1
|
Alvarez‐Carreño C, Arciniega M, Ribas de Pouplana L, Petrov AS, Hernández‐González A, Dimas‐Torres J, Valencia‐Sánchez MI, Williams LD, Torres‐Larios A. Common evolutionary origins of the bacterial glycyl tRNA synthetase and alanyl tRNA synthetase. Protein Sci 2023; 33:e4844. [PMID: 38009704 PMCID: PMC10895455 DOI: 10.1002/pro.4844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/07/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) establish the genetic code. Each aaRS covalently links a given canonical amino acid to a cognate set of tRNA isoacceptors. Glycyl tRNA aminoacylation is unusual in that it is catalyzed by different aaRSs in different lineages of the Tree of Life. We have investigated the phylogenetic distribution and evolutionary history of bacterial glycyl tRNA synthetase (bacGlyRS). This enzyme is found in early diverging bacterial phyla such as Firmicutes, Acidobacteria, and Proteobacteria, but not in archaea or eukarya. We observe relationships between each of six domains of bacGlyRS and six domains of four different RNA-modifying proteins. Component domains of bacGlyRS show common ancestry with (i) the catalytic domain of class II tRNA synthetases; (ii) the HD domain of the bacterial RNase Y; (iii) the body and tail domains of the archaeal CCA-adding enzyme; (iv) the anti-codon binding domain of the arginyl tRNA synthetase; and (v) a previously unrecognized domain that we call ATL (Ancient tRNA latch). The ATL domain has been found thus far only in bacGlyRS and in the universal alanyl tRNA synthetase (uniAlaRS). Further, the catalytic domain of bacGlyRS is more closely related to the catalytic domain of uniAlaRS than to any other aminoacyl tRNA synthetase. The combined results suggest that the ATL and catalytic domains of these two enzymes are ancestral to bacGlyRS and uniAlaRS, which emerged from common protein ancestors by bricolage, stepwise accumulation of protein domains, before the last universal common ancestor of life.
Collapse
Affiliation(s)
- Claudia Alvarez‐Carreño
- NASA Center for the Origin of LifeGeorgia Institute of TechnologyAtlantaGeorgiaUSA
- School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Marcelino Arciniega
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| | - Lluís Ribas de Pouplana
- Institute for Research in Biomedicine (IRB Barcelona)The Barcelona Institute of Science and TechnologyBarcelonaCataloniaSpain
- Catalan Institution for Research and Advanced StudiesBarcelonaCataloniaSpain
| | - Anton S. Petrov
- NASA Center for the Origin of LifeGeorgia Institute of TechnologyAtlantaGeorgiaUSA
- School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Adriana Hernández‐González
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| | - Jorge‐Uriel Dimas‐Torres
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| | - Marco Igor Valencia‐Sánchez
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoMexico CityMexico
- Present address:
Department of Biochemistry and Molecular PharmacologyNew York University Grossman School of MedicineNew YorkNew YorkUSA
| | - Loren Dean Williams
- NASA Center for the Origin of LifeGeorgia Institute of TechnologyAtlantaGeorgiaUSA
- School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Alfredo Torres‐Larios
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| |
Collapse
|
2
|
Ju Y, Han L, Chen B, Luo Z, Gu Q, Xu J, Yang XL, Schimmel P, Zhou H. X-shaped structure of bacterial heterotetrameric tRNA synthetase suggests cryptic prokaryote functions and a rationale for synthetase classifications. Nucleic Acids Res 2021; 49:10106-10119. [PMID: 34390350 PMCID: PMC8464048 DOI: 10.1093/nar/gkab707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 11/14/2022] Open
Abstract
AaRSs (aminoacyl-tRNA synthetases) group into two ten-member classes throughout evolution, with unique active site architectures defining each class. Most are monomers or homodimers but, for no apparent reason, many bacterial GlyRSs are heterotetramers consisting of two catalytic α-subunits and two tRNA-binding β-subunits. The heterotetrameric GlyRS from Escherichia coli (EcGlyRS) was historically tested whether its α- and β-polypeptides, which are encoded by a single mRNA with a gap of three in-frame codons, are replaceable by a single chain. Here, an unprecedented X-shaped structure of EcGlyRS shows wide separation of the abutting chain termini seen in the coding sequences, suggesting strong pressure to avoid a single polypeptide format. The structure of the five-domain β-subunit is unique across all aaRSs in current databases, and structural analyses suggest these domains play different functions on α-subunit binding, ATP coordination and tRNA recognition. Moreover, the X-shaped architecture of EcGlyRS largely fits with a model for how two classes of tRNA synthetases arose, according to whether enzymes from opposite classes can simultaneously co-dock onto separate faces of the same tRNA acceptor stem. While heterotetrameric GlyRS remains the last structurally uncharacterized member of aaRSs, our study contributes to a better understanding of this ancient and essential enzyme family.
Collapse
Affiliation(s)
- Yingchen Ju
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Lu Han
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Bingyi Chen
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhiteng Luo
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Qiong Gu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jun Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiang-Lei Yang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Paul Schimmel
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.,Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Huihao Zhou
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
3
|
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are modular enzymes globally conserved in the three kingdoms of life. All catalyze the same two-step reaction, i.e., the attachment of a proteinogenic amino acid on their cognate tRNAs, thereby mediating the correct expression of the genetic code. In addition, some aaRSs acquired other functions beyond this key role in translation. Genomics and X-ray crystallography have revealed great structural diversity in aaRSs (e.g., in oligomery and modularity, in ranking into two distinct groups each subdivided in 3 subgroups, by additional domains appended on the catalytic modules). AaRSs show huge structural plasticity related to function and limited idiosyncrasies that are kingdom or even species specific (e.g., the presence in many Bacteria of non discriminating aaRSs compensating for the absence of one or two specific aaRSs, notably AsnRS and/or GlnRS). Diversity, as well, occurs in the mechanisms of aaRS gene regulation that are not conserved in evolution, notably between distant groups such as Gram-positive and Gram-negative Bacteria. The review focuses on bacterial aaRSs (and their paralogs) and covers their structure, function, regulation, and evolution. Structure/function relationships are emphasized, notably the enzymology of tRNA aminoacylation and the editing mechanisms for correction of activation and charging errors. The huge amount of genomic and structural data that accumulated in last two decades is reviewed, showing how the field moved from essentially reductionist biology towards more global and integrated approaches. Likewise, the alternative functions of aaRSs and those of aaRS paralogs (e.g., during cell wall biogenesis and other metabolic processes in or outside protein synthesis) are reviewed. Since aaRS phylogenies present promiscuous bacterial, archaeal, and eukaryal features, similarities and differences in the properties of aaRSs from the three kingdoms of life are pinpointed throughout the review and distinctive characteristics of bacterium-like synthetases from organelles are outlined.
Collapse
Affiliation(s)
- Richard Giegé
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg, France
| | - Mathias Springer
- Université Paris Diderot, Sorbonne Cité, UPR9073 CNRS, IBPC, 75005 Paris, France
| |
Collapse
|
4
|
Abstract
The biosynthesis of serine, glycine, and one-carbon (C1) units constitutes a major metabolic pathway in Escherichia coli and Salmonella enterica serovar Typhimurium. C1 units derived from serine and glycine are used in the synthesis of purines, histidine, thymine, pantothenate, and methionine and in the formylation of the aminoacylated initiator fMet-TRNAfMet used to start translation in E. coli and serovar Typhimurium. The need for serine, glycine, and C1 units in many cellular functions makes it necessary for the genes encoding enzymes for their synthesis to be carefully regulated to meet the changing demands of the cell for these intermediates. This review discusses the regulation of the following genes: serA, serB, and serC; gly gene; gcvTHP operon; lpdA; gcvA and gcvR; and gcvB genes. Threonine utilization (the Tut cycle) constitutes a secondary pathway for serine and glycine biosynthesis. L-Serine inhibits the growth of E. coli cells in GM medium, and isoleucine releases this growth inhibition. The E. coli glycine transport system (Cyc) has been shown to transport glycine, D-alanine, D-serine, and the antibiotic D-cycloserine. Transport systems often play roles in the regulation of gene expression, by transporting effector molecules into the cell, where they are sensed by soluble or membrane-bound regulatory proteins.
Collapse
|
5
|
Screening and identification of genetic loci involved in producing more/denser inclusion bodies in Escherichia coli. Microb Cell Fact 2013; 12:43. [PMID: 23638724 PMCID: PMC3668246 DOI: 10.1186/1475-2859-12-43] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 04/29/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Many proteins and peptides have been used in therapeutic or industrial applications. They are often produced in microbial production hosts by fermentation. Robust protein production in the hosts and efficient downstream purification are two critical factors that could significantly reduce cost for microbial protein production by fermentation. Producing proteins/peptides as inclusion bodies in the hosts has the potential to achieve both high titers in fermentation and cost-effective downstream purification. Manipulation of the host cells such as overexpression/deletion of certain genes could lead to producing more and/or denser inclusion bodies. However, there are limited screening methods to help to identify beneficial genetic changes rendering more protein production and/or denser inclusion bodies. RESULTS We report development and optimization of a simple density gradient method that can be used for distinguishing and sorting E. coli cells with different buoyant densities. We demonstrate utilization of the method to screen genetic libraries to identify a) expression of glyQS loci on plasmid that increased expression of a peptide of interest as well as the buoyant density of inclusion body producing E. coli cells; and b) deletion of a host gltA gene that increased the buoyant density of the inclusion body produced in the E. coli cells. CONCLUSION A novel density gradient sorting method was developed to screen genetic libraries. Beneficial host genetic changes could be exploited to improve recombinant protein expression as well as downstream protein purification.
Collapse
|
6
|
Abstract
Aminoacyl-tRNAsynthetases (aaRSs) are modular enzymesglobally conserved in the three kingdoms of life. All catalyze the same two-step reaction, i.e., the attachment of a proteinogenic amino acid on their cognate tRNAs, thereby mediating the correct expression of the genetic code. In addition, some aaRSs acquired other functions beyond this key role in translation.Genomics and X-ray crystallography have revealed great structural diversity in aaRSs (e.g.,in oligomery and modularity, in ranking into two distinct groups each subdivided in 3 subgroups, by additional domains appended on the catalytic modules). AaRSs show hugestructural plasticity related to function andlimited idiosyncrasies that are kingdom or even speciesspecific (e.g.,the presence in many Bacteria of non discriminating aaRSs compensating for the absence of one or two specific aaRSs, notably AsnRS and/or GlnRS).Diversity, as well, occurs in the mechanisms of aaRS gene regulation that are not conserved in evolution, notably betweendistant groups such as Gram-positive and Gram-negative Bacteria.Thereview focuses on bacterial aaRSs (and their paralogs) and covers their structure, function, regulation,and evolution. Structure/function relationships are emphasized, notably the enzymology of tRNA aminoacylation and the editing mechanisms for correction of activation and charging errors. The huge amount of genomic and structural data that accumulatedin last two decades is reviewed,showing how thefield moved from essentially reductionist biologytowards more global and integrated approaches. Likewise, the alternative functions of aaRSs and those of aaRSparalogs (e.g., during cellwall biogenesis and other metabolic processes in or outside protein synthesis) are reviewed. Since aaRS phylogenies present promiscuous bacterial, archaeal, and eukaryal features, similarities and differences in the properties of aaRSs from the three kingdoms of life are pinpointedthroughout the reviewand distinctive characteristics of bacterium-like synthetases from organelles are outlined.
Collapse
|
7
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
8
|
Dekkers LC, van der Bij AJ, Mulders IH, Phoelich CC, Wentwoord RA, Glandorf DC, Wijffelman CA, Lugtenberg BJ. Role of the O-antigen of lipopolysaccharide, and possible roles of growth rate and of NADH:ubiquinone oxidoreductase (nuo) in competitive tomato root-tip colonization by Pseudomonas fluorescens WCS365. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 1998; 11:763-771. [PMID: 9675892 DOI: 10.1094/mpmi.1998.11.8.763] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Colonization-defective, transposon-induced mutants of the efficient root colonizer Pseudomonas fluorescens WCS365 were identified with a gnotobiotic system. Most mutants were impaired in known colonization traits, i.e., prototrophy for amino acids, motility, and synthesis of the O-antigen of LPS (lipopolysaccharide). Mutants lacking the O-antigen of LPS were impaired in both colonization and competitive growth whereas one mutant (PCL1205) with a shorter O-antigen chain was defective only in colonization ability, suggesting a role for the intact O-antigen of LPS in colonization. Eight competitive colonization mutants that were not defective in the above-mentioned traits colonized the tomato root tip well when inoculated alone, but were defective in competitive root colonization of tomato, radish, and wheat, indicating they contained mutations affecting host range. One of these eight mutants (PCL1201) was further characterized and contains a mutation in a gene that shows homology to the Escherichia coli nuo4 gene, which encodes a subunit of one of two known NADH:ubiquinone oxidoreductases. Competition experiments in an oxygen-poor medium between mutant PCL1201 and its parental strain showed a decreased growth rate of mutant PCL1201. The requirement of the nuo4 gene homolog for optimal growth under conditions of oxygen limitation suggests that the root-tip environment is micro-aerobic. A mutant characterized by a slow growth rate (PCL1216) was analyzed further and contained a mutation in a gene with similarity to the E. coli HtrB protein, a lauroyl transferase that functions in lipid A biosynthesis.
Collapse
Affiliation(s)
- L C Dekkers
- Leiden University, Institute of Molecular Plant Sciences, Clusius Laboratory, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Aminoacyl-tRNA synthetases specifically charge tRNAs with their cognate amino acids. A prototype for the most complex aminoacyl-tRNA synthetases is the four-subunit glycyl-tRNA synthetase from Escherichia coli, encoded by two open reading frames. We examined the glycyl-tRNA synthetase gene from Chlamydia trachomatis, a genetically isolated bacterium, and identified only a single open reading frame for the chlamydial homolog (glyQS). This is the first report of a prokaryotic glycyl-tRNA synthetase encoded by a single gene.
Collapse
Affiliation(s)
- E A Wagar
- Department of Pathology, UCLA School of Medicine 90095, USA
| | | | | | | |
Collapse
|
10
|
Shiba K, Schimmel P, Motegi H, Noda T. Human glycyl-tRNA synthetase. Wide divergence of primary structure from bacterial counterpart and species-specific aminoacylation. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)43986-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
11
|
|
12
|
Buechter DD, Schimmel P. Aminoacylation of RNA minihelices: implications for tRNA synthetase structural design and evolution. Crit Rev Biochem Mol Biol 1993; 28:309-22. [PMID: 7691478 DOI: 10.3109/10409239309078438] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The genetic code is based on the aminoacylation of tRNA with amino acids catalyzed by the aminoacyl-tRNA synthetases. The synthetases are constructed from discrete domains and all synthetases possess a core catalytic domain that catalyzes amino acid activation, binds the acceptor stem of tRNA, and transfers the amino acid to tRNA. Fused to the core domain are additional domains that mediate RNA interactions distal to the acceptor stem. Several synthetases catalyze the aminoacylation of RNA oligonucleotide substrates that recreate only the tRNA acceptor stems. In one case, a relatively small catalytic domain catalyzes the aminoacylation of these substrates independent of the rest of the protein. Thus, the active site domain may represent a primordial synthetase in which polypeptide insertions that mediate RNA acceptor stem interactions are tightly integrated with determinants for aminoacyl adenylate synthesis. The relationship between nucleotide sequences in small RNA oligonucleotides and the specific amino acids that are attached to these oligonucleotides could constitute a second genetic code.
Collapse
Affiliation(s)
- D D Buechter
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | |
Collapse
|
13
|
Toth MJ, Schimmel P. Deletions in the large (beta) subunit of a hetero-oligomeric aminoacyl-tRNA synthetase. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)40149-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
14
|
Toth MJ, Schimmel P. A mutation in the small (alpha) subunit of glycyl-tRNA synthetase affects amino acid activation and subunit association parameters. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)40150-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
15
|
A sulfhydryl presumed essential is not required for catalysis by an aminoacyl-tRNA synthetase. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(18)66736-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
16
|
Toth MJ, Schimmel P. Internal structural features of E. coli glycyl-tRNA synthetase examined by subunit polypeptide chain fusions. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(19)62664-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
17
|
|
18
|
Fayat G, Mayaux JF, Sacerdot C, Fromant M, Springer M, Grunberg-Manago M, Blanquet S. Escherichia coli phenylalanyl-tRNA synthetase operon region. Evidence for an attenuation mechanism. Identification of the gene for the ribosomal protein L20. J Mol Biol 1983; 171:239-61. [PMID: 6317865 DOI: 10.1016/0022-2836(83)90092-x] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The nucleotide sequences of pheS and of the beginning of pheT have been determined. The genes pheS and pheT code, respectively, for the small and large subunits of phenylalanyl-tRNA synthetase, an alpha 2 beta 2 enzyme. Upstream from pheS the sequence shows another open reading frame of 354 nucleotides (rplT), which accounts for a protein of Mr 13,400. The product of this gene, previously named "P12", is identified as the ribosomal protein L20. The promoter for the pheS, T operon was located 368 nucleotides in front of pheS by transcription experiments in vitro. The promoter site is followed by a short open reading frame, which codes for a 14-residue peptide containing five phenylalanine residues. Immediately downstream from the stop codon of this open reading frame, the DNA sequence indicates that the transcript can be folded into three alternative secondary structures, one of which is a site of transcription termination. In vitro, 90% of transcription products initiated at the pheS, T promoter terminate at this site. However, long run-off transcripts proceeding through the terminator and covering the pheS structural gene are observed. No other transcription initiation could be detected between the terminator and the pheS structural gene. All these results are consistent with a mechanism by which phenylalanine-mediated attenuation controls the expression of phenylalanyl-tRNA synthetase. Further evidence is provided for this model by the features of pheS, T regulation in vivo (see the accompanying paper).
Collapse
|
19
|
Keng T, Schimmel P. Synthesis of two polypeptide subunits of an aminoacyl tRNA synthetase as a single polypeptide chain. J Biomol Struct Dyn 1983; 1:225-9. [PMID: 6086058 DOI: 10.1080/07391102.1983.10507436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
E. coli aminoacyl tRNA synthetases are typically comprised of a single type of polypeptide chain. Glycine tRNA synthetase is an exception, and is comprised of two different subunits. Previous work showed that glyS encodes both subunits in a tandem arrangement of coding regions which are in the same reading frame. Nine nucleotides separate the TAA stop of the first coding segment (alpha-subunit) from the ATG start of the second one (beta-subunit). A plasmid containing glyS was put into four different ochre suppressor strains. In three of them, significant quantities of an alpha-beta fusion protein were synthesized in maxicells, in genetic backgrounds which retained cellular proteases. This shows that the fusion protein is stable in vivo and suggests that Gly-tRNA synthetase is operationally a single polypeptide which is the ancestor of the two subunits.
Collapse
Affiliation(s)
- T Keng
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | |
Collapse
|
20
|
Webster TA, Gibson BW, Keng T, Biemann K, Schimmel P. Primary structures of both subunits of Escherichia coli glycyl-tRNA synthetase. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(17)44504-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|