rRNA fragments that span the structural equivalent of the EL11 binding site present in these eukaryotic rRNAs. The fragments were obtained by SP6 polymerase-directed in-vitro run-off transcription of parts of the yeast or mouse large rRNA gene cloned behind the SP6 promoter. EL11 was found to protect an oligonucleotide fragment of 63 nucleotides from both the yeast and mouse transcripts against digestion by RNase T1. In both cases, the position of this fragment in the L-rRNA sequence coincides almost exactly with that of the fragment previously found to be protected by EL11 in E. coli 23 S rRNA. Moreover, the protected yeast fragment was shown to be able to re-bind to EL11 by a nitrocellulose filter binding assay. A ribosomal protein preparation from Saccharomyces cerevisiae containing L15 (YL23) as well as the acidic proteins L44', L44 and L45 protects exactly the same oligonucleotide fragment as does EL11 in both the yeast and mouse transcripts. Evidence is provided that L15, which is known to be structurally and functionally equivalent to EL11, is the rRNA-binding protein in this preparation. Thus the structural equivalent of the EL11 binding site present in yeast 26 S rRNA constitutes the second example of functional conservation of a ribosomal protein-binding site on rRNA between prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- T T el-Baradi
- Biochemisch Laboratorium, Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
32
|
Tate WP, Sumpter VG, Trotman CN, Herold M, Nierhaus KH. The peptidyltransferase centre of the Escherichia coli ribosome. The histidine of protein L16 affects the reconstitution and control of the active centre but is not essential for release-factor-mediated peptidyl-tRNA hydrolysis and peptide bond formation. EUROPEAN JOURNAL OF BIOCHEMISTRY 1987; 165:403-8. [PMID: 3297687 DOI: 10.1111/j.1432-1033.1987.tb11453.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Modification of the Escherichia coli 50S ribosomal subunit with histidine-specific diethyl pyrocarbonate affects peptide bond formation and release-factor-dependent peptidyl-tRNA hydrolysis. Unmodified L16 can restore activity to a split protein fraction from the altered subunit but other proteins of the core also contain histidine residues important for the activity of the peptidyltransferase centre. When isolated and purified by centrifugation, particles reconstituted with unmodified proteins and modified L16 do not retain the altered L16. The modified protein does mediate the partial restoration of peptide bond formation and release-factor-2 activities to these particles. It must be exerting its effect during the assembly of the peptidyltransferase centre in the reconstituted particle. A particle could be reconstituted which lacks L16 and has significant activity in peptide bond formation and peptidyl-tRNA hydrolysis. L16 stimulates these activities. A tighter ribosomal binding of the release factor 2, dependent upon the absence of protein L11, can in part compensate for the loss of activity of the peptidyltransferase centre when it is assembled with either modified L16 or in the absence of L16. The protein and its histidine residue seem important, therefore, for the peptidyltransferase centre to be formed in the correct conformation but not essential for activity once the centre is assembled.
Collapse
|
33
|
Baxter RM, Zahid N. L16, a bifunctional ribosomal protein and the enhancing effect of L6 and L11. EUROPEAN JOURNAL OF BIOCHEMISTRY 1986; 155:273-7. [PMID: 3956484 DOI: 10.1111/j.1432-1033.1986.tb09486.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
L16 exhibits both peptide bond and transesterification activities when reconstituted into 2 M LiCl core particles. L6 and L11, when reconstituted in a similar manner in the absence of L16, manifest significant transesterification activity. Both L6 and L11 enhance the transesterification activity of L16; L11 being more active than L6 in this respect. However, both L6 and L11 have minimal effect on peptide bond formation when reconstituted with L16 at concentrations more than 2.5 M equivalents. Both L6 and L11 exhibit a differential effect on transesterification. The affinity-labelling agents, like PhCH2SO2F, diisopropylfluorophosphate and ethoxyformic anhydride, have been used to explore the role of residues in peptide bond formation and transesterification. It is proposed that the Ser-Phe combination present in L16, L11 and L6 is involved in transesterification in addition to the single histidine in L16. The single histidine in L16 appears to be important in the catalysis of peptide bond formation and transesterification.
Collapse
|
34
|
The ribosomal binding domain of the Escherichia coli release factors. Modification of tyrosine in the N-terminal domain of ribosomal protein L11 affects release factors 1 and 2 differentially. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(17)35932-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
35
|
Armstrong-Major J, Champney WS. Temperature-sensitive translation of MS2 bacteriophage RNA. BIOCHIMICA ET BIOPHYSICA ACTA 1985; 824:140-5. [PMID: 3882149 DOI: 10.1016/0167-4781(85)90090-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A comparison was made of bacteriophage MS2 RNA translation in infected Escherichia coli cells and in a defined cell-free system. A number of temperature-sensitive mutants were used as hosts for viral RNA translation at permissive and restrictive temperatures. The amount of viral coat protein synthesis was determined after gel electrophoresis of proteins from the cell lysates. These results were compared to those obtained with cell-free translation assays conducted with ribosomes isolated from the same mutants. Compared with control cells, a reduced activity in vivo and in vitro was found for each mutant examined at elevated temperatures. A good correlation between the two types of translational assays was observed. These findings are discussed in terms of the translational defects known to be a characteristic of some of these mutant strains.
Collapse
|