1
|
Arantes GM. Redox-Activated Proton Transfer through a Redundant Network in the Q o Site of Cytochrome bc1. J Chem Inf Model 2025; 65:2660-2669. [PMID: 40008618 PMCID: PMC11898062 DOI: 10.1021/acs.jcim.4c02361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 02/27/2025]
Abstract
Proton translocation catalyzed by cytochrome bc1 (respiratory complex III) during coenzyme-Q redox cycling is a critical bioenergetic process, yet its detailed molecular mechanism remains incompletely understood. In this study, the energetics of the long-range proton transfers through multiple proton-conducting wires in the Qo site of the bc1 complex was investigated computationally using hybrid QM/MM simulations and a specialized reaction coordinate. Key reactive groups and proton transfer mechanisms were characterized, confirming the propionate-A group of heme bL as a plausible proton acceptor. Upon coenzyme-Q oxidation, a Grotthuss hopping mechanism is activated, facilitating proton transfer along three distinct pathways with comparable barriers and stability. These pathways operate redundantly, forming a robust proton-conducting network, and account for the unusual experimental behavior observed in single-point mutations. Energetic analyses exclude charged closed-shell species as likely intermediates and propose a reaction sequence for coenzyme-Q oxidation proceeding as QH2 → QH• → Q0, either via coupled proton-electron transfers or stepwise mechanisms involving open-shell intermediates. These findings elucidate mechanistic details of the Q-cycle and improve our understanding of the catalytic reactions supporting redox-activated proton transfer in respiratory enzymes.
Collapse
Affiliation(s)
- Guilherme M. Arantes
- Department of Biochemistry,
Instituto de Química, Universidade
de São Paulo, Av. Prof. Lineu Prestes 748, 05508-900, São Paulo, SP, Brazil
| |
Collapse
|
2
|
Sarewicz M, Pintscher S, Pietras R, Borek A, Bujnowicz Ł, Hanke G, Cramer WA, Finazzi G, Osyczka A. Catalytic Reactions and Energy Conservation in the Cytochrome bc1 and b6f Complexes of Energy-Transducing Membranes. Chem Rev 2021; 121:2020-2108. [PMID: 33464892 PMCID: PMC7908018 DOI: 10.1021/acs.chemrev.0c00712] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Indexed: 12/16/2022]
Abstract
This review focuses on key components of respiratory and photosynthetic energy-transduction systems: the cytochrome bc1 and b6f (Cytbc1/b6f) membranous multisubunit homodimeric complexes. These remarkable molecular machines catalyze electron transfer from membranous quinones to water-soluble electron carriers (such as cytochromes c or plastocyanin), coupling electron flow to proton translocation across the energy-transducing membrane and contributing to the generation of a transmembrane electrochemical potential gradient, which powers cellular metabolism in the majority of living organisms. Cytsbc1/b6f share many similarities but also have significant differences. While decades of research have provided extensive knowledge on these enzymes, several important aspects of their molecular mechanisms remain to be elucidated. We summarize a broad range of structural, mechanistic, and physiological aspects required for function of Cytbc1/b6f, combining textbook fundamentals with new intriguing concepts that have emerged from more recent studies. The discussion covers but is not limited to (i) mechanisms of energy-conserving bifurcation of electron pathway and energy-wasting superoxide generation at the quinol oxidation site, (ii) the mechanism by which semiquinone is stabilized at the quinone reduction site, (iii) interactions with substrates and specific inhibitors, (iv) intermonomer electron transfer and the role of a dimeric complex, and (v) higher levels of organization and regulation that involve Cytsbc1/b6f. In addressing these topics, we point out existing uncertainties and controversies, which, as suggested, will drive further research in this field.
Collapse
Affiliation(s)
- Marcin Sarewicz
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Sebastian Pintscher
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Rafał Pietras
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Arkadiusz Borek
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Łukasz Bujnowicz
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Guy Hanke
- School
of Biological and Chemical Sciences, Queen
Mary University of London, London E1 4NS, U.K.
| | - William A. Cramer
- Department
of Biological Sciences, Purdue University, West Lafayette, Indiana 47907 United States
| | - Giovanni Finazzi
- Laboratoire
de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Centre National Recherche Scientifique,
Commissariat Energie Atomique et Energies Alternatives, Institut National
Recherche l’agriculture, l’alimentation et l’environnement, 38054 Grenoble Cedex 9, France
| | - Artur Osyczka
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| |
Collapse
|
3
|
Pagacz J, Broniec A, Wolska M, Osyczka A, Borek A. ROS signaling capacity of cytochrome bc 1: Opposing effects of adaptive and pathogenic mitochondrial mutations. Free Radic Biol Med 2021; 163:243-254. [PMID: 33352219 DOI: 10.1016/j.freeradbiomed.2020.12.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/07/2020] [Accepted: 12/12/2020] [Indexed: 01/06/2023]
Abstract
Cytochrome bc1, also known as mitochondrial complex III, is considered to be one of the important producers of reactive oxygen species (ROS) in living organisms. Under physiological conditions, a certain level of ROS produced by mitochondrial electron transport chain (ETC) might be beneficial and take part in cellular signaling. However, elevated levels of ROS might exhibit negative effects, resulting in cellular damage. It is well known that inhibiting the electron flow within mitochondrial complex III leads to high production of ROS. However, superoxide production by cytochrome bc1 in a non-inhibited system remained controversial. Here, we propose a novel method for ROS detection in ETC hybrid system in solution comprising bacterial cytochrome bc1 and mitochondrial complex IV. We clearly show that non-inhibited cytochrome bc1 generates ROS and that adaptive and pathogenic mitochondrial mutations suppress and enhance ROS production, respectively. We also noted that cytochrome bc1 produces ROS in a rate-dependent manner and that the mechanism of ROS generation changes according to the rate of operation of the enzyme. This dependency has not yet been reported, but seems to be crucial when discussing ROS signaling originating from mitochondria.
Collapse
Affiliation(s)
- Jakub Pagacz
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Agnieszka Broniec
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Małgorzata Wolska
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Artur Osyczka
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Arkadiusz Borek
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| |
Collapse
|
4
|
Pintscher S, Wójcik-Augustyn A, Sarewicz M, Osyczka A. Charge polarization imposed by the binding site facilitates enzymatic redox reactions of quinone. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148216. [PMID: 32387188 DOI: 10.1016/j.bbabio.2020.148216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 11/19/2022]
Abstract
Quinone reduction site (Qi) of cytochrome bc1 represents one of the canonical sites used to explore the enzymatic redox reactions involving semiquinone (SQ) states. However, the mechanism by which Qi allows the completion of quinone reduction during the sequential transfers of two electrons from the adjacent heme bH and two protons to C1- and C4-carbonyl remains unclear. Here we established that the SQ coupled to an oxidized heme bH is a dominant intermediate of catalytic forward reaction and, contrary to the long-standing assumption, represents a significant population of SQ detected across pH 5-9. The pH dependence of its redox midpoint potential implicated proton exchange with histidine. Complementary quantum mechanical calculations revealed that the SQ anion formed after the first electron transfer undergoes charge and spin polarization imposed by the electrostatic field generated by histidine and the aspartate/lysine pair interacting with the C4- and C1-carbonyl, respectively. This favors a barrierless proton exchange between histidine and the C4-carbonyl, which continues until the second electron reaches the SQi. Inversion of charge polarization facilitates the uptake of the second proton by the C1-carbonyl. Based on these findings we developed a comprehensive scheme for electron and proton transfers at Qi featuring the equilibration between the anionic and neutral states of SQi as means for a leak-proof stabilization of the radical intermediate. The key catalytic role of the initial charge/spin polarization of the SQ anion at the active site, inherent to the proposed mechanism, may also be applicable to the other quinone oxidoreductases.
Collapse
Affiliation(s)
- Sebastian Pintscher
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków 30387, Poland.
| | - Anna Wójcik-Augustyn
- Department of Computational Biophysics and Bioinformatics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków 30387, Poland.
| | - Marcin Sarewicz
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków 30387, Poland.
| | - Artur Osyczka
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków 30387, Poland.
| |
Collapse
|
5
|
Feng G, Liu B, Li J, Cheng T, Huang Z, Wang X, Cheng HP. Mitoflash biogenesis and its role in the autoregulation of mitochondrial proton electrochemical potential. J Gen Physiol 2019; 151:727-737. [PMID: 30877142 PMCID: PMC6571995 DOI: 10.1085/jgp.201812176] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/29/2018] [Accepted: 02/19/2019] [Indexed: 01/11/2023] Open
Abstract
Individual mitochondria undergo an intermittent, all-or-none electrochemical excitation termed “mitoflash.” Feng et al. show that mitoflash occurs following build-up of mitochondrial electrochemical potential and may serve to autoregulate mitochondrial proton electrochemical potential. Respiring mitochondria undergo an intermittent electrical and chemical excitation called mitochondrial flash (mitoflash), which transiently uncouples mitochondrial respiration from ATP production. How a mitoflash is generated and what specific role it plays in bioenergetics remain incompletely understood. Here, we investigate mitoflash biogenesis in isolated cardiac mitochondria by varying the respiratory states and substrate supply and by dissecting the involvement of different electron transfer chain (ETC) complexes. We find that robust mitoflash activity occurs once mitochondria are electrochemically charged by state II/IV respiration (i.e., no ATP synthesis at Complex V), regardless of the substrate entry site (Complex I, Complex II, or Complex IV). Inhibiting forward electron transfer abolishes, while blocking reverse electron transfer generally augments, mitoflash production. Switching from state II/IV to state III respiration, to allow for ATP synthesis at Complex V, markedly diminishes mitoflash activity. Intriguingly, when mitochondria are electrochemically charged by the ATPase activity of Complex V, mitoflashes are generated independently of ETC activity. These findings suggest that mitoflash biogenesis is mechanistically linked to the build up of mitochondrial electrochemical potential rather than ETC activity alone, and may functionally counteract overcharging of the mitochondria and hence serve as an autoregulator of mitochondrial proton electrochemical potential.
Collapse
Affiliation(s)
- Gaomin Feng
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Beibei Liu
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Jinghang Li
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Tianlei Cheng
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Zhanglong Huang
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xianhua Wang
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Heping Peace Cheng
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
6
|
Pietras R, Sarewicz M, Osyczka A. Distinct properties of semiquinone species detected at the ubiquinol oxidation Qo site of cytochrome bc1 and their mechanistic implications. J R Soc Interface 2016; 13:20160133. [PMID: 27194483 PMCID: PMC4892266 DOI: 10.1098/rsif.2016.0133] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/18/2016] [Indexed: 12/23/2022] Open
Abstract
The two-electron ubiquinol oxidation or ubiquinone reduction typically involves semiquinone (SQ) intermediates. Natural engineering of ubiquinone binding sites of bioenergetic enzymes secures that SQ is sufficiently stabilized, so that it does not leave the site to membranous environment before full oxidation/reduction is completed. The ubiquinol oxidation Qo site of cytochrome bc1 (mitochondrial complex III, cytochrome b6f in plants) has been considered an exception with catalytic reactions assumed to involve highly unstable SQ or not to involve any SQ intermediate. This view seemed consistent with long-standing difficulty in detecting any reaction intermediates at the Qo site. New perspective on this issue is now offered by recent, independent reports on detection of SQ in this site. Each of the described SQs seems to have different spectroscopic properties leaving space for various interpretations and mechanistic considerations. Here, we comparatively reflect on those properties and their consequences on the SQ stabilization, the involvement of SQ in catalytic reactions, including proton transfers, and the reactivity of SQ with oxygen associated with superoxide generation activity of the Qo site.
Collapse
Affiliation(s)
- Rafał Pietras
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Marcin Sarewicz
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Artur Osyczka
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
7
|
Gong G, Liu X, Zhang H, Sheu SS, Wang W. Mitochondrial flash as a novel biomarker of mitochondrial respiration in the heart. Am J Physiol Heart Circ Physiol 2015; 309:H1166-H1177. [PMID: 26276820 PMCID: PMC4666927 DOI: 10.1152/ajpheart.00462.2015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/13/2015] [Indexed: 11/22/2022]
Abstract
Mitochondrial respiration through electron transport chain (ETC) activity generates ATP and reactive oxygen species in eukaryotic cells. The modulation of mitochondrial respiration in vivo or under physiological conditions remains elusive largely due to the lack of appropriate approach to monitor ETC activity in a real-time manner. Here, we show that ETC-coupled mitochondrial flash is a novel biomarker for monitoring mitochondrial respiration under pathophysiological conditions in cultured adult cardiac myocyte and perfused beating heart. Through real-time confocal imaging, we follow the frequency of a transient bursting fluorescent signal, named mitochondrial flash, from individual mitochondria within intact cells expressing a mitochondrial matrix-targeted probe, mt-cpYFP (mitochondrial-circularly permuted yellow fluorescent protein). This mt-cpYFP recorded mitochondrial flash has been shown to be composed of a major superoxide signal with a minor alkalization signal within the mitochondrial matrix. Through manipulating physiological substrates for mitochondrial respiration, we find a close coupling between flash frequency and the ETC electron flow, as measured by oxygen consumption rate in cardiac myocyte. Stimulating electron flow under physiological conditions increases flash frequency. On the other hand, partially block or slowdown electron flow by inhibiting the F0F1 ATPase, which represents a pathological condition, transiently increases then decreases flash frequency. Limiting electron entrance at complex I by knocking out Ndufs4, an assembling subunit of complex I, suppresses mitochondrial flash activity. These results suggest that mitochondrial electron flow can be monitored by real-time imaging of mitochondrial flash. The mitochondrial flash frequency could be used as a novel biomarker for mitochondrial respiration under physiological and pathological conditions.
Collapse
Affiliation(s)
- Guohua Gong
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington; and
| | - Xiaoyun Liu
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington; and
| | - Huiliang Zhang
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington; and
| | - Shey-Shing Sheu
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Philadelphia
| | - Wang Wang
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington; and
| |
Collapse
|
8
|
Gusdon AM, Fernandez-Bueno GA, Wohlgemuth S, Fernandez J, Chen J, Mathews CE. Respiration and substrate transport rates as well as reactive oxygen species production distinguish mitochondria from brain and liver. BMC BIOCHEMISTRY 2015; 16:22. [PMID: 26358560 PMCID: PMC4564979 DOI: 10.1186/s12858-015-0051-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 09/02/2015] [Indexed: 12/04/2022]
Abstract
BACKGROUND Aberrant mitochondrial function, including excessive reactive oxygen species (ROS) production, has been implicated in the pathogenesis of human diseases. The use of mitochondrial inhibitors to ascertain the sites in the electron transport chain (ETC) resulting in altered ROS production can be an important tool. However, the response of mouse mitochondria to ETC inhibitors has not been thoroughly assessed. Here we set out to characterize the differences in phenotypic response to ETC inhibitors between the more energetically demanding brain mitochondria and less energetically demanding liver mitochondria in commonly utilized C57BL/6J mice. RESULTS We show that in contrast to brain mitochondria, inhibiting distally within complex I or within complex III does not increase liver mitochondrial ROS production supported by complex I substrates, and liver mitochondrial ROS production supported by complex II substrates occurred primarily independent of membrane potential. Complex I, II, and III enzymatic activities and membrane potential were equivalent between liver and brain and responded to ETC. inhibitors similarly. Brain mitochondria exhibited an approximately two-fold increase in complex I and II supported respiration compared with liver mitochondria while exhibiting similar responses to inhibitors. Elevated NADH transport and heightened complex II-III coupled activity accounted for increased complex I and II supported respiration, respectively in brain mitochondria. CONCLUSIONS We conclude that important mechanistic differences exist between mouse liver and brain mitochondria and that mouse mitochondria exhibit phenotypic differences compared with mitochondria from other species.
Collapse
Affiliation(s)
- Aaron M Gusdon
- Department of Pathology, Immunology, and Laboratory Medicine, The University of Florida College of Medicine, Gainesville, FL, 32610, USA.
- Department of Neurology, Weill Cornell Medical Center/NewYork-Presbyterian Hospital, New York, NY, 10065, USA.
| | - Gabriel A Fernandez-Bueno
- Department of Pathology, Immunology, and Laboratory Medicine, The University of Florida College of Medicine, Gainesville, FL, 32610, USA.
| | - Stephanie Wohlgemuth
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, The University of Florida, Gainesville, FL, 32610, USA.
| | - Jenelle Fernandez
- Department of Pathology, Immunology, and Laboratory Medicine, The University of Florida College of Medicine, Gainesville, FL, 32610, USA.
| | - Jing Chen
- Department of Pathology, Immunology, and Laboratory Medicine, The University of Florida College of Medicine, Gainesville, FL, 32610, USA.
| | - Clayton E Mathews
- Department of Pathology, Immunology, and Laboratory Medicine, The University of Florida College of Medicine, Gainesville, FL, 32610, USA.
- , Present address: 1275 Center Dr, Room J597, P.O. Box 100275, Gainesville, FL, 32610-0275, USA.
| |
Collapse
|
9
|
Sarewicz M, Osyczka A. Electronic connection between the quinone and cytochrome C redox pools and its role in regulation of mitochondrial electron transport and redox signaling. Physiol Rev 2015; 95:219-43. [PMID: 25540143 PMCID: PMC4281590 DOI: 10.1152/physrev.00006.2014] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial respiration, an important bioenergetic process, relies on operation of four membranous enzymatic complexes linked functionally by mobile, freely diffusible elements: quinone molecules in the membrane and water-soluble cytochromes c in the intermembrane space. One of the mitochondrial complexes, complex III (cytochrome bc1 or ubiquinol:cytochrome c oxidoreductase), provides an electronic connection between these two diffusible redox pools linking in a fully reversible manner two-electron quinone oxidation/reduction with one-electron cytochrome c reduction/oxidation. Several features of this homodimeric enzyme implicate that in addition to its well-defined function of contributing to generation of proton-motive force, cytochrome bc1 may be a physiologically important point of regulation of electron flow acting as a sensor of the redox state of mitochondria that actively responds to changes in bioenergetic conditions. These features include the following: the opposing redox reactions at quinone catalytic sites located on the opposite sides of the membrane, the inter-monomer electronic connection that functionally links four quinone binding sites of a dimer into an H-shaped electron transfer system, as well as the potential to generate superoxide and release it to the intermembrane space where it can be engaged in redox signaling pathways. Here we highlight recent advances in understanding how cytochrome bc1 may accomplish this regulatory physiological function, what is known and remains unknown about catalytic and side reactions within the quinone binding sites and electron transfers through the cofactor chains connecting those sites with the substrate redox pools. We also discuss the developed molecular mechanisms in the context of physiology of mitochondria.
Collapse
Affiliation(s)
- Marcin Sarewicz
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Artur Osyczka
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
10
|
Brink FT, Baymann F. Rieske/Cytochrome b Complexes: The Turbo Chargers of Chemiosmosis. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/978-94-017-8742-0_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
11
|
Analysis of the kinetics and bistability of ubiquinol:cytochrome c oxidoreductase. Biophys J 2014; 105:343-55. [PMID: 23870256 DOI: 10.1016/j.bpj.2013.05.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 03/28/2013] [Accepted: 05/13/2013] [Indexed: 11/21/2022] Open
Abstract
Ubiquinol:cytochrome c oxidoreductase, bc1 complex, is the enzyme in the respiratory chain of mitochondria responsible for the transfer reducing potential from ubiquinol to cytochrome c coupled to the movement of charge against the electrostatic potential across the mitochondrial inner membrane. The complex is also implicated in the generation of reactive oxygen species under certain conditions and is thus a contributor to cellular oxidative stress. Here, a biophysically detailed, thermodynamically consistent model of the bc1 complex for mammalian mitochondria is developed. The model incorporates the major redox centers near the Qo- and Qi-site of the enzyme, includes the pH-dependent redox reactions, accounts for the effect of the proton-motive force of the reaction rate, and simulates superoxide production at the Qo-site. The model consists of six distinct states characterized by the mobile electron distribution in the enzyme. Within each state, substates that correspond to various electron localizations exist in a rapid equilibrium distribution. The steady-state equation for the six-state system is parameterized using five independent data sets and validated in comparison to additional experimental data. Model analysis suggests that the pH-dependence on turnover is primarily due to the pKa values of cytochrome bH and Rieske iron sulfur protein. A previously proposed kinetic scheme at the Qi-site where ubiquinone binds to only the reduced enzyme and ubiquinol binds to only the oxidized enzyme is shown to be thermodynamically infeasible. Moreover, the model is able to reproduce the bistability phenomenon where at a given overall flux through the enzyme, different rates of superoxide production are attained when the enzyme is differentially reduced.
Collapse
|
12
|
ten Brink F, Schoepp-Cothenet B, van Lis R, Nitschke W, Baymann F. Multiple Rieske/cytb complexes in a single organism. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:1392-406. [PMID: 23507620 DOI: 10.1016/j.bbabio.2013.03.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 03/01/2013] [Accepted: 03/06/2013] [Indexed: 11/28/2022]
Abstract
Most organisms contain a single Rieske/cytb complex. This enzyme can be integrated in any respiratory or photosynthetic electron transfer chain that is quinone-based and sufficiently energy rich to allow for the turnover of three enzymes - a quinol reductase, a Rieske/cytb complex and a terminal oxidase. Despite this universal usability of the enzyme a variety of phylogenetically distant organisms have multiple copies thereof and no reason for this redundancy is obvious. In this review we present an overview of the distribution of multiple copies among species and describe their properties from the scarce experimental results, analysis of their amino acid sequences and genomic context. We discuss the predicted redox properties of the Rieske cluster in relation to the nature of the pool quinone. It appears that acidophilic iron-oxidizing bacteria specialized one of their two copies for reverse electron transfer, archaeal Thermoprotei adapted their three copies to the interaction with different oxidases and several, phylogenetically unrelated species imported a second complex with a putative heme ci that may confer some yet to be determined properties to the complex. These hypothesis and all the more the so far completely unexplained cases call for further studies and we put forward a number of suggestions for future research that we hope to be stimulating for the field. This article is part of a Special Issue entitled: Respiratory complex III and related bc complexes.
Collapse
Affiliation(s)
- F ten Brink
- BIP/UMR7281, FR3479, CNRS/AMU, 13 chemin Joseph Aiguier, 13009 Marseille, France
| | | | | | | | | |
Collapse
|
13
|
Abstract
Important findings regarding the structure and function of respiratory cytochromes have been made from the study of these hemeproteins associated to liposomes. These studies contributed to the comprehension of the biological role of these proteins in the electron transfer process, the regulatory mechanisms, the energy transduction mechanisms, the protein sites that interact with mitochondrial membranes and the role played by the non-redox subunits present in the protein complexes of the respiratory chain of eukaryotes. In this chapter, the protocols developed to study cytochrome bc (1) activity in liposomes and the binding of cytochrome c to lipid bilayers is presented . The former protocol was developed to study the mechanism of energy transduction related to the topology of the components of bc (1) complex in the mitochondrial membrane. These studies were done with purified cytochrome bc (1) complexes reconstituted into potassium-loaded vesicles. The latter protocol was developed to study the influence of pH, DeltapH, and DeltaPsi on the interaction of cytochrome c with liposomes that mimic the inner mitochondrial membrane.
Collapse
Affiliation(s)
- Iseli L Nantes
- Centro Interdisciplinar de Investigação Bioquímica CIIB, Universidade de Mogi das Cruzes, S.P., Brazil
| | | | | | | |
Collapse
|
14
|
Nantes IL, Mugnol KCU. Incorporation of Respiratory Cytochromes in Liposomes: An Efficient Strategy to Study the Respiratory Chain. J Liposome Res 2008; 18:175-94. [DOI: 10.1080/08982100802340367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
|
16
|
Mulkidjanian AY. Ubiquinol oxidation in the cytochrome bc1 complex: Reaction mechanism and prevention of short-circuiting. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1709:5-34. [PMID: 16005845 DOI: 10.1016/j.bbabio.2005.03.009] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Revised: 12/01/2004] [Accepted: 03/22/2005] [Indexed: 11/26/2022]
Abstract
This review is focused on the mechanism of ubiquinol oxidation by the cytochrome bc1 complex (bc1). This integral membrane complex serves as a "hub" in the vast majority of electron transfer chains. The bc1 oxidizes a ubiquinol molecule to ubiquinone by a unique "bifurcated" reaction where the two released electrons go to different acceptors: one is accepted by the mobile redox active domain of the [2Fe-2S] iron-sulfur Rieske protein (FeS protein) and the other goes to cytochrome b. The nature of intermediates in this reaction remains unclear. It is also debatable how the enzyme prevents short-circuiting that could happen if both electrons escape to the FeS protein. Here, I consider a reaction mechanism that (i) agrees with the available experimental data, (ii) entails three traits preventing the short-circuiting in bc1, and (iii) exploits the evident structural similarity of the ubiquinone binding sites in the bc1 and the bacterial photosynthetic reaction center (RC). Based on the latter congruence, it is suggested that the reaction route of ubiquinol oxidation by bc1 is a reversal of that leading to the ubiquinol formation in the RC. The rate-limiting step of ubiquinol oxidation is then the re-location of a ubiquinol molecule from its stand-by site within cytochrome b into a catalytic site, which is formed only transiently, after docking of the mobile redox domain of the FeS protein to cytochrome b. In the catalytic site, the quinone ring is stabilized by Glu-272 of cytochrome b and His-161 of the FeS protein. The short circuiting is prevented as long as: (i) the formed semiquinone anion remains bound to the reduced FeS domain and impedes its undocking, so that the second electron is forced to go to cytochrome b; (ii) even after ubiquinol is fully oxidized, the reduced FeS domain remains docked to cytochrome b until electron(s) pass through cytochrome b; (iii) if cytochrome b becomes (over)reduced, the binding and oxidation of further ubiquinol molecules is hampered; the reason is that the Glu-272 residue is turned towards the reduced hemes of cytochrome b and is protonated to stabilize the surplus negative charge; in this state, this residue cannot participate in the binding/stabilization of a ubiquinol molecule.
Collapse
Affiliation(s)
- Armen Y Mulkidjanian
- Max Planck Institute of Biophysics, Department of Biophysical Chemistry, Max-von-Laue-Str. 3, D-60438 Frankfurt-am-Main, Germany.
| |
Collapse
|
17
|
Chen YR, Chen CL, Liu X, He G, Zweier JL. Involvement of phospholipid, biomembrane integrity, and NO peroxidase activity in the NO catabolism by cytochrome c oxidase. Arch Biochem Biophys 2005; 439:200-10. [PMID: 15963451 DOI: 10.1016/j.abb.2005.05.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Revised: 05/09/2005] [Accepted: 05/10/2005] [Indexed: 11/26/2022]
Abstract
The physiological regulation of mitochondrial respiration by NO has been reported to result from the reversible binding of NO to the two-electron reduced binuclear center (Fe(2+)(a3)-Cu(1+)(B)) of cytochrome c oxidase (CcO). Although the role of CcO and its derived catalytic intermediates in the catabolism of NO has been documented, little has been established for the enzyme in its fully oxidized state (Fe(3+)(a3)-Cu(2+)(B)). We report: (1) CcO, in its fully oxidized state, represents the major component of the mitochondrial electron transport chain for NO consumption as controlled by the binding of NO to its binuclear center. Phospholipid enhances NO consumption by fully oxidized CcO, whereas the consumption of NO is slowed down by membrane structure and membrane potential when CcO is embedded in the phospholipid bilayer. (2) In the presence of H(2)O(2), CcO was shown to serve as a mitochondria-derived NO peroxidase. A CcO-derived protein radical intermediate was induced and involved in the modulation of NO catabolism.
Collapse
Affiliation(s)
- Yeong-Renn Chen
- Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University, College of Medicine, Columbus, 43210, USA.
| | | | | | | | | |
Collapse
|
18
|
Osyczka A, Moser CC, Daldal F, Dutton PL. Reversible redox energy coupling in electron transfer chains. Nature 2004; 427:607-12. [PMID: 14961113 DOI: 10.1038/nature02242] [Citation(s) in RCA: 209] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2003] [Accepted: 11/14/2003] [Indexed: 11/09/2022]
Abstract
Reversibility is a common theme in respiratory and photosynthetic systems that couple electron transfer with a transmembrane proton gradient driving ATP production. This includes the intensely studied cytochrome bc1, which catalyses electron transfer between quinone and cytochrome c. To understand how efficient reversible energy coupling works, here we have progressively inactivated individual cofactors comprising cytochrome bc1. We have resolved millisecond reversibility in all electron-tunnelling steps and coupled proton exchanges, including charge-separating hydroquinone-quinone catalysis at the Q(o) site, which shows that redox equilibria are relevant on a catalytic timescale. Such rapid reversibility renders popular models based on a semiquinone in Q(o) site catalysis prone to short-circuit failure. Two mechanisms allow reversible function and safely relegate short-circuits to long-distance electron tunnelling on a timescale of seconds: conformational gating of semiquinone for both forward and reverse electron transfer, or concerted two-electron quinone redox chemistry that avoids the semiquinone intermediate altogether.
Collapse
Affiliation(s)
- Artur Osyczka
- The Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | | | | | | |
Collapse
|
19
|
Epstein CB, Hale W, Butow RA. Numerical methods for handling uncertainty in microarray data: an example analyzing perturbed mitochondrial function in yeast. Methods Cell Biol 2002; 65:439-52. [PMID: 11381609 DOI: 10.1016/s0091-679x(01)65026-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- C B Epstein
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | |
Collapse
|
20
|
Barbagallo RP, Breyton C, Finazzi G. Kinetic effects of the electrochemical proton gradient on plastoquinone reduction at the Qi site of the cytochrome b6f complex. J Biol Chem 2000; 275:26121-7. [PMID: 10866998 DOI: 10.1074/jbc.m002299200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have investigated the effects of the light-induced thylakoid transmembrane potential on the turnover of the b(6)f complex in cells of the unicellular green alga Chlamydomonas reinhardtii. The reduction of the potential by either decreasing the light intensity or by adding increasing concentrations of the ionophore carbonylcyanide p-(trifluoromethoxy)phenylhydrazone (FCCP) revealed a marked inhibition of the cytochrome b(6) oxidation rate (10-fold) without substantial modifications of cytochrome f oxidation kinetics. Partial recovery of this inhibition could be obtained in the presence of ionophores provided that the membrane potential was re-established by illumination with a train of actinic flashes fired at a frequency higher than its decay. Measurements of isotopic effects on the kinetics of cytochrome b(6) oxidation revealed a synergy between the effects of ionophores and the H(2)O-D(2)O exchange. We propose therefore, that protonation events influence the kinetics of cytochrome b(6) oxidation at the Qi site and that these reactions are strongly influenced by the light-dependent generation of a transmembrane potential.
Collapse
Affiliation(s)
- R P Barbagallo
- Centro di Studio del CNR sulla Biologia Cellulare e Molecolare delle Piante, via Celoria 26, 20133 Milano, Italy
| | | | | |
Collapse
|
21
|
Zhang L, Yu L, Yu CA. Generation of superoxide anion by succinate-cytochrome c reductase from bovine heart mitochondria. J Biol Chem 1998; 273:33972-6. [PMID: 9852050 DOI: 10.1074/jbc.273.51.33972] [Citation(s) in RCA: 207] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Production of superoxide anion (O-2), measured as the chemiluminescence of the 2-methyl-6-(p-methoxyphenyl)-3, 7-dihydroimidazo[1,2-a]pyrazin-3-one hydrochloride (MCLA)-O-2 adduct, was observed during electron transfer from succinate to cytochrome c by reconstituted succinate-cytochrome c reductase-phospholipid vesicles replenished with succinate dehydrogenase. Addition of carbonyl cyanide p-trifluoromethoxyphenylhydrazone or detergent to the reconstituted reductase-phospholipid vesicles abolished O-2 production, suggesting that O-2 generation is caused by the membrane potential generated during electron transfer through the cytochrome bc1 complex. Production of O-2 was also observed during electron transfer from succinate to cytochrome c by antimycin-treated reductase, in which approximately 99.7% of the reductase activity was inhibited. The rate of O-2 production was closely related to the rate of antimycin-insensitive cytochrome c reduction. Factors affecting antimycin-insensitive reduction of cytochrome c also affected O-2 production and vice versa. When the oxygen concentration in the system was decreased, the rate of O-2 production and cytochrome c reduction by antimycin-treated reductase decreased. When the concentrations of MCLA and cytochrome c were increased, the rate of O-2 production and cytochrome c reduction by antimycin-treated reductase increased. The rate of antimycin-insensitive cytochrome c reduction was sensitive to Qo site inhibitors such as 5-undecyl-6-hydroxy-4,7-dioxobenzothiazole. These results indicate that generation of O-2 during the oxidation of ubiquinol by the cytochrome bc1 complex results from a leakage of the second electron of ubiquinol from its Q cycle electron transfer pathway to interact with oxygen. The electron-leaking site is located at the reduced cytochrome b566 or ubisemiquinone of the Qo site because addition of MCLA to antimycin-treated cytochrome bc1 complex, in the presence of catalytic amounts of succinate-cytochrome c reductase, delayed cytochrome b reduction by succinate. In the presence of oxidized cytochrome c, purified succinate dehydrogenase also catalyzed oxidation of succinate to generate O-2. When succinate dehydrogenase was reconstituted with the bc1 particles to form succinate-cytochrome c reductase, the production of O-2 diminished. These results suggest that reduced FAD of succinate dehydrogenase is the electron donor for oxygen to produce O-2 in the absence of their immediate electron acceptor and in the presence of cytochrome c.
Collapse
Affiliation(s)
- L Zhang
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | | | | |
Collapse
|
22
|
Villa A, García-Simón MI, Blanco P, Sesé B, Bogónez E, Satrustegui J. Affinity chromatography purification of mitochondrial inner membrane proteins with calcium transport activity. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1373:347-59. [PMID: 9733995 DOI: 10.1016/s0005-2736(98)00120-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Immobilized calcium affinity chromatography was used to obtain a preparation enriched in calcium transporters from Triton X-100 extracts of rat liver mitochondria inner membranes (PPCT). The PPCT were reconstituted into preformed asolectin liposomes which contained 120 mM KCl as internal high K+ medium. 45Ca2+ uptake into proteoliposomes was studied under conditions favoring electrophoretic uptake, and H+i/45Ca2+o or Na+i/45Ca2+o exchange, to test for the presence of the three calcium transport modes present in mitochondria. 45Ca2+ uptake in liposomes was studied in parallel. Na+i/45Ca2+o exchange activity was not detectable. H+i/45Ca2+o exchange activity measured in the presence of a pH gradient (acid inside) obtained after suspension in low K medium in the presence of nigericin, was 100-200 nmoles 45Ca2+ per mg protein in 30 s. 45Ca2+ uptake in voltage-dependent assays (a K+ diffusion membrane potential induced by valinomycin in the presence of methylamine) was not electrophoretic since it was stimulated by carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) and probably due to secondary Ca2+/H+ countertransport. H+i/45Ca2+o uptake showed a saturable component at around 80 microM Ca and was coupled to an increase in internal pH in pyranine-loaded PPCT proteoliposomes. 45Ca2+ uptake in PPCT proteoliposomes could also be driven by a pH gradient obtained by raising external pH in high K+ medium. The results are consistent with the presence of a functional nH+/Ca2+ antiporter. Polyclonal antibodies raised against the PPCT were able to immunoprecipitate the H+/45Ca2+ uptake activity and recognized two major bands in the PPCT with molecular masses of about 66 kDa and 55 kDa. This is the first report of a partial purified protein(s) which may represent the H+/Ca2+ exchanger of the inner mitochondrial membrane, and represents an important step towards its identification.
Collapse
Affiliation(s)
- A Villa
- Departamento de Biología Molecular, Centro de Biología Molecular 'Severo Ochoa', C.S.I.C.-Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049-Madrid, Spain
| | | | | | | | | | | |
Collapse
|
23
|
Orii Y, Miki T. Oxidation process of bovine heart ubiquinol-cytochrome c reductase as studied by stopped-flow rapid-scan spectrophotometry and simulations based on the mechanistic Q cycle model. J Biol Chem 1997; 272:17594-604. [PMID: 9211907 DOI: 10.1074/jbc.272.28.17594] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Stopped-flow rapid-scan spectrophotometry was employed to study complicated oxidation processes of ubiquinol-cytochrome c reductase (QCR) that was purified from bovine heart mitochondria and maximally contained 0.36 mol of ubiquinone-10/mol of heme c1. When fully reduced QCR was allowed to react with dioxygen in the presence of cytochrome c plus cytochrome c oxidase, the oxidation of b-type hemes accompanied an initial lag, apparently low potential heme bL was oxidized first, followed by high potential heme bH. Antimycin A inhibited the oxidation of both b-type hemes. The oxidation of heme c1 was triphasic and became biphasic in the presence of antimycin A. On the other hand, starting from partially reduced QCR that was poised at a higher redox potential with succinate and succinate-cytochrome c reductase, the b-type hemes were oxidized immediately without a lag. When the ubiquinone content in QCR was as low as 0.1 mol/mol heme c1 the oxidation of the b-type hemes was almost suppressed. As the Q-deficient QCR was supplemented with ubiquinol-2, the rapid oxidation of b-type hemes was restored to some extent. These results indicate that a limited amount of ubiquinone-10 found in purified preparations of QCR is obligatory for electron transfer from the b-type hemes to iron-sulfur protein (ISP) and heme c1. The characteristic oxidation profiles of heme bL, heme bH, and heme c1 were simulated successfully based on a mechanistic Q cycle model. According to the simulations the two-electron oxidation of ubiquinol-10 via the ISP and heme c1 pathway, which is more favorable thermodynamically than the bifurcation of electron flow into both ISP and heme bL, does really occur as long as heme bL is in the reduced state and provides ubiquinone-10 at center i. Mechanistically this process takes time, thus explaining the initial lag in the oxidation of the b-type hemes. With the partially reduced QCR, inherent ubisemiquinone at center i immediately oxidizes reduced heme bH thus eliminating the lag. The mechanistic Q cycle model consists of 56 reaction species, which are interconnected by the reaction paths specified with microscopic rate constants. The simulations further indicate that the rate constants for electron transfer between the redox centers can be from 10(5) to 10(3) s-1 and are rarely rate-limiting. On the other hand, a shuttle of ubiquinone or ubiquinol between center o and center i and the oxidation of heme c1 can be rate-limiting. The interplay of the microscopic rate constants determines the actual reaction pathway that is shown schematically by the "reaction map." Most significantly, the simulations support the consecutive oxidation of ubiquinol in center o as long as both heme bL and heme bH are in the reduced state. Only when heme bL is oxidized and ISP is reduced can SQo donate an electron to heme bL. Thus, we propose that a kinetic control mechanism, or "a kinetic switch," is significant for the bifurcation of electron flow.
Collapse
Affiliation(s)
- Y Orii
- Department of Public Health, Graduate School of Medicine, Kyoto University, Kyoto 606, Japan.
| | | |
Collapse
|
24
|
Xia D, Yu CA, Kim H, Xia JZ, Kachurin AM, Zhang L, Yu L, Deisenhofer J. Crystal structure of the cytochrome bc1 complex from bovine heart mitochondria. Science 1997; 277:60-6. [PMID: 9204897 DOI: 10.1126/science.277.5322.60] [Citation(s) in RCA: 698] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
On the basis of x-ray diffraction data to a resolution of 2.9 angstroms, atomic models of most protein components of the bovine cytochrome bc1 complex were built, including core 1, core 2, cytochrome b, subunit 6, subunit 7, a carboxyl-terminal fragment of cytochrome c1, and an amino-terminal fragment of the iron-sulfur protein. The positions of the four iron centers within the bc1 complex and the binding sites of the two specific respiratory inhibitors antimycin A and myxothiazol were identified. The membrane-spanning region of each bc1 complex monomer consists of 13 transmembrane helices, eight of which belong to cytochrome b. Closely interacting monomers are arranged as symmetric dimers and form cavities through which the inhibitor binding pockets can be accessed. The proteins core 1 and core 2 are structurally similar to each other and consist of two domains of roughly equal size and identical folding topology.
Collapse
Affiliation(s)
- D Xia
- Howard Hughes Medical Institute and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Matsuno-Yagi A, Hatefi Y. Ubiquinol:cytochrome c oxidoreductase. The redox reactions of the bis-heme cytochrome b in unenergized and energized submitochondrial particles. J Biol Chem 1997; 272:16928-33. [PMID: 9202003 DOI: 10.1074/jbc.272.27.16928] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The redox reactions of the bis-heme cytochrome b of the ubiquinol:cytochrome c oxidoreductase complex (complex III, bc1 complex) were studied in bovine heart submitochondrial particles (SMP). It was shown that (i) when SMP were treated with the complex III inhibitor myxothiazol (or MOA-stilbene or stigmatellin) or with KCN and ascorbate to reduce the high potential centers of complex III (iron-sulfur protein and cytochromes c + c1), NADH or succinate reduced heme bL slowly and incompletely. In contrast, heme bH was reduced by these substrates completely and much more rapidly. Only when the complex III inhibitor was antimycin, and the high potential centers were in the oxidized state, NADH or succinate was able to reduce both bH and bL rapidly and completely. (ii) When NADH or succinate was added to SMP inhibited at complex III by antimycin and energized by ATP, the bis-heme cytochrome b was reduced only partially. Prereduction of the high potential centers was not necessary for this partial b reduction, but slowed down the reduction rate. Deenergization of SMP by uncoupling (or addition of oligomycin to inhibit ATP hydrolysis) resulted in further b reduction. Addition of ATP after b was reduced by substrate resulted in partial b oxidation, and the heme remaining reduced appeared to be mainly bL. Other experiments suggested that the redox changes of cytochrome b effected by energization and deenergization of SMP occurred via electronic communication with the ubiquinone pool. These results have been discussed in relation to current concepts regarding the mechanism of electron transfer by complex III.
Collapse
Affiliation(s)
- A Matsuno-Yagi
- Division of Biochemistry, Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
26
|
Tolkatchev D, Yu L, Yu CA. Potential induced redox reactions in mitochondrial and bacterial cytochrome b-c1 complexes. J Biol Chem 1996; 271:12356-63. [PMID: 8647838 DOI: 10.1074/jbc.271.21.12356] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Purified cytochrome b-c1 complexes from beef heart mitochondria and Rhodobacter sphaeroides were reconstituted into potassium-loaded asolectin liposomes for studies of the energy-dependent electron transfer reactions within the complexes. Both complexes in a ubiquinone-sufficient state exhibit antimycin-sensitive reduction of cytochromes b (both low and high potential ones) upon induction of a diffusion potential by valinomycin in the presence of ascorbate. Addition of N,N,N',N'-tet-ramethyl-p-phenylenediamine (TMPD) to the ascorbate-reduced potassium-loaded asolectin proteoliposomes resulted in reduction of cytochrome b262. Upon addition of valinomycin, the induced diffusion potential caused a partial reoxidation of cytochrome b562 and partial reduction of cytochrome b566 in beef heart cytochrome b-c1 complex in the presence of antimycin and/or myxothiazol. Surprisingly, when ubiquinone-depleted beef heart cytochrome b-c1 complex liposomes were treated under the same conditions, no cytochrome b566 reduction was observed but only the oxidation of cytochrome b562, and the oxidation was not oxygen-dependent. We explain this effect by b566, iron-sulfur protein short-circuiting under these conditions, assuming that both antimycin and myxothiazol markedly affect subunit b conformation. The electrochemical midpoint potential of heme b566 appears to be significantly higher than that of heme b562 in the presence of myxothiazol, which cannot be accounted for only by the potential-driven electron transfer between these two hemes plus the shift in chemical midpoint potentials caused by myxothiazol. A model for energy coupling consistent with structural findings by Ohnishi et al. (Ohnishi, T., Schagger, H., Meinhardt, S. W., LoBrutto, R., Link, T. A., and von Jagow, G. (1989) J. Biol. Chem. 264, 735-744) is presented. This model is a compromise between pure "redox-loop" and pure "proton-pump" mechanisms. Reoxidation of high potential heme b is observed in an antimycin- or antimycin plus myxothiazol-inhibited, ascorbate plus TMPD-prereduced R. sphaerodies b-c1 complex, upon membrane potential development, suggesting that a similar electron transfer mechanism is also operating in the bacterial complex.
Collapse
Affiliation(s)
- D Tolkatchev
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater 74078, USA
| | | | | |
Collapse
|
27
|
Matsuno-Yagi A, Hatefi Y. Ubiquinol-cytochrome c oxidoreductase. The redox reactions of the bis-heme cytochrome b in ubiquinone-sufficient and ubiquinone-deficient systems. J Biol Chem 1996; 271:6164-71. [PMID: 8626405 DOI: 10.1074/jbc.271.11.6164] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Antimycin and myxothiazol are stoichiometric inhibitors of complex III (ubiquinol-cytochrome c oxidoreductase), exerting their highest degree of inhibition at I mol each/mol of complex III monomer. Phenomenologically, however, they each inhibit three steps in the redox reaction of the bis-heme cytochrome b in submitochondrial particles (SMP), and all three inhibitions are incomplete to various extents. (i) In SMP, reduction of hemes bH and bL by NADH or succinate is inhibited when the particles are treated with both antimycin and myxothiazol. Each inhibitor alone allows reduced bH and bL to accumulate, indicating that each inhibits the reoxidation of these hemes. (E)-Methyl-3-methoxy-2-(4')-trans-stilbenyl)acrylatc in combination with antimycin or 2-n-heptyl-4-hydroxyquinoline-N-oxide in combination with myxothiazol causes less inhibition of b reduction than the combination of antimycin and myxothiazol. (ii) Reoxidation of reduced b, is inhibited by either antimycin or myxothiazol (or 2-n-heptyl-4-hydroxyquinoline-N-oxide, (E)-methyl-3-methoxy-2-(4'-trans-stilbenyl)acrylate, or stigmatellin). (iii) Reoxidation of reduced bH is also inhibited by any one of these reagents. These inhibitions are also incomplete, and reduced bL is oxidized through the leaks allowed by these inhibitors at least 10 times faster than reduced bH. Heme bH can be reduced in SMP via cytochrome c, and the Rieske iron-sulfur protein by ascorbate and faster by ascorbate + TMPD (N,N,N',N'-tetramethyl-p-phenylenediamine). Energization of SMP by the addition of ATP affords reduction of bL as well. Reverse electron transfer to bH and bL is inhibited partially by myxothiazol, much more by antimycin. Ascorbate + TMPD also reduce bH in ubiquinone-extracted SMP in which the molar ratio of ubiquinone to cytochrome b has been reduced 200-fold from 12.5 to aproximately 0.06. Reconstitution of the extracted particles with ubiquinone-10 restores substrate oxidation but does not improve the rate or the extent of b, reduction by ascorbate + TMPD. These reagents also partially reduce cytochrome b in SMP from a ubiquinone-deficient yeast mutant. The above results are discussed in relation to the Q-cycle hypothesis.
Collapse
Affiliation(s)
- A Matsuno-Yagi
- Division of Biochemistry, Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
28
|
Iwasaki T, Wakagi T, Isogai Y, Iizuka T, Oshima T. Resolution of the aerobic respiratory system of the thermoacidophilic archaeon, Sulfolobus sp. strain 7. II. Characterization of the archaeal terminal oxidase subcomplexes and implication for the intramolecular electron transfer. J Biol Chem 1995; 270:30893-901. [PMID: 8537343 DOI: 10.1074/jbc.270.52.30893] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The terminal segment of the aerobic respiratory chain of the thermoacidophilic archaeon Sulfolobus sp. strain 7 is an unusual caldariellaquinol oxidase supercomplex, which contains at least one b-type and three spectroscopically distinguishable a-type cytochromes, one copper, and a Rieske-type FeS center. In this paper, we report the purification and characterization of two different forms of the archaeal a-type cytochromes, namely, a three-subunit cytochrome a583-aa3 subcomplex and a single-subunit cytochrome aa3 derived from the cytochrome subcomplex, in order to facilitate further studies on the terminal oxidase segment of Sulfolobus. The optical and EPR spectroscopic analyses suggest the presence of two different low-spin heme centers and one high-spin heme center in the purified cytochrome a583-aa3 subcomplex, and one low-spin and one high-spin hemes in cytochrome aa3, respectively. The Rieske-type FeS center detected in the purified cytochrome supercomplex was absent in two forms of the a-type cytochrome oxidase, indicating its association with cytochrome b562. The crystal field parameters of the lowspin heme a583 center indicate that its axial ligands may be similar to those of cytochromes c, rather than conventional bis-histidine ligation. In spite of the absence of any c-type cytochrome, a ferrocytochrome c oxidase activity was detected in the archaeal purified cytochrome a583-aa3 subcomplex with no quinol oxidase activity, but not in the purified cytochrome oxidase supercomplex, which has been tentatively interpreted as a representative of electron transfer from the Rieske FeS center to cytochrome a583 in vivo. Thus, our results indicate the following scheme for the intramolecular electron transfer of the terminal oxidase supercomplex from Sulfolobus sp. strain 7: [caldariellaquinol-->] b562-->Rieske FeS center-->a583 aa3-->molecular oxygen.
Collapse
Affiliation(s)
- T Iwasaki
- Department of Life Science, Tokyo Institute of Technology, Yokohama, Japan
| | | | | | | | | |
Collapse
|
29
|
Iwasaki T, Matsuura K, Oshima T. Resolution of the aerobic respiratory system of the thermoacidophilic archaeon, Sulfolobus sp. strain 7. I. The archaeal terminal oxidase supercomplex is a functional fusion of respiratory complexes III and IV with no c-type cytochromes. J Biol Chem 1995; 270:30881-92. [PMID: 8537342 DOI: 10.1074/jbc.270.52.30881] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The aerobic respiratory system of the thermoacidophilic archaeon, Sulfolobus sp. strain 7, is unusual in that it consists of only a- and b-type cytochromes but no c-type cytochromes. In previous studies, a novel cytochrome oxidase a583-aa3 subcomplex has been purified, which showed a ferrocytochrome c oxidase but no caldariellaquinol oxidase activity (Wakagi, T., Yamauchi, T., Oshima, T., Müller, M., Azzi, A., and Sone, N. (1989) Biochem. Biophys. Res. Commun. 165, 1110-1114). We show here that the cytochrome subcomplex could be copurified with a non-CO-reactive cytochrome b562 as a novel terminal oxidase "supercomplex," which also contained a Rieske-type FeS cluster at gy = 1.89. It contained one copper and all four heme centers detectable in the archaeal membranes by the low temperature spectrophotometry and the potentiometric titration: cytochromes b562 (+146 mV), a583 (+270 mV), and aa3 (+117 and +325 mV). The presence of one copper atom indicates that it contains the conventional heme a3-CuB binuclear center for reducing molecular oxygen. In conjunction with the presence of a Rieske-type FeS center, inhibitor studies suggest that the terminal oxidase segment of the respiratory chain of Sulfolobus sp. strain 7 is a functional fusion of respiratory complexes III and IV, where cytochrome b562 and the Rieske-type FeS center probably play a central role in the oxidation of caldariellaquinol. This archaeal terminal oxidase supercomplex reconstitutes the in vitro succinate oxidase respiratory chain for the first time together with caldariellaquinone and the purified cognate succinate:caldariellaquinone oxidoreductase complex. The reconstitution system requires caldariellaquinone for the activity, and is highly sensitive to cyanide and 2-heptyl-4-hydroxy-quinoline-N-oxide. These results are also discussed in terms of the evolutionary considerations.
Collapse
Affiliation(s)
- T Iwasaki
- Department of Life Science, Tokyo Institute of Technology, Yokohama, Japan
| | | | | |
Collapse
|
30
|
Bruel C, Manon S, Guérin M, Lemesle-Meunier D. Decoupling of the bc1 complex in S. cerevisiae; point mutations affecting the cytochrome b gene bring new information about the structural aspect of the proton translocation. J Bioenerg Biomembr 1995; 27:527-39. [PMID: 8718457 DOI: 10.1007/bf02110192] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Four mutations in the mitochondrial cytochrome b of S. cerevisiae have been characterized with respect to growth capacities, catalytic properties, ATP/2e- ratio, and transmembrane potential. The respiratory-deficient mutant G137E and the three pseudo-wild type revertants E137 + I147F, E137 + C133S, and E137 + N256K were described previously (Tron and Lemesle-Meunier, 1990; Di Rago et al., 1990a). The mutant G137E is unable to grow on respiratory substrates but its electron transfer activity is partly conserved and totally inhibited by antimycin A. The secondary mutations restore the respiratory growth at variable degree, with a phosphorylation efficiency of 12-42% as regards the parental wild type strain, and result in a slight increase in the various electron transfer activities at the level of the whole respiratory chain. The catalytic efficiency for ubiquinol was slightly (G137E) or not affected (E137 + I147F, E137 + C133S, and E137 + N256K) in these mutants. Mutation G137E induces a decrease in the ATP/2e- ratio (50% of the W.T. value) and transmembrane potential (60% of the W.T. value) at the bc1 level, whereas the energetic capacity of the cytochrome oxidase is conserved. Secondary mutations I147F, C133S, and N256K partly restore the ATP/2e- ratio and the transmembrane potential at the bc1 complex level. The results suggest that a partial decoupling of the bc1 complex is induced by the cytochrome b point mutation G137E. In the framework of the protonmotive Q cycle, this decoupling can be explained by the existence of a proton wire connecting centers P and N in the wild type bc1 complex which may be amplified or uncovered by the G137E mutation when the bc1 complex is functioning.
Collapse
Affiliation(s)
- C Bruel
- Laboratoire de Bioénergétique et Ingénierie des Protéines, C.N.R.S., Marseille, France
| | | | | | | |
Collapse
|
31
|
van der Oost J, Schepper M, Stouthamer AH, Westerhoff HV, van Spanning RJ, de Gier JW. Reversed electron transfer through the bc1 complex enables a cytochrome c oxidase mutant (delta aa3/cbb3) of Paracoccus denitrificans to grow on methylamine. FEBS Lett 1995; 371:267-70. [PMID: 7556607 DOI: 10.1016/0014-5793(95)00900-t] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In Paracoccus denitrificans four classes of redox proteins are involved in the electron transfer from methylamine to oxygen:methylamine dehydrogenase (MADH), amicyanin, cytochrome c and cytochrome c oxidase. MADH and its electron acceptor amicyanin are indispensable for growth on methylamine. At least three different cytochromes c and two types of cytochrome c oxidase, cytochromes aa3 and cbb3, have previously been proposed to participate in the electron transfer pathways from methylamine to oxygen. In this study, participation of both cytochrome c oxidases and of the quinol oxidase (cytochrome bb3) has indeed been confirmed by analysis of a series of oxidase mutants. Interestingly, a P. denitrificans cytochrome c oxidase mutant (delta aa3/cbb3) retains the capacity to oxidise methylamine. It is demonstrated that the oxidation of the cytochrome c pool in this mutant does not proceed via an alternative cytochrome c oxidase, but rather via an 'uphill' electron transfer through the bc1 complex to ubiquinone, driven by the membrane potential. The subsequent oxidation of ubiquinol proceeds via the only remaining terminal oxidase, the bb3-type quinol oxidase.
Collapse
Affiliation(s)
- J van der Oost
- Department of Molecular and Cellular Biology, BioCentrum Amsterdam, Vrije Universiteit, The Netherlands
| | | | | | | | | | | |
Collapse
|