1
|
Jeanneau S, Jacques PÉ, Lafontaine DA. Investigating the role of RNA structures in transcriptional pausing using in vitro assays and in silico analyses. RNA Biol 2022; 19:916-927. [PMID: 35833713 PMCID: PMC9291695 DOI: 10.1080/15476286.2022.2096794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Transcriptional pausing occurs across the bacterial genome but the importance of this mechanism is still poorly understood. Only few pauses were observed during the previous decades, leaving an important gap in understanding transcription mechanisms. Using the well-known Escherichia coli hisL and trpL pause sites as models, we describe here the relation of pause sites with upstream RNA structures suspected to stabilize pausing. We find that the transcription factor NusA influences the pause half-life at leuL, pheL and thrL pause sites. Using a mutagenesis approach, we observe that transcriptional pausing is affected in all tested pause sites, suggesting that the upstream RNA sequence is important for transcriptional pausing. Compensatory mutations assessing the presence of RNA hairpins did not yield clear conclusions, indicating that complex RNA structures or transcriptional features may be playing a role in pausing. Moreover, using a bioinformatic approach, we explored the relation between a DNA consensus sequence important for pausing and putative hairpins among thousands of pause sites in E. coli. We identified 2125 sites presenting hairpin-dependent transcriptional pausing without consensus sequence, suggesting that this mechanism is widespread across E. coli. This study paves the way to understand the role of RNA structures in transcriptional pausing.
Collapse
Affiliation(s)
- Simon Jeanneau
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Pierre-Étienne Jacques
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, Quebec, Canada.,Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Daniel A Lafontaine
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
2
|
Kang JY, Mishanina TV, Landick R, Darst SA. Mechanisms of Transcriptional Pausing in Bacteria. J Mol Biol 2019; 431:4007-4029. [PMID: 31310765 DOI: 10.1016/j.jmb.2019.07.017] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 12/21/2022]
Abstract
Pausing by RNA polymerase (RNAP) during transcription regulates gene expression in all domains of life. In this review, we recap the history of transcriptional pausing discovery, summarize advances in our understanding of the underlying causes of pausing since then, and describe new insights into the pausing mechanisms and pause modulation by transcription factors gained from structural and biochemical experiments. The accumulated evidence to date suggests that upon encountering a pause signal in the nucleic-acid sequence being transcribed, RNAP rearranges into an elemental, catalytically inactive conformer unable to load NTP substrate. The conformation, and as a consequence lifetime, of an elemental paused RNAP is modulated by backtracking, nascent RNA structure, binding of transcription regulators, or a combination of these mechanisms. We conclude the review by outlining open questions and directions for future research in the field of transcriptional pausing.
Collapse
Affiliation(s)
- Jin Young Kang
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejon 34141, Republic of Korea.
| | - Tatiana V Mishanina
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA.
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Seth A Darst
- The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
3
|
Burke WG, Kaplanoglu E, Kolotilin I, Menassa R, Donly C. RNA Interference in the Tobacco Hornworm, Manduca sexta, Using Plastid-Encoded Long Double-Stranded RNA. FRONTIERS IN PLANT SCIENCE 2019; 10:313. [PMID: 30923533 PMCID: PMC6426776 DOI: 10.3389/fpls.2019.00313] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/26/2019] [Indexed: 05/05/2023]
Abstract
RNA interference (RNAi) is a promising method for controlling pest insects by silencing the expression of vital insect genes to interfere with development and physiology; however, certain insect Orders are resistant to this process. In this study, we set out to test the ability of in planta-expressed dsRNA synthesized within the plastids to silence gene expression in an insect recalcitrant to RNAi, the lepidopteran species, Manduca sexta (tobacco hornworm). Using the Manduca vacuolar-type H+ ATPase subunit A (v-ATPaseA) gene as the target, we first evaluated RNAi efficiency of two dsRNA products of different lengths by directly feeding the in vitro-synthesized dsRNAs to M. sexta larvae. We found that a long dsRNA of 2222 bp was the most effective in inducing lethality and silencing the v-ATPaseA gene, when delivered orally in a water droplet. We further transformed the plastid genome of the M. sexta host plant, Nicotiana tabacum, to produce this long dsRNA in its plastids and performed bioassays with M. sexta larvae on the transplastomic plants. In the tested insects, the plastid-derived dsRNA had no effect on larval survival and no statistically significant effect on expression of the v-ATPaseA gene was observed. Comparison of the absolute quantities of the dsRNA present in transplastomic leaf tissue for v-ATPaseA and a control gene, GFP, of a shorter size, revealed a lower concentration for the long dsRNA product compared to the short control product. We suggest that stability and length of the dsRNA may have influenced the quantities produced in the plastids, resulting in inefficient RNAi in the tested insects. Our results imply that many factors dictate the effectiveness of in planta RNAi, including a likely trade-off effect as increasing the dsRNA product length may be countered by a reduction in the amount of dsRNA produced and accumulated in the plastids.
Collapse
Affiliation(s)
- William G. Burke
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, The University of Western Ontario, London, ON, Canada
| | - Emine Kaplanoglu
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | | | - Rima Menassa
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, The University of Western Ontario, London, ON, Canada
| | - Cam Donly
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
4
|
Anilionyte O, Liang H, Ma X, Yang L, Zhou K. Short, auto-inducible promoters for well-controlled protein expression in Escherichia coli. Appl Microbiol Biotechnol 2018; 102:7007-7015. [DOI: 10.1007/s00253-018-9141-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/18/2018] [Accepted: 05/23/2018] [Indexed: 11/24/2022]
|
5
|
Zhang J, Landick R. A Two-Way Street: Regulatory Interplay between RNA Polymerase and Nascent RNA Structure. Trends Biochem Sci 2016; 41:293-310. [PMID: 26822487 DOI: 10.1016/j.tibs.2015.12.009] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/21/2015] [Accepted: 12/22/2015] [Indexed: 02/06/2023]
Abstract
The vectorial (5'-to-3' at varying velocity) synthesis of RNA by cellular RNA polymerases (RNAPs) creates a rugged kinetic landscape, demarcated by frequent, sometimes long-lived, pauses. In addition to myriad gene-regulatory roles, these pauses temporally and spatially program the co-transcriptional, hierarchical folding of biologically active RNAs. Conversely, these RNA structures, which form inside or near the RNA exit channel, interact with the polymerase and adjacent protein factors to influence RNA synthesis by modulating pausing, termination, antitermination, and slippage. Here, we review the evolutionary origin, mechanistic underpinnings, and regulatory consequences of this interplay between RNAP and nascent RNA structure. We categorize and rationalize the extensive linkage between the transcriptional machinery and its product, and provide a framework for future studies.
Collapse
Affiliation(s)
- Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA.
| | - Robert Landick
- Departments of Biochemistry and Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
6
|
Yuzbashev TV, Vybornaya TV, Larina AS, Gvilava IT, Voyushina NE, Mokrova SS, Yuzbasheva EY, Manukhov IV, Sineoky SP, Debabov VG. Directed modification of Escherichia coli metabolism for the design of threonine-producing strains. APPL BIOCHEM MICRO+ 2013. [DOI: 10.1134/s0003683813090056] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Sharma CM, Papenfort K, Pernitzsch SR, Mollenkopf HJ, Hinton JCD, Vogel J. Pervasive post-transcriptional control of genes involved in amino acid metabolism by the Hfq-dependent GcvB small RNA. Mol Microbiol 2011; 81:1144-65. [PMID: 21696468 DOI: 10.1111/j.1365-2958.2011.07751.x] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
GcvB is one of the most highly conserved Hfq-associated small RNAs in Gram-negative bacteria and was previously reported to repress several ABC transporters for amino acids. To determine the full extent of GcvB-mediated regulation in Salmonella, we combined a genome-wide experimental approach with biocomputational target prediction. Comparative pulse expression of wild-type versus mutant sRNA variants revealed that GcvB governs a large post-transcriptional regulon, impacting ~1% of all Salmonella genes via its conserved G/U-rich domain R1. Complementary predictions of C/A-rich binding sites in mRNAs and gfp reporter fusion experiments increased the number of validated GcvB targets to more than 20, and doubled the number of regulated amino acid transporters. Unlike the previously described targeting via the single R1 domain, GcvB represses the glycine transporter CycA by exceptionally redundant base-pairing. This novel ability of GcvB is focused upon the one target that could feedback-regulate the glycine-responsive synthesis of GcvB. Several newly discovered mRNA targets involved in amino acid metabolism, including the global regulator Lrp, question the previous assumption that GcvB simply acts to limit unnecessary amino acid uptake. Rather, GcvB rewires primary transcriptional control circuits and seems to act as a distinct regulatory node in amino acid metabolism.
Collapse
Affiliation(s)
- Cynthia M Sharma
- Institute for Molecular Infection Biology, Research Centre of Infectious Diseases, University of Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
8
|
Kühn K, Bohne AV, Liere K, Weihe A, Börner T. Arabidopsis phage-type RNA polymerases: accurate in vitro transcription of organellar genes. THE PLANT CELL 2007; 19:959-71. [PMID: 17400896 PMCID: PMC1867361 DOI: 10.1105/tpc.106.046839] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The T7 bacteriophage RNA polymerase (RNAP) performs all steps of transcription, including promoter recognition, initiation, and elongation as a single-polypeptide enzyme. Arabidopsis thaliana possesses three nuclear-encoded T7 phage-type RNAPs that localize to mitochondria (RpoTm), plastids (RpoTp), or presumably both organelles (RpoTmp). Their specific functions are as yet unresolved. We have established an in vitro transcription system to examine the abilities of the three Arabidopsis phage-type RNAPs to synthesize RNA and to recognize organellar promoters. All three RpoT genes were shown to encode transcriptionally active RNAPs. RpoTmp displayed no significant promoter specificity, whereas RpoTm and RpoTp were able to accurately initiate transcription from overlapping subsets of mitochondrial and plastidial promoters without the aid of protein cofactors. Our study strongly suggests RpoTm to be the enzyme that transcribes most, if not all, mitochondrial genes in Arabidopsis. Intrinsic promoter specificity, a feature that RpoTm and RpoTp share with the T7 RNAP, appears to have been conserved over the long period of evolution of nuclear-encoded mitochondrial and plastidial RNAPs. Selective promoter recognition by the Arabidopsis phage-type RNAPs in vitro implies that auxiliary factors are required for efficient initiation of transcription in vivo.
Collapse
Affiliation(s)
- Kristina Kühn
- Institute of Biology (Genetics), Humboldt University, D-10115, Berlin, Germany
| | | | | | | | | |
Collapse
|
9
|
Hung SP, Baldi P, Hatfield GW. Global gene expression profiling in Escherichia coli K12. The effects of leucine-responsive regulatory protein. J Biol Chem 2002; 277:40309-23. [PMID: 12130640 DOI: 10.1074/jbc.m204044200] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Leucine-responsive regulatory protein (Lrp) is a global regulatory protein that affects the expression of multiple genes and operons in bacteria. Although the physiological purpose of Lrp-mediated gene regulation remains unclear, it has been suggested that it functions to coordinate cellular metabolism with the nutritional state of the environment. The results of gene expression profiles between otherwise isogenic lrp(+) and lrp(-) strains of Escherichia coli support this suggestion. The newly discovered Lrp-regulated genes reported here are involved either in small molecule or macromolecule synthesis or degradation, or in small molecule transport and environmental stress responses. Although many of these regulatory effects are direct, others are indirect consequences of Lrp-mediated changes in the expression levels of other global regulatory proteins. Because computational methods to analyze and interpret high dimensional DNA microarray data are still an early stage, much of the emphasis of this work is directed toward the development of methods to identify differentially expressed genes with a high level of confidence. In particular, we describe a Bayesian statistical framework for a posterior estimate of the standard deviation of gene measurements based on a limited number of replications. We also describe an algorithm to compute a posterior estimate of differential expression for each gene based on the experiment-wide global false positive and false negative level for a DNA microarray data set. This allows the experimenter to compute posterior probabilities of differential expression for each individual differential gene expression measurement.
Collapse
Affiliation(s)
- She-pin Hung
- Department of Microbiology and Molecular Genetics, College of Medicine, University of California, Irvine, CA 92697, USA
| | | | | |
Collapse
|
10
|
Elf J, Berg OG, Ehrenberg M. Comparison of repressor and transcriptional attenuator systems for control of amino acid biosynthetic operons. J Mol Biol 2001; 313:941-54. [PMID: 11700051 DOI: 10.1006/jmbi.2001.5096] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In bacteria, expression from amino acid biosynthetic operons is transcriptionally controlled by two main mechanisms with principally different modes of action. When the supply of an amino acid is in excess over demand, its concentration will be high and when the supply is deficient the amino acid concentration will be low. In repressor control, such concentration variations in amino acid pools are used to regulate expression from the corresponding amino acid synthetic operon; a high concentration activates and a low concentration inactivates repressor binding to the operator site on DNA so that initiation of transcription is down or up-regulated, respectively. Excess or deficient supply of an amino acid also speeds or slows, respectively, the rate by which the ribosome translates mRNA base triplets encoding this amino acid. In attenuation of transcription, it is the rate by which the ribosome translates such "own" codons in the leader of an amino acid biosynthetic operon that decides whether the RNA polymerase will continue into the operon, or whether transcription will be aborted (attenuated). If the ribosome rate is fast (excess synthesis of amino acid), transcription will be terminated and if the rate is slow (deficient amino acid supply) transcription will continue and produce more messenger RNAs. Repressor and attenuation control systems have been modelled mathematically so that their behaviour in living cells can be predicted and their system properties compared. It is found that both types of control systems are unexpectedly sensitive when they operate in the cytoplasm of bacteria. In the repressor case, this is because amino acid concentrations are hypersensitive to imbalances between supply and demand. In the attenuation case, the reason is that the rate by which ribosomes translate own codons is hypersensitive to the rate by which the controlled amino acid is synthesised. Both repressor and attenuation mechanisms attain close to Boolean properties in vivo: gene expression is either fully on or fully off except in a small interval around the point where supply and demand of an amino acid are perfectly balanced.Our results suggest that repressors have significantly better intracellular performance than attenuator mechanisms. The reason for this is that repressor, but not attenuator, mechanisms can regulate expression from biosynthetic operons also when transfer RNAs are fully charged with amino acids so that the ribosomes work with maximal speed.
Collapse
Affiliation(s)
- J Elf
- Department of Cell and Molecular Biology, BMC, SE-751 24 Uppsala, Sweden
| | | | | |
Collapse
|
11
|
Barker MM, Gaal T, Josaitis CA, Gourse RL. Mechanism of regulation of transcription initiation by ppGpp. I. Effects of ppGpp on transcription initiation in vivo and in vitro. J Mol Biol 2001; 305:673-88. [PMID: 11162084 DOI: 10.1006/jmbi.2000.4327] [Citation(s) in RCA: 269] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To determine the role of ppGpp in both negative and positive regulation of transcription initiation during exponential growth in Escherichia coli, we examined transcription in vivo and in vitro from the growth-rate-dependent rRNA promoter rrnB P1 and from the inversely growth-rate-dependent amino acid biosynthesis/transport promoters PargI, PhisG, PlysC, PpheA, PthrABC, and PlivJ. rrnB P1 promoter activity was slightly higher at all growth-rates in strains unable to synthesize ppGpp (deltarelAdeltaspoT) than in wild-type strains. Consistent with this observation and with the large decrease in rRNA transcription during the stringent response (when ppGpp levels are much higher), ppGpp inhibited transcription from rrnB P1 in vitro. In contrast, amino acid promoter activity was considerably lower in deltarelAdeltaspoT strains than in wild-type strains, but ppGpp had no effect on amino acid promoter activity in vitro. Detailed kinetic analysis in vitro indicated that open complexes at amino acid promoters formed much more slowly and were much longer-lived than rrnB P1 open complexes. ppGpp did not increase the rates of association with, or escape from, amino acid promoters in vitro, consistent with its failure to stimulate transcription directly. In contrast, ppGpp decreased the half-lives of open complexes at all promoters, whether the half-life was seconds (rrnB P1) or hours (amino acid promoters). The results described here and in the accompanying paper indicate that ppGpp directly inhibits transcription, but only from promoters like rrnB P1 that make short-lived open complexes. The results indicate that stimulation of amino acid promoters occurs indirectly. The accompanying paper evaluates potential models for positive control of amino acid promoters by ppGpp that might explain the requirement of ppGpp for amino acid prototrophy.
Collapse
Affiliation(s)
- M M Barker
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI, 53706, USA
| | | | | | | |
Collapse
|
12
|
Jeng ST, Lay SH, Lai HM. Transcription termination by bacteriophage T3 and SP6 RNA polymerases at Rho-independent terminators. Can J Microbiol 1997; 43:1147-56. [PMID: 9476351 DOI: 10.1139/m97-163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Transcription termination of T3 and SP6 DNA-dependent RNA polymerases have been studied on the DNA templates containing the threonine (thr) attenuator and its variants. The thr attenuator is from the regulatory region of the thr operon of Escherichia coli. The DNA template, encoding the thr attenuator, contains specific features of the rho-independent terminators. It comprises a dG + dC rich dyad symmetry, encoding a stem-and-loop RNA, which is followed by a poly(U) region at the 3'-end. Thirteen attenuator variants have been analyzed for their ability to terminate transcription and the results indicated that the structure as well as the sequence in the G + C rich region of RNA hairpin affect termination of both RNA polymerases. Also, a single base change in the A residues of the hairpin failed to influence termination, whereas changes in the poly(U) region significantly reduced the termination of both T3 and SP6 RNA polymerases. The requirement of a poly(U) region for termination by T3 and SP6 RNA polymerases was studied with nested deletion mutants in this region. The minimum number of U residues required for termination of SP6 and T3 RNA polymerases was five and three, respectively. However, both RNA polymerases needed at least eight U residues to reach a termination efficiency close to that achieved by wild-type thr attenuator encoding nine U residues. In addition, the orientation of the loop sequences of the RNA hairpin did not affect the transcription termination of either of the bacteriophage RNA polymerases.
Collapse
Affiliation(s)
- S T Jeng
- Department of Botany, National Taiwan University, Taipei, Republic of China.
| | | | | |
Collapse
|
13
|
Rott R, Drager RG, Stern DB, Schuster G. The 3' untranslated regions of chloroplast genes in Chlamydomonas reinhardtii do not serve as efficient transcriptional terminators. MOLECULAR & GENERAL GENETICS : MGG 1996; 252:676-83. [PMID: 8917310 DOI: 10.1007/bf02173973] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A general characteristic of the 3' untranslated regions of plastid mRNAs is an inverted repeat sequence that can fold into a stem-loop structure. These stem-loops are superficially similar to structures involved in prokaryotic transcription termination, but were found instead to serve as RNA 3' end processing signals in spinach chloroplasts, and in the atpB mRNA of Chlamydomonas reinhardtii chloroplasts. In order to carry out a broad study of the efficiency of the untranslated sequences at the 3' ends of chloroplast genes in Chlamydomonas to function as transcription terminators, we performed in vivo run-on transcription experiments using Chlamydomonas chloroplast transformants in which different 3' ends were inserted into the chloroplast genome between a petD promoter and a reporter gene. The results showed that none of the 3' ends that were tested, in either sense or antisense orientation, prevented readthrough transcription, and thus were not highly efficient transcription terminators. Therefore, we suggest that most or all of the 3' ends of mature mRNAs in Chlamydomonas chloroplasts are formed by 3' end processing of longer precursors.
Collapse
Affiliation(s)
- R Rott
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | |
Collapse
|
14
|
Yang MT, Scott HB, Gardner JF. Transcription termination at the thr attenuator. Evidence that the adenine residues upstream of the stem and loop structure are not required for termination. J Biol Chem 1995; 270:23330-6. [PMID: 7559489 DOI: 10.1074/jbc.270.40.23330] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The Escherichia coli thr operon attenuator has a structure similar to other Rho-independent terminators. The DNA sequence immediately 5' to the termination site is dG+dC-rich and contains a region of dyad symmetry that, when transcribed into RNA, encodes a hairpin structure in the transcript. It also contains a stretch of 9 consecutive dA-dT residues immediately distal to the region of dyad symmetry which encode uridine residues at the 3' end of the terminated transcript. In addition, the thr attenuator has a stretch of 6 dA-dT residues immediately upstream of the region of dyad symmetry which encode 6 adenines. These adenines could potentially pair with the distal uridines to form a hairpin structure extended by as much as 6 A-U base pairs. In this report we have examined the role of the upstream adenines in transcription termination. We used templates that specify mismatches or create new base pairs in the potential A-U secondary structure of the transcript as well as templates that delete segments of the A residues upstream of the hairpin. We conclude that A-U pairing is not required for efficient transcription termination at the thr attenuator. This conclusion is likely to apply to other Rho-independent terminators that contain hairpin-proximal dA-dT residues.
Collapse
Affiliation(s)
- M T Yang
- Department of Microbiology, University of Illinois, Urbana 61801, USA
| | | | | |
Collapse
|
15
|
Lee DN, Landick R. Structure of RNA and DNA chains in paused transcription complexes containing Escherichia coli RNA polymerase. J Mol Biol 1992; 228:759-77. [PMID: 1281887 DOI: 10.1016/0022-2836(92)90862-e] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
RNA polymerases pause conspicuously at certain positions on a DNA template. At the well-studied pause sites in the attenuation control regions that precede the trp and his operons, both formation of secondary structure in the nascent transcript and the DNA sequence immediately downstream contribute to pausing. The mechanisms of these effects are unknown. We report here studies on the structure of the RNA and DNA strands in purified trp and his paused transcription complexes in comparison to ten elongation complexes halted by nucleoside triphosphate deprivation. A 14 to 22 nucleotide region of the DNA strands was accessible to modification by KMnO4 or diethylpyrocarbonate in both the paused and halted transcription complexes. However, the region in front of the nucleotide-addition site was reactive only in some halted complexes. In both types of complexes, approximately eight nucleotides on the template strand immediately preceding the 3' end were protected from modification. We also examined the sensitivity of the nascent transcript to RNase A and found that the 3'-proximal eight nucleotide region could be cleaved without complete loss of the potential for elongation. However, a model RNA:DNA hybrid designed to mimic a hybrid in the transcription complex could also be cleaved under similar conditions. Together, the results suggest that the 3'-proximal eight nucleotides of transcript may pair with the DNA template and that this structure is not disrupted by hairpin formation at a pause site. Rather, pausing may result from distinct interactions between RNA polymerase and both the pause RNA hairpin and the downstream DNA sequence.
Collapse
Affiliation(s)
- D N Lee
- Department of Biology, Washington University, St Louis, MO 63130
| | | |
Collapse
|
16
|
Jeng S, Gardner J, Gumport R. Transcription termination in vitro by bacteriophage T7 RNA polymerase. The role of sequence elements within and surrounding a rho-independent transcription terminator. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)41775-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
17
|
Transcription attenuation-mediated control of leu operon expression: influence of the number of Leu control codons. J Bacteriol 1991; 173:1634-41. [PMID: 1999384 PMCID: PMC207312 DOI: 10.1128/jb.173.5.1634-1641.1991] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Four adjacent Leu codons within the leu leader RNA are critically important in transcription attenuation-mediated control of leu operon expression in Salmonella typhimurium and Escherichia coli (P. W. Carter, D. L. Weiss, H. L. Weith, and J. M. Calvo, J. Bacteriol. 162:943-949, 1985). The leader region from S. typhimurium was altered by site-directed mutagenesis to produce constructs having between one and seven adjacent Leu codons, all CUA. leu operon expression was measured in strains containing six of these constructs, each integrated into the chromosome in a single copy. Operon expression was sufficiently high that all strains grew in minimal medium unsupplemented by leucine. Expression of the operon was measured in strains cultured in such a way that their growth was limited by the intracellular concentration of either leucine or of leucyl-tRNA. In general, the leu operon for each construct responded similarly to the parent construct in terms of the degree of expression as a function of the degree of limitation. However, a strain containing (CUA)1 and, to a certain extent, a strain having (CUA)2 responded somewhat more sluggishly and strains containing (CUA)6 and (CUA)7 responded more sensitively to limitations than did the parent construct. In addition, DNA fragments containing the leu promoter and leader region were used as templates in in vitro transcription reactions employing purified RNA polymerase. With nucleoside triphosphate concentrations of 200 microM, RNA polymerase paused during transcription of the leu leader region at a site about 95 bp downstream from the site of transcription initiation. The halftimes of the pause were 1 min at 37 degrees C and 3 min at 22 degrees C. The pause was lengthened substantially when the GTP concentration was lowered to 20 micromoles. Our results are interpreted most easily in terms of an all-or-none model. Given two Leu control codons, the operon responds with nearly maximum output over a wide range of leucine limitation, and that outcome does not change much with increasing numbers of control codons.
Collapse
|
18
|
Cantrell AS, Burgett SG, Cook JA, Smith MC, Hsiung HM. Effects of second-codon mutations on expression of the insulin-like growth factor-II-encoding gene in Escherichia coli. Gene 1991; 98:217-23. [PMID: 2016062 DOI: 10.1016/0378-1119(91)90176-c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Expression plasmids encoding random sequence mutant proteins of insulin-like growth factor II (IGFII) were constructed by cassette mutagenesis, to improve the efficiency of IGFII synthesis in Escherichia coli. A pool of oligodeoxyribonucleotide linkers containing random trinucleotide sequences were used to introduce second-codon substitutions into the gene encoding Met-Xaa-Trp-IGFII in expression vectors. E. coli RV308 cells transformed with these vectors synthesized IGFII at levels varying from 0-22% of total cell protein. This variable synthesis is a function of the random second-codon sequence and its corresponding amino acid, Xaa. Our data showed that mRNA stability, protein stability and translational efficiency all contributed to variable expression levels of Met-Xaa-Trp-IGFII in E. coli. Furthermore, an efficiently synthesized IGFII mutant protein, Met-His-Trp-IGFII, was converted to natural sequence IGFII by a simple oxidative cleavage reaction.
Collapse
Affiliation(s)
- A S Cantrell
- Department of Molecular Biology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285
| | | | | | | | | |
Collapse
|
19
|
|
20
|
Jeng ST, Gardner JF, Gumport RI. Transcription termination by bacteriophage T7 RNA polymerase at rho-independent terminators. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39668-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
21
|
Chen LJ, Rogers SA, Bennett DC, Hu MC, Orozco EM. An in vitro transcription termination system to analyze chloroplast promoters: identification of multiple promoters for the spinach atpB gene. Curr Genet 1990; 17:55-64. [PMID: 1690085 DOI: 10.1007/bf00313249] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Promoters for spinach chloroplast genes were cloned 5' to a strong factor-independent transcription terminator from E. coli. These "minigene" constructions were transcribed in vitro by a transcriptionally active extract of spinach chloroplasts. Transcription of supercoiled DNA templates resulted in synthesis of discretely-sized RNAs that were readily quantifiable. The efficiency of transcription was up to 3.5 RNAs per template. The transcription termination system described in this report was used to identify the primary transcripts for the plastid atpB gene. Four in vivo transcripts for the atpB gene have been previously identified with 5' untranslated leaders of approximately 455, 275, 180 and 100 nucleotides, respectively. In this report we show that the "-455", "-275" and "-180" regions function as chloroplast promoters in vitro. In addition, a fourth promoter was found that yields a primary transcript totally lacking an untranslated leader.
Collapse
Affiliation(s)
- L J Chen
- Department of Agronomy, University of Illinois
| | | | | | | | | |
Collapse
|
22
|
The Salmonella typhimurium his operon leader region contains an RNA hairpin-dependent transcription pause site. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(19)47132-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
23
|
Kansy JW, Kaplan S. Purification, Characterization, And Transcriptional Analyses of RNA Polymerases from Rhodobacter sphaeroides Cells Grown Chemoheterotrophically and Photoheterotrophically. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)80064-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
24
|
|
25
|
Contributions of RNA secondary structure and length of the thymidine tract to transcription termination at the thr operon attenuator. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(19)57417-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
26
|
Landick R, Yanofsky C. Isolation and structural analysis of the Escherichia coli trp leader paused transcription complex. J Mol Biol 1987; 196:363-77. [PMID: 2443722 DOI: 10.1016/0022-2836(87)90697-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Transcription pausing is a key step in many prokaryotic transcription attenuation mechanisms. Pausing is thought to occur when an RNA hairpin forms near the 3' end of a growing transcript. We report here the isolation of the trp leader paused transcription complex containing a defined 92-nucleotide nascent transcript. Digestion of isolated paused complexes with RNase T1 suggests that the trp leader RNA hairpin designated 1:2 forms in the paused transcription complex. The transcription factor NusA alters the RNase T1 digestion pattern of the 92-nucleotide pause transcript in the complex but not the cleavage patterns of purified pause RNA, suggesting that NusA specifically affects the 1:2 hairpin in the paused transcription complex. The isolated paused transcription complex retains the ability to resume transcription. Kinetic studies on the resumption of elongation suggest that NusA is a non-competitive inhibitor of paused complex release and that the Ks for GTP is around 300 microM. RNA polymerase in the paused transcription complex protects approximately 30 base-pairs on both DNA strands from exonuclease digestion.
Collapse
Affiliation(s)
- R Landick
- Department of Biological Sciences, Stanford University, CA 94305
| | | |
Collapse
|
27
|
Makaroff CA, Zalkin H. Regulation of Escherichia coli purF. Analysis of the control region of a pur regulon gene. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(17)39258-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
28
|
Lynn SP, Bauer CE, Chapman K, Gardner JF. Identification and characterization of mutants affecting transcription termination at the threonine operon attenuator. J Mol Biol 1985; 183:529-41. [PMID: 2410621 DOI: 10.1016/0022-2836(85)90169-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mutations that map in or delete the attenuator of the threonine (thr) operon of Escherichia coli were isolated and characterized. These mutations disrupt or delete the transcription termination structure encoded by the attenuator leading to increased transcriptional readthrough into the thr operon structural genes. Most of the base substitutions and single base-pair insertions and deletions map in the G + C-rich region of dyad symmetry in the attenuator and decrease the calculated stabilities of the attenuator RNA secondary structures to similar extents (from -30.8 kcal/mol to approximately -21 kcal/mol). Most of the mutants showed a three- to fourfold increase in homoserine dehydrogenase (thrA gene product) synthesis relative to the wild-type parent strain. The mutation in one mutant (thrL153 + G) lowered the calculated stability of the RNA secondary structure only slightly (from -30.8 to 27.8 kcal/mol) but the mutant still exhibited high levels of homoserine dehydrogenase synthesis. In addition, three base substitution mutants (thrL135U, thrL139A and thrL156U) showed only slightly (1.5 to 2-fold) elevated levels of homoserine dehydrogenase activity, even though the calculated stabilities of the attenuator RNA secondary structures were reduced as much as most of the other mutants. Two of the mutations (thrL135U and thrL156U) mapped in the G + C-rich-A + T-rich junction of the attenuator. The third mutation (thrL139A) creates an A X C pair in the center of the G + C-rich region of the attenuator stem. The results obtained for these mutants show that the stability of the RNA secondary structure does not always correlate with the efficiency of transcription termination. Finally, analysis of the base changes in the substitution mutations showed that the mutational changes do not appear to be random.
Collapse
|
29
|
Abstract
RNA polymerase pausing during transcription of the tryptophan (trp) operon leader region is postulated to be the key event that synchronizes transcription of this region with translation of the coding region for the trp leader peptide. Coupling of transcription to translation enables the cell to monitor the intracellular concentration of charged tRNATrp and determine whether polymerase should terminate transcription at the attenuator or proceed into the structural genes of the operon. We used mutant templates containing deletions of DNA segments corresponding to sequences that are predicted to form alternative RNA secondary structures to show that formation of an RNA hairpin in the leader transcript, and the concentration of the next nucleoside triphosphate to be added to the paused transcript, both markedly affect the kinetics of pausing in vitro. A model is presented that accounts for many of the findings obtained in this and other pausing studies.
Collapse
|
30
|
Hauser CA, Sharp JA, Hatfield LK, Hatfield GW. Pausing of RNA polymerase during in vitro transcription through the ilvB and ilvGEDA attenuator regions of Escherichia coli K12. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(18)89659-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
31
|
Saint Girons I, Margarita D. Evidence for an internal promoter in the Escherichia coli threonine operon. J Bacteriol 1985; 161:461-2. [PMID: 3918011 PMCID: PMC214898 DOI: 10.1128/jb.161.1.461-462.1985] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We constructed plasmids carrying the two first genes of the threonine operon from which the major promoter was deleted in vitro by digestion with BAL 31 nuclease. These plasmids continued to express the second gene (thrB) of the operon as judged by their ability to complement a threonine auxotroph. These data indicate that, in addition to the major promoter thrP, there was an internal promoter, thrBp, which could be used for the transcription of the thrB, the second gene of the operon. Additional evidence was given by subcloning a 230-base-pair segment of the operon in a plasmid suitable for detection of translation initiation signals and promoters. The thrBp promoter was thus shown to lie within a 61-base-pair fragment at the 3' end of the first gene, thrA, of the threonine operon.
Collapse
|
32
|
Evidence for the transcript secondary structures predicted to regulate transcription attenuation in the trp operon. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(18)90823-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
33
|
Landick R, Yanofsky C. Stability of an RNA secondary structure affects in vitro transcription pausing in the trp operon leader region. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(18)90897-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
34
|
Watson RJ, Lau PC, Vernet T, Visentin LP. Characterization and nucleotide sequence of a colicin-release gene in the hic region of plasmid ColE3-CA38. Gene X 1984; 29:175-84. [PMID: 6092219 DOI: 10.1016/0378-1119(84)90178-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Downstream from its colicin and immunity genes (col. imm), Escherichia coli plasmid ColE3-CA38 contains a 0.81-kb DNA segment, the hic region, which is required for high colicin production. Characterization of derived plasmids, carrying the col-imm operon but varying in the hic region, showed that the latter functions in lacuna production, colicin release, cell death, and lysis. The hic gene expression after induction was shown to be dependent on the col gene promoter. The nucleotide sequence of the 0.81-kb region was determined and the hic gene localized to its imm-distal portion following an open reading frame (ORF) with no known function. There are two overlapping ORFs in that portion of the sequence, one of which was identified as the hic gene by its partial homology to lysis gene H of CloDF13. The 3' half of the hic gene is non-essential and contains a terminator-like DNA sequence. Preceding the gene, there are also inverted repeats which may attenuate its transcription.
Collapse
|
35
|
Yanofsky C, Kelley RL, Horn V. Repression is relieved before attenuation in the trp operon of Escherichia coli as tryptophan starvation becomes increasingly severe. J Bacteriol 1984; 158:1018-24. [PMID: 6233264 PMCID: PMC215544 DOI: 10.1128/jb.158.3.1018-1024.1984] [Citation(s) in RCA: 76] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Expression of the tryptophan operon of Escherichia coli is regulated over about a 500- to 600-fold range by the combined action of repression and attenuation. Repression regulates transcription initiation in response to variation in the intracellular concentration of tryptophan. Attenuation regulates transcription termination at a site in the leader region of the operon in response to changes in the extent of charging of tRNATrp. We measured repression independently of attenuation to ascertain whether these regulatory mechanisms were used differentially by the bacterium as the severity of tryptophan starvation was increased. We found that repression regulated transcription of the operon over the range from growth with excess tryptophan to growth under moderate tryptophan starvation. By contrast, attenuation (termination control) was not relaxed until tryptophan starvation was in the moderate-to-severe range. Thus, attenuation and repression were used to regulate transcription in response to different degrees of tryptophan deprivation. Consistent with this conclusion is the observation that when tryptophan starvation was sufficient to relieve repression 50 to 60%, 65% of the tRNATrp of the bacterium was charged. These findings provide a possible explanation for the existence of only two tryptophan codons in the coding region for the trp leader peptide of Enterobacteriaceae.
Collapse
|
36
|
Bogosian G, Somerville R. Trp repressor protein is capable of intruding into other amino acid biosynthetic systems. MOLECULAR & GENERAL GENETICS : MGG 1983; 191:51-8. [PMID: 6350828 DOI: 10.1007/bf00330889] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Escherichia coli strains with elevated intracellular levels of Trp repressor protein displayed complete growth inhibition on minimal media which contained high levels of tryptophan. The inhibition was attributable to the acquisition of a compound nutritional requirement, which could be satisfied by a combination of isoleucine, leucine, valine, threonine, serine, phenylalanine, and tyrosine. It is proposed that Trp repressor protein, at elevated levels, represses the transcription of those genes which encode enzymes for the biosynthesis of these particular amino acids. Data which support this model are presented, together with a discussion of its regulatory implications.
Collapse
|
37
|
Abstract
Formation of the RNA primer for CoIE1 DNA replication is inhibited by random substitution of less than one tenth of G residues by I residues during in vitro transcription. Substitution in any one of several regions of the transcript is inhibitory, even in the region more than 400 nucleotides upstream of the origin of DNA replication. The inhibition results from interference with hybrid formation between nascent RNA II (primer transcript) and the template DNA near the replication origin. Association of RNA I with RNA II, which has been known to inhibit primer formation, enhances pausing of transcription of RNA II at a site far downstream of the region where RNA I hybridizes to the transcript. A large deletion in the region which specifies both RNA I and RNA II suppresses primer formation and also enhances pausing of transcription at the same site. These results show that the secondary structure of RNA II during transcription is important for primer formation and that alteration in the structure of the nascent transcript can change transcriptional events far downstream.
Collapse
|
38
|
Parsot C, Saint-Girons I, Cossart P. DNA sequence change of a deletion mutation abolishing attenuation control of the threonine operon of E. coli K12. MOLECULAR & GENERAL GENETICS : MGG 1982; 188:455-8. [PMID: 6298575 DOI: 10.1007/bf00330048] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
39
|
Roof WD, Foltermann KF, Wild JR. The organization and regulation of the pyrBI operon in E. coli includes a rho-independent attenuator sequence. MOLECULAR & GENERAL GENETICS : MGG 1982; 187:391-400. [PMID: 6294470 DOI: 10.1007/bf00332617] [Citation(s) in RCA: 80] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
1. The two polypeptide chains that comprise aspartate carbamoyltransferase in Escherichia coli are encoded by adjacent cistrons expressed in the order, promoter-leader-catalytic cistron-regulatory cistron (p-leader-pyrBI). These two cistrons and their single control region have been cloned as a 2,800 base pair (bp) fragment (The minimal coding requirement for the catalytic and regulatory polypeptides is about 1,350 bp plus control regions). The genes contained by this fragment are subject to normal repression controls and thus possess the intact control regions. 2. By deleting an internal fragment with specific restriction endonucleases, it was possible to construct shortened fragments which no longer produced the regulatory polypeptide. In these cases the expression of the catalytic cistron was normal and subject to repression upon growth in the presence of uracil. Since the pyrB cistron retained transcriptional control, the regulatory polypeptide was not required for expression or control of the catalytic cistron. As expected, the catalytic trimer (Mr = 100,000 daltons) from these deletion mutants had no effector response nor did it exhibit homotropic kinetics for aspartate. The enzyme was identical to the c3 trimer purified from the native holoenzyme by neohydrin dissociation. 3. Insertion of Mu d1(lac Apr) into the structural region of pyrB had a negative effect on the expression of pyrI. This supports the idea that the catalytic and regulatory polypeptide chains of aspartate carbamoyl-transferase are encoded by a single bicistronic operon. Detailed restriction analysis of the cloned pyrBI region has produced a genetic map of restriction sites which is colinear with the published amino acid sequences of the two polypeptides. These maps indicate that the 3'-terminus of the catalytic cistron is adjacent to the 5'-terminus of the regulatory cistron and separated by 10-20 bp. 4. DNA sequence analysis of the 5'-proximal regions of pyrBI revealed that an extensive leader sequence separated the promoter and first structural gene pyrB. This leader of approximately 150 bp contains an attenuator sequence and the translational signals required for the production of a leader polypeptide of 43 amino acids. In this paper we describe the structural organization of pyrBI, and provide a detailed analysis of its regulatory region including its DNA sequence.
Collapse
|