1
|
Murphy D, Konopacka A, Hindmarch C, Paton JFR, Sweedler JV, Gillette MU, Ueta Y, Grinevich V, Lozic M, Japundzic-Zigon N. The hypothalamic-neurohypophyseal system: from genome to physiology. J Neuroendocrinol 2012; 24:539-53. [PMID: 22448850 PMCID: PMC3315060 DOI: 10.1111/j.1365-2826.2011.02241.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The elucidation of the genomes of a large number of mammalian species has produced a huge amount of data on which to base physiological studies. These endeavours have also produced surprises, not least of which has been the revelation that the number of protein coding genes needed to make a mammal is only 22 333 (give or take). However, this small number belies an unanticipated complexity that has only recently been revealed as a result of genomic studies. This complexity is evident at a number of levels: (i) cis-regulatory sequences; (ii) noncoding and antisense mRNAs, most of which have no known function; (iii) alternative splicing that results in the generation of multiple, subtly different mature mRNAs from the precursor transcript encoded by a single gene; and (iv) post-translational processing and modification. In this review, we examine the steps being taken to decipher genome complexity in the context of gene expression, regulation and function in the hypothalamic-neurohypophyseal system (HNS). Five unique stories explain: (i) the use of transcriptomics to identify genes involved in the response to physiological (dehydration) and pathological (hypertension) cues; (ii) the use of mass spectrometry for single-cell level identification of biological active peptides in the HNS, and to measure in vitro release; (iii) the use of transgenic lines that express fusion transgenes enabling (by cross-breeding) the generation of double transgenic lines that can be used to study vasopressin (AVP) and oxytocin (OXT) neurones in the HNS, as well as their neuroanatomy, electrophysiology and activation upon exposure to any given stimulus; (iv) the use of viral vectors to demonstrate that somato-dendritically released AVP plays an important role in cardiovascular homeostasis by binding to V1a receptors on local somata and dendrites; and (v) the use of virally-mediated optogenetics to dissect the role of OXT and AVP in the modulation of a wide variety of behaviours.
Collapse
Affiliation(s)
- D Murphy
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Davies J, Waller S, Zeng Q, Wells S, Murphy D. Further delineation of the sequences required for the expression and physiological regulation of the vasopressin gene in transgenic rat hypothalamic magnocellular neurones. J Neuroendocrinol 2003; 15:42-50. [PMID: 12535168 DOI: 10.1046/j.1365-2826.2003.00865.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have introduced transgenes into rats with a view to defining genomic regions that mediate the cell-specific and physiological regulation of the vasopressin gene. These transgenes consist of the rat vasopressin structural gene with a reporter inserted into exon III, flanked by different lengths of upstream and downstream sequences. 11-VCAT-3 is flanked by 11 kbp of upstream sequences and 3 kbp of downstream sequences. The previously described 5-VCAT-3 is flanked by 5 kbp of upstream and 3 kbp of downstream sequences. 3-VCAT-3 has 3 kbp of upstream and 3 kbp of downstream sequences, and 3-VCAT-0.2 is flanked by 3 kbp of upstream and 0.2 kbp of downstream sequences. All four transgenes elicit the same expression patterns; low basal expression is seen in the magnocellular supraoptic and paraventricular nuclei, and is negligible in the suprachiasmatic nucleus. Expression increases markedly in vasopressin magnocellular cells following dehydration. The sequences responsible for the cell-specific expression and physiological regulation of our transgenes thus reside within the confines of the smallest construct studied, 3-VCAT-0.2.
Collapse
Affiliation(s)
- J Davies
- Molecular Neuroendocrinology Research Group, University of Bristol Research Centre for Neuroendocrinology, Bristol Royal Infirmary, Bristol, UK
| | | | | | | | | |
Collapse
|
3
|
Abstract
Selection of the translational initiation site in most eukaryotic mRNAs appears to occur via a scanning mechanism which predicts that proximity to the 5' end plays a dominant role in identifying the start codon. This "position effect" is seen in cases where a mutation creates an AUG codon upstream from the normal start site and translation shifts to the upstream site. The position effect is evident also in cases where a silent internal AUG codon is activated upon being relocated closer to the 5' end. Two mechanisms for escaping the first-AUG rule--reinitiation and context-dependent leaky scanning--enable downstream AUG codons to be accessed in some mRNAs. Although these mechanisms are not new, many new examples of their use have emerged. Via these escape pathways, the scanning mechanism operates even in extreme cases, such as a plant virus mRNA in which translation initiates from three start sites over a distance of 900 nt. This depends on careful structural arrangements, however, which are rarely present in cellular mRNAs. Understanding the rules for initiation of translation enables understanding of human diseases in which the expression of a critical gene is reduced by mutations that add upstream AUG codons or change the context around the AUG(START) codon. The opposite problem occurs in the case of hereditary thrombocythemia: translational efficiency is increased by mutations that remove or restructure a small upstream open reading frame in thrombopoietin mRNA, and the resulting overproduction of the cytokine causes the disease. This and other examples support the idea that 5' leader sequences are sometimes structured deliberately in a way that constrains scanning in order to prevent harmful overproduction of potent regulatory proteins. The accumulated evidence reveals how the scanning mechanism dictates the pattern of transcription--forcing production of monocistronic mRNAs--and the pattern of translation of eukaryotic cellular and viral genes.
Collapse
Key Words
- translational control
- aug context
- 5′ untranslated region
- reinitiation
- leaky scanning
- dicistronic mrna
- internal ribosome entry site
- adometdc, s-adenosylmethionine decarboxylase
- a2ar, a2a adenosine receptor
- c/ebp, ccaat/enhancer binding protein
- ctl, cytotoxic t-lymphocyte
- egfp, enhanced green fluorescent protein
- eif, eukaryotic initiation factor
- hiv-1, human immunodeficiency virus 1
- ires, internal ribosome entry site
- lef1, lymphoid enhancer factor-1
- ogp, osteogenic growth peptide
- orf, open reading frame
- r, purine
- tpo, thrombopoietin
- uporf, upstream open reading frame
- utr, untranslated region
Collapse
Affiliation(s)
- Marilyn Kozak
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA.
| |
Collapse
|
4
|
Kleene KC. A possible meiotic function of the peculiar patterns of gene expression in mammalian spermatogenic cells. Mech Dev 2001; 106:3-23. [PMID: 11472831 DOI: 10.1016/s0925-4773(01)00413-0] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This review focuses on the striking differences in the patterns of transcription and translation in somatic and spermatogenic cells in mammals. In early haploid cells, mRNA translation evidently functions to restrict the synthesis of certain proteins, notably protamines, to transcriptionally inert late haploid cells. However, this does not explain why a substantial proportion of virtually all mRNA species are sequestered in translationally inactive free-messenger ribonucleoprotein particles (free-mRNPs) in meiotic cells, since most mRNAs undergo little or no increase in translational activity in transcriptionally active early haploid cells. In addition, most mRNAs in meiotic cells appear to be overexpressed because they are never fully loaded on polysomes and the levels of the corresponding protein are often much lower than the mRNA and are sometimes undetectable. A large number of genes are expressed at grossly higher levels in meiotic and/or early haploid spermatogenic cells than in somatic cells, yet they too are translated inefficiently. Many genes utilize alternative promoters in somatic and spermatogenic cells. Some of the resulting spermatogenic cell-altered transcripts (SCATs) encode proteins with novel functions, while others contain features in their 5'-UTRs, secondary structure or upstream reading frames, that are predicted to inhibit translation. This review proposes that the transcriptional machinery is modified to provide access to specific DNA sequences during meiosis, which leads to mRNA overexpression and creates a need for translational fine-tuning to prevent deleterious consequences of overproducing proteins.
Collapse
Affiliation(s)
- K C Kleene
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125-3393, USA..
| |
Collapse
|
5
|
McCool S, Pierotti AR. Expression of the thimet oligopeptidase gene is regulated by positively and negatively acting elements. DNA Cell Biol 2000; 19:729-38. [PMID: 11177571 DOI: 10.1089/104454900750058099] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Thimet oligopeptidase (TOP) is a thiol-dependent metallopeptidase, which can cleave and thereby modulate the activity of many neuropeptides. The enzyme is active in many endocrine tissues, including testis, brain, and pituitary. In rat, the richest source of TOP is the testes, with a specific activity fivefold that of brain. The mechanism whereby rat TOP expression is regulated at the transcriptional level has been examined by reporter gene assay and electromobility shift assays after isolation of 1020 bp of upstream sequence. Computer analysis predicts a number of potential transcription factor-binding sites, which were examined by deletion analysis and DNA-binding studies. The promoter or its deletion fragments were fused to luciferase reporter gene vectors and introduced into GH3 pituitary, COS-1 kidney, MAT-Lu prostate, and GC-2spd(ts) spermatid cells. Two regions of the promoter have been identified: a positively acting region (-901/-219) and a strong negatively acting region (-219/-102). Concomitantly, potential transcription factors interacting with the cis-acting elements of the promoter were studied by gel electromobility shift assays. This work has identified a number of transcription factor-binding sites. However, no differences in the binding behavior in the various cell lines was observed.
Collapse
Affiliation(s)
- S McCool
- School of Biological & Biomedical Sciences, Glasgow Caledonian University, Glasgow, Scotland
| | | |
Collapse
|
6
|
Suzuki Y, Ishihara D, Sasaki M, Nakagawa H, Hata H, Tsunoda T, Watanabe M, Komatsu T, Ota T, Isogai T, Suyama A, Sugano S. Statistical analysis of the 5' untranslated region of human mRNA using "Oligo-Capped" cDNA libraries. Genomics 2000; 64:286-97. [PMID: 10756096 DOI: 10.1006/geno.2000.6076] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We constructed 34 types of human "full-length enriched" and "5'-end enriched" cDNA libraries based on the "Oligo-Capping" method. We randomly picked and sequenced 10,000 clones from these libraries. BLAST analysis showed that about 50% of the cDNAs were identical to known genes. Among them, we selected 954 species of cDNA that should represent the entire sequence from the mRNA start sites. Compared with previously reported sequences, they were on average 45 bp longer in the 5'-end. Using these cDNA data, we statistically analyzed the sequence features of the 5'UTR. The average length of the 5'UTR was 125 bp, and there was little correlation with the corresponding mRNA length (correlation coefficient = 0.26). Of the 954 species of 5'UTR, 459 contained no in-frame terminator codon, which is against the common belief. Two hundred seventy-eight species contained at least one ATG codon upstream of the initiator ATG codon. We identified 569 upstream ATGs, in total, 63% of which adequately satisfied Kozak's criteria. These findings are contrary to the typical translation initiation model, which states that translation is initiated from the "first" ATG codon.
Collapse
Affiliation(s)
- Y Suzuki
- Department of Virology, Institute of Medical Science, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Blostein R. Jeanne Mannery Fisher Memorial Lecture 1998. Structure-function studies of the sodium pump. Biochem Cell Biol 1999; 77:1-10. [PMID: 10426281 DOI: 10.1139/o99-018] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Na+, K+-ATPase is an ubiquitous plasma membrane protein complex that belongs to the P-type family of ion motive ATPases. Under normal conditions, it couples the hydrolysis of one molecule of ATP to the exchange of three Na+ for two K+ ions, thus maintaining the normal gradient of these cations in animal cells. Despite decades of investigation of its structure and function, the structural basis for its cation specificity and for conformational coupling of the scalar energy of ATP hydrolysis to the vectorial movement of Na+ and K+ have remained a major unresolved issue. This paper summarizes our recent studies concerned with these issues. The findings indicate that regions(s) of the amino terminus and first cytoplasmic (M2/M3) loop act synergistically to affect the steady-state conformational equilibrium of the enzyme. Although carboxyl- or hydroxyl-bearing amino acids comprise the cation-binding and occlusion sites, our experiments also suggest that these interactions may be modulated by juxtapositioned cytoplasmic regions.
Collapse
Affiliation(s)
- R Blostein
- Department of Biochemistry, McGill University, Montréal, QC, Canada.
| |
Collapse
|
8
|
Geddes BJ, Harding TC, Lightman SL, Uney JB. Long-term gene therapy in the CNS: reversal of hypothalamic diabetes insipidus in the Brattleboro rat by using an adenovirus expressing arginine vasopressin. Nat Med 1997; 3:1402-4. [PMID: 9396613 DOI: 10.1038/nm1297-1402] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The ability of adenovirus (Ad) to transfect most cell types efficiently has already resulted in human gene therapy trials involving the systemic administration of adenoviral constructs. However, because of the complexity of brain function and the difficulty in noninvasively monitoring alterations in neuronal gene expression, the potential of Ad gene therapy strategies for treating disorders of the CNS has been difficult to assess. In the present study, we have used an Ad encoding the arginine vasopressin cDNA (AdAVP) in an AVP-deficient animal model of diabetes insipidus (the Brattleboro rat), which allowed us to monitor chronically the success of the gene therapy treatment by noninvasive assays. Injection of AdAVP into the supraoptic nuclei (SON) of the hypothalamus resulted in expression of AVP in magnocellular neurons. This was accompanied by reduced daily water intake and urine volume, as well as increased urine osmolality lasting 4 months. These data show that a single gene defect leading to a neurological disorder can be corrected with an adenovirus-based strategy. This study highlights the potential of using Ad gene therapy for the long-term treatment of disorders of the CNS.
Collapse
Affiliation(s)
- B J Geddes
- University of Bristol, Department of Medicine Laboratories, UK
| | | | | | | |
Collapse
|
9
|
Sairam MR, Subbarayan VS. Characterization of the 5' flanking region and potential control elements of the ovine follitropin receptor gene. Mol Reprod Dev 1997; 48:480-7. [PMID: 9364442 DOI: 10.1002/(sici)1098-2795(199712)48:4<480::aid-mrd8>3.0.co;2-m] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In the preceding two reports, we presented evidence for the structure and functional characteristics of two different, yet related variants of the sheep testicular follicle-stimulating hormone receptor (oFSH receptor) cDNA. To shed further light on the structural basis of the formation of such receptor forms with different motifs and the eventual understanding of gene regulation, we initiated studies to clone the gene. An 8 kb EcoR I fragment containing the exon-1 and 5' flanking sequence was cloned and characterized from among the 14 clones that were isolated from the genomic library. Although not all other clones were fully characterized, we believe that the entire gene of 85-100 kb has been secured as we adopted a successive screening strategy to accommodate currently known alternatively spliced variants of the receptor in this species. This has led us to propose a revised model that includes an 11th exon for the oFSH receptor gene. The 11th exon that lies beyond the currently postulated 10th exon contributes important DNA sequence that results in two different structural/functional motifs. One creates a dominant negative receptor and the other leads to the formation of a growth factor type I receptor for the hormone. In the 2.1 kb 5'-upstream region, there are a number of potentially interesting regulatory elements that resemble sites for estrogen response element (ERE-like), CRE, and orphan receptor (SF-1/ NGF I-A) transcription factors among others. Other interesting features include the presence of potential germ cell specific and methylation sites. By performing primer extension with testicular RNA, we could identify a single major transcription start site at -163 relative to +1ATG. The availability of the structure of FSH-receptor gene in this domestically important seasonal breeder could spur investigations into the control of receptor gene expression.
Collapse
Affiliation(s)
- M R Sairam
- Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), Illkirch, France.
| | | |
Collapse
|
10
|
Venkatesh B, Si-Hoe SL, Murphy D, Brenner S. Transgenic rats reveal functional conservation of regulatory controls between the Fugu isotocin and rat oxytocin genes. Proc Natl Acad Sci U S A 1997; 94:12462-6. [PMID: 9356472 PMCID: PMC25001 DOI: 10.1073/pnas.94.23.12462] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have asked whether comparative genome analysis and rat transgenesis can be used to identify functional regulatory domains in the gene locus encoding the hypothalamic neuropeptides oxytocin (OT) and vasopressin. Isotocin (IT) and vasotocin (VT) are the teleost homologues of these genes. A contiguous stretch of 46 kb spanning the Fugu IT-VT locus has been sequenced, and nine putative genes were found. Unlike the OT and vasopressin genes, which are closely linked in the mammalian genome in a tail-to-tail orientation, Fugu IT and VT genes are linked head to tail and are separated by five genes. When a cosmid containing the Fugu IT-VT locus was introduced into the rat genome, we found that the Fugu IT gene was specifically expressed in rat hypothalamic oxytocinergic neurons and mimicked the response of the endogenous OT gene to an osmotic stimulus. These data show that cis-acting elements and trans-acting factors mediating the cell-specific and physiological regulation of the OT and IT genes are conserved between mammals and fish. The combination of Fugu genome analysis and transgenesis in a mammal is a powerful tool for identifying and analyzing conserved vertebrate regulatory elements.
Collapse
Affiliation(s)
- B Venkatesh
- Molecular Genetics Laboratory, Institute of Molecular and Cell Biology, National University of Singapore, 15, Lower Kent Ridge Road, Singapore 119076, USA.
| | | | | | | |
Collapse
|
11
|
Gnessi L, Fabbri A, Spera G. Gonadal peptides as mediators of development and functional control of the testis: an integrated system with hormones and local environment. Endocr Rev 1997; 18:541-609. [PMID: 9267764 DOI: 10.1210/edrv.18.4.0310] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- L Gnessi
- Dipartimento di Fisiopatologia Medica, Università di Roma La Sapienza, Italy
| | | | | |
Collapse
|
12
|
Schmidt EE, Ohbayashi T, Makino Y, Tamura T, Schibler U. Spermatid-specific overexpression of the TATA-binding protein gene involves recruitment of two potent testis-specific promoters. J Biol Chem 1997; 272:5326-34. [PMID: 9030607 DOI: 10.1074/jbc.272.8.5326] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The gene encoding the TATA-binding protein, TBP, is highly overexpressed during the haploid stages of spermatogenesis in rodents. RNase protection analyses for mRNAs containing the previously identified first, second, and eighth exons suggested that most TBP mRNAs in testis did not initiate at the first exon used in somatic cells (here designated exon 1C). Using a sensitive ligation-mediated cDNA amplification method, 5' end variants of TBP mRNA were identified, and the corresponding cDNAs were cloned from liver and testis. In liver, a single promoter/first exon is used to generate a steady-state level of roughly five molecules of TBP mRNA per diploid cell equivalent. In testis, we detect modest up-regulation of the somatic promoter and recruitment of at least five other promoters. Three of the alternative promoter/first exons, including 1C and two of the testis-specific promoter/first exons, 1D and 1E, contribute roughly equivalent amounts of mRNA which, in sum, account for greater than 90% of all TBP mRNA in testis. As a result, round spermatids contain an estimated 1000 TBP mRNA molecules per haploid cell. Testis TBP mRNA also exhibits several low abundance 5' end splicing variants; however, all detected TBP mRNA leader sequences splice onto the common exon 2 and are expected to initiate translation at the same site within exon 2. The precise locations of the three major initiation exons are mapped on the gene. The identification of the strong testis-specific promoter/first exons will be important for understanding spermatid-specific tbp gene regulation.
Collapse
Affiliation(s)
- E E Schmidt
- Department of Molecular Biology, University of Geneva, Sciences II, 30, Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland.
| | | | | | | | | |
Collapse
|
13
|
Kolmer M, Pelto-Huikko M, Parvinen M, Höög C, Alho H. The transcriptional and translational control of diazepam binding inhibitor expression in rat male germ-line cells. DNA Cell Biol 1997; 16:59-72. [PMID: 9022045 DOI: 10.1089/dna.1997.16.59] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The diazepam binding inhibitor [DBI, also known as acyl-CoA-binding protein, (ACBP), or endozepine] is a 10-kD protein that has been suggested to be involved in the regulation of several biological processes such as acyl-CoA metabolism, steroidogenesis, insulin secretion, and gamma-aminobutyric acid type A (GABA(A))/benzodiazepine receptor modulation. DBI has been cloned from vertebrates, insects, plants, and yeasts. In mammals, DBI is expressed in almost all the tissues studied. Nevertheless, DBI expression is restricted to specific cell types. Here we have studied DBI gene expression in the germ-line cells of rat testis. The DBI gene was intensively transcribed in postmeiotic round spermatids from stages VI to VIII of the seminiferous epithelial cycle. A prominent, spermatid-specific upstream transcription initiation site was identified in addition to the multiple common transcriptional initiation sites found in the somatic tissues. However, no DBI protein was detected in round spermatids, suggesting that the DBI transcripts were translationally arrested. The DBI protein was detected in the late spermatogenic stages starting from elongating spermatids from step 18 (stage VI) onward. The DBI protein was also detected in mature spermatozoa and in ejaculated human sperms. The majority of DBI was located at the middle piece of the spermatozoons tail enriched with mitochondria. On the basis of this observation and the well-established role of DBI in acyl-CoA metabolism, we propose that DBI expression in spermatozoa reflects the usage of fatty acids as a primary energy source by spermatozoa. The biological function of DBI in spermatozoa could thus be related to the motility function of sperm.
Collapse
Affiliation(s)
- M Kolmer
- University of Tampere, Medical School, Finland
| | | | | | | | | |
Collapse
|
14
|
Abstract
This review discusses some rules for assessing the completeness of a cDNA sequence and identifying the start site for translation. Features commonly invoked-such as an ATG codon in a favorable context for initiation, or the presence of an upstream in-frame terminator codon, or the prediction of a signal peptide-like sequence at the amino terminus-have some validity; but examples drawn from the literature illustrate limitations to each of these criteria. The best advice is to inspect a cDNA sequence not only for these positive features but also for the absence of certain negative indicators. Three specific warning signs are discussed and documented: (i) The presence of numerous ATG codons upstream from the presumptive start site for translation often indicates an aberration (sometimes a retained intron) at the 5' end of the cDNA. (ii) Even one strong, upstream, out-of-frame ATG codon poses a problem if the reading frame set by the upstream ATG overlaps the presumptive start of the major open reading frame. Many cDNAs that display this arrangement turn out to be incomplete; that is, the out-of-frame ATG codon is within, rather than upstream from, the protein coding domain. (iii) A very weak context at the putative start site for translation often means that the cDNA lacks the authentic initiator codon. In addition to presenting some criteria that may aid in recognizing incomplete cDNA sequences, the review includes some advice for using in vitro translation systems for the expression of cDNAs. Some unresolved questions about translational regulation are discussed by way of illustrating the importance of verifying mRNA structures before making deductions about translation.
Collapse
Affiliation(s)
- M Kozak
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey, 675 Hoes Lane, Piscataway, New Jersey 08854, USA
| |
Collapse
|
15
|
Abstract
A transgene consisting of the rat vasopressin structural gene containing a reporter in exon III, flanked by 5 kb of upstream and 3 kb of downstream sequences, is expressed in vasopressinergic, but not oxytocinergic, magnocellular neurons of rats. Functionally appropriate physiological stimuli increase transgene expression in magnocellular neurons in an exaggerated fashion; the magnitude of the transgene response to osmotic challenge exceeds that of the endogenous gene by 10-15 fold. Magnocellular vasopressinergic neurons in the rat are now accessible to rational and precise genetic perturbation of function and regulation.
Collapse
Affiliation(s)
- Q Zeng
- Neuropeptide Laboratory, Institute of Molecular and Cell Biology, Singapore
| | | | | |
Collapse
|