1
|
Kulanayake S, Tikoo SK. Adenovirus Core Proteins: Structure and Function. Viruses 2021; 13:v13030388. [PMID: 33671079 PMCID: PMC7998265 DOI: 10.3390/v13030388] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 01/04/2023] Open
Abstract
Adenoviruses have served as a model for investigating viral-cell interactions and discovering different cellular processes, such as RNA splicing and DNA replication. In addition, the development and evaluation of adenoviruses as the viral vectors for vaccination and gene therapy has led to detailed investigations about adenovirus biology, including the structure and function of the adenovirus encoded proteins. While the determination of the structure and function of the viral capsid proteins in adenovirus biology has been the subject of numerous reports, the last few years have seen increased interest in elucidating the structure and function of the adenovirus core proteins. Here, we provide a review of research about the structure and function of the adenovirus core proteins in adenovirus biology.
Collapse
Affiliation(s)
- Shermila Kulanayake
- Vaccine and Infectious Disease Organization-International Vaccine Center (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N5E3, Canada;
- Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N5E3, Canada
| | - Suresh K. Tikoo
- Vaccine and Infectious Disease Organization-International Vaccine Center (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N5E3, Canada;
- Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N5E3, Canada
- Correspondence:
| |
Collapse
|
2
|
Abstract
First discovered as a structure-specific endonuclease that evolved to cut at the base of single-stranded flaps, flap endonuclease (FEN1) is now recognized as a central component of cellular DNA metabolism. Substrate specificity allows FEN1 to process intermediates of Okazaki fragment maturation, long-patch base excision repair, telomere maintenance, and stalled replication fork rescue. For Okazaki fragments, the RNA primer is displaced into a 5' flap and then cleaved off. FEN1 binds to the flap base and then threads the 5' end of the flap through its helical arch and active site to create a configuration for cleavage. The threading requirement prevents this active nuclease from cutting the single-stranded template between Okazaki fragments. FEN1 efficiency and specificity are critical to the maintenance of genome fidelity. Overall, recent advances in our knowledge of FEN1 suggest that it was an ancient protein that has been fine-tuned over eons to coordinate many essential DNA transactions.
Collapse
Affiliation(s)
- Lata Balakrishnan
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA.
| | | |
Collapse
|
3
|
Abstract
One strand of cellular DNA is generated as RNA-initiated discontinuous segments called Okazaki fragments that later are joined. The RNA terminated region is displaced into a 5' single-stranded flap, which is removed by the structure-specific flap endonuclease 1 (FEN1), leaving a nick for ligation. Similarly, in long-patch base excision repair, a damaged nucleotide is displaced into a flap and removed by FEN1. FEN1 is a genome stabilization factor that prevents flaps from equilibrating into structures that lead to duplications and deletions. As an endonuclease, FEN1 enters the flap from the 5' end and then tracks to cleave the flap base. Cleavage is oriented by the formation of a double flap. Analyses of FEN1 crystal structures suggest mechanisms for tracking and cleavage. Some flaps can form self-annealed and template bubble structures that interfere with FEN1. FEN1 interacts with other nucleases and helicases that allow it to act efficiently on structured flaps. Genetic and biochemical analyses continue to reveal many roles of FEN1.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA.
| | | | | |
Collapse
|
4
|
Sato M, Girard L, Sekine I, Sunaga N, Ramirez RD, Kamibayashi C, Minna JD. Increased expression and no mutation of the Flap endonuclease (FEN1) gene in human lung cancer. Oncogene 2003; 22:7243-6. [PMID: 14562054 DOI: 10.1038/sj.onc.1206977] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The underlying molecular mechanisms leading to microsatellite alteration and mutations in human lung cancer remain unknown. Since Flap endonuclease1 (Fen1), which functions in the base excision repair system, has been shown to be involved in tumor progression of mouse models with microsatellite instability in a haplo-insufficient manner, we performed expression and mutation analyses for FEN1 in human lung cancer cell lines. Reverse transcriptase PCR analysis revealed that all 49 lung cancer cell lines (20 small cell lung cancers (SCLCs) and 29 non-small cell lung cancers (NSCLCs)) expressed FEN1. In addition, microarray analysis showed that FEN1 expression was elevated significantly by 1.65-fold (P=0.001) in SCLC cell lines compared to normal lung controls (normal human lung cultures and immortalized normal human bronchial epithelial cell lines). FEN1 protein was abundantly expressed in all 23 lung cancer cell lines (10 SCLCs and 13 NSCLCs) and was expressed at lower levels in three of four normal lung epithelial culture controls. Direct sequencing of genomic DNAs revealed no FEN1 mutation in seven SCLCs and nine NSCLCs. As part of this analysis we discovered and sequenced a FEN1 pseudogene (GenBank accession #AY249897) located at 1p22.2. This pseudogene is amplified from cDNA preparations contaminated with genomic DNA and must be taken into account in any FEN1 mutation analysis studies. Our results suggest that alterations of FEN1 are not likely to contribute to development of lung cancer.
Collapse
Affiliation(s)
- Mitsuo Sato
- Department of Internal Medicine, Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390-8593, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Kucherlapati M, Yang K, Kuraguchi M, Zhao J, Lia M, Heyer J, Kane MF, Fan K, Russell R, Brown AMC, Kneitz B, Edelmann W, Kolodner RD, Lipkin M, Kucherlapati R. Haploinsufficiency of Flap endonuclease (Fen1) leads to rapid tumor progression. Proc Natl Acad Sci U S A 2002; 99:9924-9. [PMID: 12119409 PMCID: PMC126601 DOI: 10.1073/pnas.152321699] [Citation(s) in RCA: 199] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Flap endonuclease (Fen1) is required for DNA replication and repair, and defects in the gene encoding Fen1 cause increased accumulation of mutations and genome rearrangements. Because mutations in some genes involved in these processes cause cancer predisposition, we investigated the possibility that Fen1 may function in tumorigenesis of the gastrointestinal tract. Using gene knockout approaches, we introduced a null mutation into murine Fen1. Mice homozygous for the Fen1 mutation were not obtained, suggesting absence of Fen1 expression leads to embryonic lethality. Most Fen1 heterozygous animals appear normal. However, when combined with a mutation in the adenomatous polyposis coli (Apc) gene, double heterozygous animals have increased numbers of adenocarcinomas and decreased survival. The tumors from these mice show microsatellite instability. Because one copy of the Fen1 gene remained intact in tumors, Fen1 haploinsufficiency appears to lead to rapid progression of cancer.
Collapse
Affiliation(s)
- Melanie Kucherlapati
- Department of Medicine and Harvard Partners Center for Genetics and Genomics, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Hartigan-O'Connor D, Amalfitano A, Chamberlain JS. Improved production of gutted adenovirus in cells expressing adenovirus preterminal protein and DNA polymerase. J Virol 1999; 73:7835-41. [PMID: 10438876 PMCID: PMC104313 DOI: 10.1128/jvi.73.9.7835-7841.1999] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Production of gutted, or helper-dependent, adenovirus vectors by current methods is inefficient. Typically, a plasmid form of the gutted genome is transfected with helper viral DNA into 293 cells; the resulting lysate is serially passaged to increase the titer of gutted virions. Inefficient production of gutted virus particles after cotransfection is likely due to suboptimal association of replication factors with the abnormal origins found in these plasmid substrates. To test this hypothesis, we explored whether gutted virus production would be facilitated by transfection into cells expressing various viral replication factors. We observed that C7 cells, coexpressing adenoviral DNA polymerase and preterminal protein, converted plasmid DNA into replicating virus approximately 50 times more efficiently than did 293 cells. This property of C7 cells can be used to greatly increase the efficiency of gutted virus production after cotransfection of gutted and helper viral DNA. These cells should also be useful for generation of recombinant adenovirus from any plasmid-based precursor.
Collapse
Affiliation(s)
- D Hartigan-O'Connor
- Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0618, USA
| | | | | |
Collapse
|
7
|
Abstract
Base excision repair can proceed in either one of two alternative pathways: a DNA polymerase beta-dependent pathway and a proliferating cell nuclear antigen (PCNA)-dependent pathway. Excision of an apurinic/apyrimidinic (AP) site by cutting the phosphate backbone on its 3' side following incision at its 5' side by AP endonuclease is a prerequisite to completion of these repair pathways. Using a reconstituted system with the proteins derived from Xenopus laevis, we found that flap endonuclease 1 (FEN1) was a factor responsible for the excision of a 5'-incised AP site in the PCNA-dependent pathway. In this pathway, DNA synthesis was not required for the action of FEN1 in the presence of PCNA and a replication factor C-containing fraction. The polymerase beta-dependent pathway could also use FEN1 for excision of the synthetic AP sites, which were not susceptible to beta-elimination. In this pathway, FEN1 was functional without PCNA and replication factor C but required the DNA synthesis, which led to a flap structure formation.
Collapse
Affiliation(s)
- K Kim
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | |
Collapse
|
8
|
Hay RT, Freeman A, Leith I, Monaghan A, Webster A. Molecular interactions during adenovirus DNA replication. Curr Top Microbiol Immunol 1995; 199 ( Pt 2):31-48. [PMID: 7555069 DOI: 10.1007/978-3-642-79499-5_2] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- R T Hay
- School of Biological and Medical Sciences, University of St. Andrews, Scotland, UK
| | | | | | | | | |
Collapse
|
9
|
Dianov G, Price A, Lindahl T. Generation of single-nucleotide repair patches following excision of uracil residues from DNA. Mol Cell Biol 1992; 12:1605-12. [PMID: 1549115 PMCID: PMC369603 DOI: 10.1128/mcb.12.4.1605-1612.1992] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The extent and location of DNA repair synthesis in a double-stranded oligonucleotide containing a single dUMP residue have been determined. Gently prepared Escherichia coli and mammalian cell extracts were employed for excision repair in vitro. The size of the resynthesized patch was estimated by restriction enzyme analysis of the repaired oligonucleotide. Following enzymatic digestion and denaturing gel electrophoresis, the extent of incorporation of radioactively labeled nucleotides in the vicinity of the lesion was determined by autoradiography. Cell extracts of E. coli and of human cell lines were shown to carry out repair mainly by replacing a single nucleotide. No significant repair replication on the 5' side of the lesion was observed. The data indicate that, after cleavage of the dUMP residue by uracil-DNA glycosylase and incision of the resultant apurinic-apyrimidinic site by an apurinic-apyrimidinic endonuclease activity, the excision step is catalyzed usually by a DNA deoxyribophosphodiesterase rather than by an exonuclease. Gap-filling and ligation complete the repair reaction. Experiments with enzyme inhibitors in mammalian cell extracts suggest that the repair replication step is catalyzed by DNA polymerase beta.
Collapse
Affiliation(s)
- G Dianov
- Imperial Cancer Research Fund, Clare Hall Laboratories, South Mimms, Hertfordshire, United Kingdom
| | | | | |
Collapse
|
10
|
Price A. Action of Escherichia coli and human 5'----3' exonuclease functions at incised apurinic/apyrimidinic sites in DNA. FEBS Lett 1992; 300:101-4. [PMID: 1312483 DOI: 10.1016/0014-5793(92)80173-e] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The 5'----3' exonuclease activity of E. coli DNA polymerase I and a related enzyme activity in mammalian cell nuclei, DNase IV, are unable to catalyse the excision of free deoxyribose-phosphate from apurinic/apyrimidinic (AP) sites incised by an AP endonuclease. Instead, the sugar phosphate residue is slowly released as part of a short oligonucleotide. These products have been characterised as dimers and trimers by comparison of their retention time on reverse-phase HPLC with reference compounds prepared by acid depurination of a dinucleotide, trinucleotide and tetranucleotide containing a 5'-terminal dAMP residue. The similar mode of action of these enzymes at 5'-incised AP sites provides an explanation for the minority of repair patches larger than one nucleotide observed when AP sites are repaired by E. coli and mammalian cell extracts in vitro and strengthens the functional analogy between the two activities.
Collapse
Affiliation(s)
- A Price
- Imperial Cancer Research Fund, Clare Hall Laboratories, South Mimms, Herts., UK
| |
Collapse
|
11
|
Price A, Lindahl T. Enzymatic release of 5'-terminal deoxyribose phosphate residues from damaged DNA in human cells. Biochemistry 1991; 30:8631-7. [PMID: 1716151 DOI: 10.1021/bi00099a020] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Activities that catalyze or promote the release of 5'-terminal deoxyribose phosphate residues from DNA abasic sites previously incised by an AP endonuclease have been identified in soluble extracts of several human cell lines and calf thymus. Such excision of base-free sugar phosphate residues from apurinic/apyrimidinic sites is expected to be obligatory prior to repair by gap filling and ligation. The most efficient excision function is due to a DNA deoxyribophosphodiesterase similar to the protein found in Escherichia coli. The human enzyme has been partially purified and freed from detectable exonuclease activity. This DNA deoxyribophosphodiesterase is a Mg(2+)-requiring hydrolytic enzyme with an apparent molecular mass of approximately 47 kDa and is located in the cell nucleus. By comparison, the major nuclear 5'----3' exonuclease, DNase IV, is unable to catalyze the release of 5'-terminal deoxyribose phosphate residues as free sugar phosphates but can liberate them at a slow rate as part of small oligonucleotides. Nonenzymatic removal of 5'-terminal deoxyribose phosphate from DNA by beta-elimination promoted by polyamines and basic proteins is a very slow mechanism of release compared to enzymatic hydrolysis. We conclude that a DNA deoxyribophosphodiesterase acts at an intermediate stage between an AP endonuclease and a DNA polymerase during DNA repair at apurinic/apyrimidinc sites in mammalian cells, but several alternative routes also exist for the excision of deoxyribose phosphate residues.
Collapse
Affiliation(s)
- A Price
- Imperial Cancer Research Fund, Clare Hall Laboratories, South Mimms, Herts, U.K
| | | |
Collapse
|
12
|
Roovers DJ, Overman PF, Chen XQ, Sussenbach JS. Linker mutation scanning of the genes encoding the adenovirus type 5 terminal protein precursor and DNA polymerase. Virology 1991; 180:273-84. [PMID: 1984653 DOI: 10.1016/0042-6822(91)90032-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The replication of adenovirus DNA requires, in addition to several host factors, three virus-encoded proteins: a DNA binding protein, the precursor of the terminal protein (pTP), and a DNA polymerase (Ad pol). Ad pol and pTP form a tight complex that is necessary for the initiation step in DNA replication. To perform mutation scanning of the adenovirus type 5 pTP and Ad pol a series of in-frame linker insertions of a 12-mer oligonucleotide d(CCCATCGATGGG) were introduced into cloned viral DNA fragments containing coding sequences of these proteins. The insertions are located at recognition sites for several blunt end-cutting restriction endonucleases. Forty different sites were mutagenized and the mutated genes were transferred to a plasmid that contains the left 42% of the adenovirus genome. They were rebuilt into the viral genome by means of in vivo recombination between plasmid DNA and digested adenovirus DNA-TP complex. The resulting viral genomes were tested for viability and rescued virus was analyzed for the presence of the inserted linker oligonucleotide. This procedure resulted in recovery of a number of viable virus mutants with insertions in the pTP or Ad pol genes, all of which are phenotypically silent. The other mutations did not allow virus production. The positions of these apparent lethal codon insertion mutations were useful to identify regions of functional importance in both proteins. It can be concluded that the precursor-specific region of pTP plays an important role in virus multiplication.
Collapse
Affiliation(s)
- D J Roovers
- Laboratory for Physiological Chemistry, State University of Utrecht, The Netherlands
| | | | | | | |
Collapse
|
13
|
Dobbs L, Zhao LJ, Sripad G, Padmanabhan R. Mutational analysis of single-stranded DNA templates active in the in vitro initiation assay for adenovirus DNA replication. Virology 1990; 178:43-51. [PMID: 2389559 DOI: 10.1016/0042-6822(90)90377-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Three distinct domains, A, the minimal origin, as well as B and C, the binding sites for the host nuclear factors, are required for efficient initiation of adenovirus (Ad) DNA replication at the termini. The initiation reaction was examined using partially purified nuclear extracts and various single-stranded oligomers as DNA templates. We observed that single-stranded oligomers containing Ad2 minimal origin (Ori) sequences (bp 1-18) from the I-strand of the Ad2 genome supported preterminal protein-dCMP complex formation in vitro. Using oligomers containing point mutations in the Ad2 minimal Ori sequence, six positions were identified as important to the function of the Ad2 minimal Ori sequence. Point mutations at position 7, 8, or 11 virtually abolished the ability of the oligomer to support the initiation reaction. Point mutations at position 4, 9, or 17 were found to decrease the ability of the oligomers to support the initiation reaction to 33, 67, and 58% of control, respectively. An oligomer complementary to the I-strand of the Ad2 minimal Ori was found to block initiation on minimal Ori template. A number of randomly selected nonspecific oligomers did not, in general, serve as templates for initiation with the exception of two oligomers, one of which was found to be about threefold more active than the control minimal Ori template. The biological significance of the in vitro initiation of Ad2 DNA replication on single-stranded DNA templates is discussed.
Collapse
Affiliation(s)
- L Dobbs
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City 66103
| | | | | | | |
Collapse
|
14
|
Ishimi Y, Claude A, Bullock P, Hurwitz J. Complete enzymatic synthesis of DNA containing the SV40 origin of replication. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(19)77695-9] [Citation(s) in RCA: 124] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
15
|
Initiation of adenovirus DNA replication. I. Mechanism of action of a host protein required for replication of adenovirus DNA templates devoid of the terminal protein. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(19)81589-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
16
|
Kenny MK, Hurwitz J. Initiation of adenovirus DNA replication. II. Structural requirements using synthetic oligonucleotide adenovirus templates. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(19)81590-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
17
|
Harris MP, Hay RT. DNA sequences required for the initiation of adenovirus type 4 DNA replication in vitro. J Mol Biol 1988; 201:57-67. [PMID: 3418700 DOI: 10.1016/0022-2836(88)90438-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In-vivo studies have demonstrated that adenovirus type 2 and adenovirus type 4 have different DNA sequence requirements for the initiation of DNA replication. To investigate the basis of these differences an in-vitro system has been developed which will faithfully initiate adenovirus type 4 DNA replication. A plasmid containing 140 base-pairs of the right terminus of adenovirus type 4 supported initiation of DNA replication in vitro, provided that the plasmid was linearized in such a way as to locate the viral terminal sequences at the molecular ends of the DNA. Initiation by adenovirus type 4-infected cell extracts was also supported by a plasmid containing the complete adenovirus type 2 inverted terminal repeat (ITR). Deletion analysis of both adenovirus types 2 and 4 ITRs revealed that only the terminal 18 base-pairs of the genomes (perfectly conserved between the 2 viruses) were required for initiation in vitro. Thus, initiation was not enhanced by the presence of either the NFI site, the NFIII site or both sites together. Fractionation of a HeLa cell nuclear extract, by ion-exchange chromatography, identified a nuclear factor that stimulated the initiation reaction four- to fivefold. The stimulatory factor did not correspond to either of the cellular proteins NFI or NFIII which stimulate adenovirus type 2 DNA replication in vitro. Initiation in vitro was also supported by single-stranded DNA templates, albeit at a lower efficiency. Studies with synthetic oligonucleotides indicated a surprising specificity for initiation: whereas the strand used as template during initiation in vivo was active as a template for initiation in vitro, the complementary strand was inactive.
Collapse
|
18
|
Vartapetian AB, Bogdanov AA. Proteins covalently linked to viral genomes. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1987; 34:209-51. [PMID: 3326040 DOI: 10.1016/s0079-6603(08)60497-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
19
|
Reconstruction of adenovirus replication origins with a human nuclear factor I binding site. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(17)35788-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|