1
|
Hagen WR. Low-frequency EPR of ferrimyoglobin fluoride and ferrimyoglobin cyanide: a case study on the applicability of broadband analysis to high-spin hemoproteins and to HALS hemoproteins. J Biol Inorg Chem 2022; 27:497-507. [PMID: 35802192 PMCID: PMC9399021 DOI: 10.1007/s00775-022-01948-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/04/2022] [Indexed: 11/29/2022]
Abstract
An EPR spectrometer has been developed that can be tuned to many frequencies in the range of ca 0.1–15 GHz. Applicability has been tested on ferrimyoglobin fluoride (MbF) and ferrimyoglobin cyanide (MbCN). MbF has a high-spin (S = 5/2) spectrum with 19F superhyperfine splitting that is only resolved in X-band along the heme normal. Low-frequency EPR also resolves the splitting in the heme plane. Measurement of linewidth as a function of frequency provides the basis for an analysis of inhomogeneous broadening in terms of g-strain, zero-field distribution, unresolved superhyperfine splittings and dipolar interaction. Rhombicity in the g tensor is found to be absent. MbCN (S = 1/2) has a highly anisotropic low spin (HALS) spectrum for which gx cannot be determined unequivocally in X-band. Low-frequency EPR allows for measurement of the complete spectrum and determination of the g-tensor.
Collapse
Affiliation(s)
- Wilfred R Hagen
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|
2
|
Kroneck PMH. Walking the seven lines: binuclear copper A in cytochrome c oxidase and nitrous oxide reductase. J Biol Inorg Chem 2017; 23:27-39. [PMID: 29218634 DOI: 10.1007/s00775-017-1510-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/20/2017] [Indexed: 01/19/2023]
Abstract
The enzymes nitrous oxide reductase (N2OR) and cytochrome c oxidase (COX) are constituents of important biological processes. N2OR is the terminal reductase in a respiratory chain converting N2O to N2 in denitrifying bacteria; COX is the terminal oxidase of the aerobic respiratory chain of certain bacteria and eukaryotic organisms transforming O2 to H2O accompanied by proton pumping. Different spectroscopies including magnetic resonance techniques, were applied to show that N2OR has a mixed-valent Cys-bridged [Cu1.5+(CyS)2Cu1.5+] copper site, and that such a binuclear center, called CuA, does also exist in COX. A sequence motif shared between the CuA center of N2OR and the subunit II of COX raises the issue of a putative evolutionary relationship of the two enzymes. The suggestion of a binuclear CuA in COX, with one unpaired electron delocalized between two equivalent Cu nuclei, was difficult to accept originally, even though regarded as a clever solution to many experimental observations. This minireview in honor of Helmut Sigel traces several of the critical steps forward in understanding the nature of CuA in N2OR and COX, and discusses its unique electronic features to some extent including the contributions made by the development of methodology and the discovery of a novel multi-copper enzyme. Left: X-band (9.130 GHz) and C-band (4.530 GHz, 1st harmonic display of experimental spectrum) EPR spectra of bovine heart cytochrome c oxidase, recorded at 20K. Right: Ribbon presentation of the CuA domain in cytochrome c oxidase and nitrous oxide reductase.
Collapse
Affiliation(s)
- Peter M H Kroneck
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany.
| |
Collapse
|
3
|
Hyde JS. Autobiography of James S. Hyde. APPLIED MAGNETIC RESONANCE 2017; 48:1103-1147. [PMID: 29962662 PMCID: PMC6022859 DOI: 10.1007/s00723-017-0950-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The papers, book chapters, reviews, and patents by James S. Hyde in the bibliography of this document have been separated into EPR and MRI sections, and within each section by topics. Within each topic, publications are listed chronologically. A brief summary is provided for each patent listed. A few publications and patents that do not fit this schema have been omitted. This list of publications is preceded by a scientific autobiography that focuses on selected topics that are judged to have been of most scientific importance. References to many of the publications and patents in the bibliography are made in the autobiography.
Collapse
Affiliation(s)
- James S Hyde
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plan Road, Milwaukee, WI 53226; 414-955-4000; ; ORCID: 0000-0002-3023-1243
| |
Collapse
|
4
|
Abstract
Copper has many roles in biology that involve the change of coordination sphere and/or oxidation state of the copper ion. Consequently, the study of copper in heterogeneous environments is an important area in biophysics. EPR is a primary technique for the investigation of paramagnetic copper, which is usually the isolated Cu(II) ion, but sometimes as Cu(II) in different oxidation states of multitransition ion clusters. The gross geometry of the coordination environment of Cu(II) can often be determined from a simple inspection of the EPR spectrum, recorded in the traditional X-band frequency range (9-10 GHz). Identification and quantitation of the coordinating ligand atoms, however, is not so straightforward. In particular, analysis of the superhyperfine structure on the EPR spectrum, to determine the number of coordinated nitrogen atoms, is fraught with difficulty at X-band, despite the observation that the overwhelming number of EPR studies of Cu(II) in the literature have been carried out at X-band. Greater reliability has been demonstrated at S-band (3-4 GHz), using the low-field parallel (gz) features. However, analysis relies on clear identification of the outermost superhyperfine line, which has the lowest intensity of all the spectral features. Computer simulations have subsequently indicated that the much more intense perpendicular region of the spectrum can be reliably interpreted at L-band (2 GHz). The present work describes the development of L-band EPR of Cu(II) into a routine method that is applicable to biological samples.
Collapse
Affiliation(s)
- Brian Bennett
- Physics Department, 540 N. 15th Street, Marquette University, Milwaukee WI 53233
| | - Jason Kowalski
- Department of Chemistry, University of Wisconsin-Parkside, Kenosha WI 53144
| |
Collapse
|
5
|
Liu J, Chakraborty S, Hosseinzadeh P, Yu Y, Tian S, Petrik I, Bhagi A, Lu Y. Metalloproteins containing cytochrome, iron-sulfur, or copper redox centers. Chem Rev 2014; 114:4366-469. [PMID: 24758379 PMCID: PMC4002152 DOI: 10.1021/cr400479b] [Citation(s) in RCA: 624] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Indexed: 02/07/2023]
Affiliation(s)
- Jing Liu
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Saumen Chakraborty
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Parisa Hosseinzadeh
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yang Yu
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Shiliang Tian
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Igor Petrik
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ambika Bhagi
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yi Lu
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
6
|
Toftlund H, Becher J, Olesen PH, Pedersen JZ. Biomimetic Systems for the “Visible” Copper-Site CuAin Cytochrome c Oxidase. Isr J Chem 2013. [DOI: 10.1002/ijch.198500011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Wilson TD, Yu Y, Lu Y. Understanding copper-thiolate containing electron transfer centers by incorporation of unnatural amino acids and the CuA center into the type 1 copper protein azurin. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2012.06.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
|
9
|
New SY, Marshall NM, Hor TSA, Xue F, Lu Y. Redox tuning of two biological copper centers through non-covalent interactions: same trend but different magnitude. Chem Commun (Camb) 2012; 48:4217-9. [DOI: 10.1039/c2cc30901g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Savelieff MG, Lu Y. CuA centers and their biosynthetic models in azurin. J Biol Inorg Chem 2010; 15:461-83. [DOI: 10.1007/s00775-010-0625-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2009] [Accepted: 01/20/2010] [Indexed: 11/28/2022]
|
11
|
Myers WK, Duesler EN, Tierney DL. Integrated paramagnetic resonance of high-spin Co(II) in axial symmetry: chemical separation of dipolar and contact electron-nuclear couplings. Inorg Chem 2008; 47:6701-10. [PMID: 18605690 DOI: 10.1021/ic800245k] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Integrated paramagnetic resonance, utilizing electron paramagnetic resonance (EPR), NMR, and electron-nuclear double resonance (ENDOR), of a series of cobalt bis-trispyrazolylborates, Co(Tp ( x )) 2, are reported. Systematic substitutions at the ring carbons and on the apical boron provide a unique opportunity to separate through-bond and through-space contributions to the NMR hyperfine shifts for the parent, unsubstituted Tp complex. A simple relationship between the chemical shift difference (delta H - delta Me) and the contact shift of the proton in that position is developed. This approach allows independent extraction of the isotropic hyperfine coupling, A iso, for each proton in the molecule. The Co..H contact coupling energies derived from the NMR, together with the known metrics of the compounds, were used to predict the ENDOR couplings at g perpendicular. Proton ENDOR data is presented that shows good agreement with the NMR-derived model. ENDOR signals from all other magnetic nuclei in the complex ( (14)N, coordinating and noncoordinating, (11)B and (13)C) are also reported.
Collapse
Affiliation(s)
- William K Myers
- Department of Chemistry and Chemical Biology, The University of New Mexico, Albuquerque, New Mexico 87131, USA
| | | | | |
Collapse
|
12
|
Zumft WG, Kroneck PMH. Respiratory transformation of nitrous oxide (N2O) to dinitrogen by Bacteria and Archaea. Adv Microb Physiol 2006; 52:107-227. [PMID: 17027372 DOI: 10.1016/s0065-2911(06)52003-x] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
N2O is a potent greenhouse gas and stratospheric reactant that has been steadily on the rise since the beginning of industrialization. It is an obligatory inorganic metabolite of denitrifying bacteria, and some production of N2O is also found in nitrifying and methanotrophic bacteria. We focus this review on the respiratory aspect of N2O transformation catalysed by the multicopper enzyme nitrous oxide reductase (N2OR) that provides the bacterial cell with an electron sink for anaerobic growth. Two types of Cu centres discovered in N2OR were both novel structures among the Cu proteins: the mixed-valent dinuclear Cu(A) species at the electron entry site of the enzyme, and the tetranuclear Cu(Z) centre as the first catalytically active Cu-sulfur complex known. Several accessory proteins function as Cu chaperone and ABC transporter systems for the biogenesis of the catalytic centre. We describe here the paradigm of Z-type N2OR, whose characteristics have been studied in most detail in the genera Pseudomonas and Paracoccus. Sequenced bacterial genomes now provide an invaluable additional source of information. New strains harbouring nos genes and capability of N2O utilization are being uncovered. This reveals previously unknown relationships and allows pattern recognition and predictions. The core nos genes, nosZDFYL, share a common phylogeny. Most principal taxonomic lineages follow the same biochemical and genetic pattern and share the Z-type enzyme. A modified N2OR is found in Wolinella succinogenes, and circumstantial evidence also indicates for certain Archaea another type of N2OR. The current picture supports the view of evolution of N2O respiration prior to the separation of the domains Bacteria and Archaea. Lateral nos gene transfer from an epsilon-proteobacterium as donor is suggested for Magnetospirillum magnetotacticum and Dechloromonas aromatica. In a few cases, nos gene clusters are plasmid borne. Inorganic N2O metabolism is associated with a diversity of physiological traits and biochemically challenging metabolic modes or habitats, including halorespiration, diazotrophy, symbiosis, pathogenicity, psychrophily, thermophily, extreme halophily and the marine habitat down to the greatest depth. Components for N2O respiration cover topologically the periplasm and the inner and outer membranes. The Sec and Tat translocons share the task of exporting Nos components to their functional sites. Electron donation to N2OR follows pathways with modifications depending on the host organism. A short chronology of the field is also presented.
Collapse
Affiliation(s)
- Walter G Zumft
- Institute of Applied Biosciences, Division of Molecular Microbiology, University of Karlsruhe, D-76128 Karlsruhe, Germany
| | | |
Collapse
|
13
|
Swartz HM, Swartz SM. Biochemical and biophysical applications of electron spin resonance. METHODS OF BIOCHEMICAL ANALYSIS 2006; 29:207-323. [PMID: 6304458 DOI: 10.1002/9780470110492.ch5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
14
|
Hyde JS, Yin JJ, Subczynski WK, Camenisch TG, Ratke JJ, Froncisz W. Spin-Label EPR T1 Values Using Saturation Recovery from 2 to 35 GHz. J Phys Chem B 2004. [DOI: 10.1021/jp036329z] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- James S. Hyde
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, Instrumentation and Biophysics Branch, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland 20740, and Department of Biophysics, Faculty of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jun-Jie Yin
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, Instrumentation and Biophysics Branch, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland 20740, and Department of Biophysics, Faculty of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Witold K. Subczynski
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, Instrumentation and Biophysics Branch, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland 20740, and Department of Biophysics, Faculty of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Theodore G. Camenisch
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, Instrumentation and Biophysics Branch, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland 20740, and Department of Biophysics, Faculty of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Joseph J. Ratke
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, Instrumentation and Biophysics Branch, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland 20740, and Department of Biophysics, Faculty of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Wojciech Froncisz
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, Instrumentation and Biophysics Branch, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland 20740, and Department of Biophysics, Faculty of Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
15
|
Lukoyanov D, Berry SM, Lu Y, Antholine WE, Scholes CP. Role of the coordinating histidine in altering the mixed valency of Cu(A): an electron nuclear double resonance-electron paramagnetic resonance investigation. Biophys J 2002; 82:2758-66. [PMID: 11964261 PMCID: PMC1302063 DOI: 10.1016/s0006-3495(02)75616-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The binuclear Cu(A) site engineered into Pseudomonas aeruginosa azurin has provided a Cu(A)-azurin with a well-defined crystal structure and a CuSSCu core having two equatorial histidine ligands, His120 and His46. The mutations His120Asn and His120Gly were made at the equatorial His120 ligand to understand the histidine-related modulation to Cu(A), notably to the valence delocalization over the CuSSCu core. For these His120 mutants Q-band electron nuclear double resonance (ENDOR) and multifrequency electron paramagnetic resonance (EPR) (X, C, and S-band), all carried out under comparable cryogenic conditions, have provided markedly different electronic measures of the mutation-induced change. Q-band ENDOR of cysteine C(beta) protons, of weakly dipolar-coupled protons, and of the remaining His46 nitrogen ligand provided hyperfine couplings that were like those of other binuclear mixed-valence Cu(A) systems and were essentially unperturbed by the mutation at His120. The ENDOR findings imply that the Cu(A) core electronic structure remains unchanged by the His120 mutation. On the other hand, multifrequency EPR indicated that the H120N and H120G mutations had changed the EPR hyperfine signature from a 7-line to a 4-line pattern, consistent with trapped-valence, Type 1 mononuclear copper. The multifrequency EPR data imply that the electron spin had become localized on one copper by the His120 mutation. To reconcile the EPR and ENDOR findings for the His120 mutants requires that either: if valence localization to one copper has occurred, the spin density on the cysteine sulfurs and the remaining histidine (His46) must remain as it was for a delocalized binuclear Cu(A) center, or if valence delocalization persists, the hyperfine coupling for one copper must markedly diminish while the overall spin distribution on the CuSSCu core is preserved.
Collapse
Affiliation(s)
- Dmitriy Lukoyanov
- Department of Chemistry and Center for Biological Macromolecules, University at Albany, SUNY, Albany, New York 12222, USA
| | | | | | | | | |
Collapse
|
16
|
Beinert H. Copper A of cytochrome c oxidase, a novel, long-embattled, biological electron-transfer site. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 245:521-32. [PMID: 9182986 DOI: 10.1111/j.1432-1033.1997.t01-1-00521.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This review traces the history of understanding of the CuA site in cytochrome c oxidase (COX) from the beginnings, when few believed that there was any significant Cu in COX, to the verification of three atoms Cu/monomer and to the final identification of the site as a dinuclear, Cys-bridged average valence Cu1.5+ ... Cu1.5+ structure through spectroscopy, recombinant DNA techniques, and crystallography. The critical steps forward in understanding the nature of the CuA site are recounted and the present state (as of the end of 1996) of our knowledge of the molecular and electronic structure is discussed in some detail. The contributions made through the years by the development of methodology and concepts for solving the enigma of CuA are emphasized and impediments, often rooted in contemporary preconceptions and attitudes rather than solid data, are mentioned, which discouraged the exploitation of early valuable clues. Finally, analogies in construction principles of polynuclear Cu-S and Fe-S proteins are pointed out.
Collapse
Affiliation(s)
- H Beinert
- Institute for Enzyme Research, Graduate School, and Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin, Madison 53705-4098, USA
| |
Collapse
|
17
|
Berks BC, Ferguson SJ, Moir JW, Richardson DJ. Enzymes and associated electron transport systems that catalyse the respiratory reduction of nitrogen oxides and oxyanions. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1232:97-173. [PMID: 8534676 DOI: 10.1016/0005-2728(95)00092-5] [Citation(s) in RCA: 399] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- B C Berks
- Centre for Metalloprotein Spectroscopy and Biology, School of Biological Sciences, University of East Anglia, Norwich, UK
| | | | | | | |
Collapse
|
18
|
These are the Moments when we Live! From Thunberg Tubes and Manometry to Phone, Fax and Fedex. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/b978-0-444-81942-0.50012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
19
|
Lappalainen P, Saraste M. The binuclear CuA centre of cytochrome oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1994. [DOI: 10.1016/0005-2728(94)90115-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Abstract
The merits of the suggestion that CuA in cytochrome oxidase is a mixed-valence binuclear site is reviewed on the basis of recent analytical and spectroscopic studies. First an alternative mononuclear model is presented. Metal analyses indicate that homogeneous oxidase preparations with high activity contain 3Cu/2Fe. Multifrequency EPR measurements demonstrate a close similarity with a copper site in nitrous oxide reductase, and this is also supported by optical and MCD spectra. Strong evidence for a binuclear site is provided by a 7-line hyperfine structure in the EPR spectra of both enzymes. A binuclear model consistent with amino acid sequence data can be formulated.
Collapse
Affiliation(s)
- B G Malmström
- Department of Biochemistry and Biophysics, University of Göteborg, Sweden
| | | |
Collapse
|
21
|
Abstract
Some contemporary issues relevant to the chemistry of mammalian cytochrome c oxidase are discussed. These include the optical properties of heme A and the spectroscopic consequences of the differences in side-chain substitution compared to heme B; a common fallacy concerning the electrostatic exchange interaction between cytochrome a3 and CuB; the question of the number and location of the copper components of the enzyme; and the mode of binding of ligands such as cyanide and azide.
Collapse
Affiliation(s)
- G Palmer
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77251-1892
| |
Collapse
|
22
|
|
23
|
McKee V. Macrocyclic Complexes as Models for Nonporphine Metalloproteins. ADVANCES IN INORGANIC CHEMISTRY 1993. [DOI: 10.1016/s0898-8838(08)60186-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Antholine WE, Kastrau DH, Steffens GC, Buse G, Zumft WG, Kroneck PM. A comparative EPR investigation of the multicopper proteins nitrous-oxide reductase and cytochrome c oxidase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 209:875-81. [PMID: 1330560 DOI: 10.1111/j.1432-1033.1992.tb17360.x] [Citation(s) in RCA: 165] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The multicopper proteins, nitrous-oxide reductase (N2OR) and cytochrome c oxidase (COX), were investigated by EPR spectroscopy at microwave frequencies 2.4-35 GHz. Our results support a Cu-Cu interaction in COX and N2OR. At least 10 lines in the 2.7-GHz, 12 lines in the 4.6-GHz and 14 lines in the 9.2 GHz spectra were resolved for N2OR. Eight copper lines at 2.7 GHz, about nine lines at 4.6 GHz and about six lines at 9.2 GHz were resolved for COX. Simulations of the EPR spectra were consistent with most of the resonances of the multiline spectra, including regions in the center of the spectra where overlap of the three seven-line patterns is proposed. These simulations indicated that Cu-Cu interaction, in a mixed-valence [Cu(1.5) ... Cu(1.5)], S = 1/2 site is consistent with, if not proof of, the unusual spectral features observed for N2OR and COX.
Collapse
Affiliation(s)
- W E Antholine
- National Biomedical ESR Center, Medical College of Wisconsin, Milwaukee
| | | | | | | | | | | |
Collapse
|
25
|
Chapter 9 Cytochrome oxidase: notes on structure and mechanism. MOLECULAR MECHANISMS IN BIOENERGETICS 1992. [DOI: 10.1016/s0167-7306(08)60177-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Azzi A, Müller M. Cytochrome c oxidases: polypeptide composition, role of subunits, and location of active metal centers. Arch Biochem Biophys 1990; 280:242-51. [PMID: 2164354 DOI: 10.1016/0003-9861(90)90326-t] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The general structure of the enzyme, its polypeptide composition, and a proposal for a rational nomenclature are discussed. The mitochondrially coded and bacterial cytochrome c oxidase subunits have been analyzed with more attention focused on elucidating the number of metals present in the enzyme and the ligands available for their coordination. The picture of a 2 Cu/2 Fe enzyme has been compared with that of a 3 Cu/2 Fe enzyme and a new model is proposed for the location of the metal centers in the enzyme.
Collapse
Affiliation(s)
- A Azzi
- Institut für Biochemie und Molekularbiologie, Universität Bern, Switzerland
| | | |
Collapse
|
27
|
Kroneck PM, Antholine WE, Kastrau DH, Buse G, Steffens GC, Zumft WG. Multifrequency EPR evidence for a bimetallic center at the CuA site in cytochrome c oxidase. FEBS Lett 1990; 268:274-6. [PMID: 2166686 DOI: 10.1016/0014-5793(90)81026-k] [Citation(s) in RCA: 116] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Multifrequency electron paramagnetic resonance (EPR) spectra of the Cu(II) site in bovine heart cytochrome c oxidase (COX) and nitrous oxide reductase (N2OR) from Pseudomonas stutzeri confirm the existence of Cu-Cu interaction in both enzymes. C-band (4.5 GHz) proves to be a particularly good frequency complementing the spectra of COX and N2OR recorded at 2.4 and 3.5 GHz. Both the high and low field region of the EPR spectra show the presence of a well-resolved 7-line pattern consistent with the idea of a binuclear Cu center in COX and N2OR. Based on this assumption consistent g-values are calculated for gz and gx at four frequencies. No consistent g-values are obtained with the assumption of a 4-line pattern indicative for a mononuclear Cu site.
Collapse
Affiliation(s)
- P M Kroneck
- Fakultät für Biologie, Universität Konstanz, FRG
| | | | | | | | | | | |
Collapse
|
28
|
Kroneck PM, Riester J, Zumft WG, Antholine WE. The copper site in nitrous oxide reductase. BIOLOGY OF METALS 1990; 3:103-9. [PMID: 1965779 DOI: 10.1007/bf01179514] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The properties of the novel copper enzyme nitrous oxide reductase from denitrifying Pseudomonas stutzeri are described. Multifrequency electron paramagnetic resonance spectroscopy is used to characterize the various forms of the enzyme. The features observed at 2.4, 3.4, 4.5, 9.31 and 35 GHz are explained by a mixed-valence [Cu(1.5)...Cu(1.5)] S = 1/2 species with the unpaired electron delocalized between the two Cu nuclei. This site is also present in the catalytically inactive derivative of nitrous oxide reductase which was obtained from a transposon Tn5-induced mutant with defective chromophore biosynthesis. The resemblance of the low-frequency electron paramagnetic resonance spectra to the spectra for the so-called CuA of cytochrome c oxidase can be taken as a first indication that the CuA may have a structural and electronic arrangement similar to the electron-paramagnetic-resonance-detectable copper in nitrous oxide reductase. Results from oxidation/reduction experiments, and from a quantitative determination of sulfhydryl and disulfide residues in the various forms of nitrous oxide reductase, suggest the involvement of the redox-couple cysteine/cystine in the structural organization of the active site of nitrous oxide reductase.
Collapse
Affiliation(s)
- P M Kroneck
- Fakultät für Biologie, Universität Konstanz, Federal Republic of Germany
| | | | | | | |
Collapse
|
29
|
Kroneck PM, Antholine WA, Riester J, Zumft WG. The cupric site in nitrous oxide reductase contains a mixed-valence [Cu(II),Cu(I)] binuclear center: a multifrequency electron paramagnetic resonance investigation. FEBS Lett 1988; 242:70-4. [PMID: 2849565 DOI: 10.1016/0014-5793(88)80987-6] [Citation(s) in RCA: 162] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Multifrequency electron paramagnetic resonance (EPR) spectra of the Cu(II) site in nitrous oxide reductase (N2OR) from Pseudomonas stutzeri confirm the assignment of the low field g value at 2.18 consistent with the seven line pattern observed at 9.31 GHz, 10 K. S-band spectra at 20 K are better resolved than the X-band spectra recorded at 10 K. The features observed at 2.4, 3.4, 9.31 and 35 GHz are explained by a mixed-valence [Cu(1.5)..Cu(1.5)] S = 1/2 species with the unpaired electron delocalized between two equivalent Cu nuclei. The resemblance of the N2OR S-band spectra to the spectra for the EPR-detectable Cu of cytochrome c oxidase suggests that the S-band spectrum for cytochrome c oxidase measured below 30 K may also contain hyperfine splittings from two approximately equivalent Cu nuclei.
Collapse
Affiliation(s)
- P M Kroneck
- Fakultät für Biologie, Universität Konstanz, FRG
| | | | | | | |
Collapse
|
30
|
Greenwood C, Thomson AJ, Barrett CP, Peterson J, George GN, Fee JA, Reichardt J. Some spectroscopic views of the CuA site in cytochrome c oxidase preparations. Ann N Y Acad Sci 1988; 550:47-52. [PMID: 2854410 DOI: 10.1111/j.1749-6632.1988.tb35321.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- C Greenwood
- School of Biological, University of East Anglia Norwich, Norfolk, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
31
|
Thomson AJ, Greenwood C, Peterson J, Barrett CP. Determination of the optical properties of CuA(II) in bovine cytochrome c oxidase using magnetic circular dichroism as an optical detector of paramagnetic resonance. J Inorg Biochem 1986; 28:195-205. [PMID: 3027254 DOI: 10.1016/0162-0134(86)80083-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This paper describes the use of a novel magnetic circular dichroism-microwave double resonance (MCD-ODMR) experiment to study the optical properties of the EPR detectable copper center, CuA2+, in bovine cytochrome c oxidase. By irradiating the sample with a monochromatic microwave beam of appropriate frequency it is possible to quench partially the MCD intensity of the features due to CuA2+. In this way the MCD bands from this center have been identified even in the presence of overlapping optical transitions from the haem centers of this enzyme. The resulting spectrum compares well with that reported some years ago from this laboratory and obtained by measuring MCD magnetisation characteristics. In addition the shapes of the MCD-ODMR lines obtained in a plot of MCD intensity against magnetic field strength have been analyzed to yield the relative polarizations of the optical transitions of CuA2+ which contribute to the MCD spectrum. All of the bands observed between 450 and 850 nm are predominantly polarized in the xy plane perpendicular to the direction of the g-tensor component of CuA2+ at g parallel = 2.18. This suggests that all of the CuA2+ ligands that contribute to the optical charge-transfer transitions in the visible region lie approximately in the basal plane. Possible structures for CuA2+ can now be suggested.
Collapse
|
32
|
|
33
|
Dunham WR, Sands RH, Shaw RW, Beinert H. Multiple frequency EPR studies on three forms of oxidized cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA 1983; 748:73-85. [PMID: 6311273 DOI: 10.1016/0167-4838(83)90029-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Bovine heart mitochondrial cytochrome c oxidase (cytochrome aa3) (EC 1.9.3.1) has been demonstrated to occur in several forms when the redox centers in the protein are thought to be fully oxidized. We report here the results of extensive EPR studies at 3, 8.9, 9.2, 9.4, 15 and 34 GHz on the resting state, the alternative resting state (with g = 12 at 9 GHz) and pulsed state (with g = 5 signal at 9 GHz). Theoretical consideration is given to all binary spin-coupling possibilities under the constraint that the iron atoms are either ferric or ferrous and the copper atoms are either cupric or cuprous. We conclude that the g = 12 signal can arise from any spin system with S greater than 1 and D = 0.15 cm-1. The g = 5 signals originate from an excited, integer-spin system with D = 0.035 cm-1, which is approximately 7 cm-1 above the ground state (not observed in EPR). It is pointed out that in interpretations of data and elaboration of suitable models in this field, the implications of spin-coupling should be considered in a comprehensive and not in a selective way. At 3 GHz, EPR spectra of CuA in the resting, pulsed and anaerobically oxidized states show that this center is identical in its EPR for all three states.
Collapse
|
34
|
Viola RE, Shaw RW, Ransom SC, Villafranca JJ. Solvent proton relaxation studies of cytochrome c oxidase solutions. Arch Biochem Biophys 1983; 220:106-15. [PMID: 6299195 DOI: 10.1016/0003-9861(83)90392-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The interaction of solvent water protons with the bound paramagnetic metal ions of beef heart cytochrome c oxidase has been examined. The observed proton relaxation rates of enzyme solutions had a negative temperature dependence, indicating a rapid exchange between solvent protons in the coordination sphere of the metal ions and bulk solvent. An analysis of the dependence of the proton relaxation rate on the observation frequency indicated that the correlation time, which modulates the interaction between solvent protons and the unpaired electrons on the metal ions, is due to the electron spin relaxation time of the heme irons of cytochrome c oxidase. This means that at least one of the hemes is exposed to solvent. The proton relaxation rate of the oxidized enzyme was found to be sensitive to changes in ionic strength and to changes in the spin states of the metal ions. Heme a3 was found to be relatively inaccessible to bulk solvent. Partial reduction of the enzyme caused a slight increase in the relaxation rate, which may be due to a change in the antiferromagnetic coupling between two of the bound paramagnetic centers. Further reduction resulted in a decreased relaxation rate, and the fully reduced enzyme was no longer sensitive to changes in ionic strength. The binding of cytochrome c to cytochrome c oxidase had little effect on the proton relaxation rates of oxidized cytochrome oxidase indicating that cytochrome c binding has little effect on solvent accessibility to the metal ion sites.
Collapse
|
35
|
|
36
|
|
37
|
Seelig A, Ludwig B, Seelig J, Schatz G. Copper and manganese electron spin resonance studies of cytochrome c oxidase from Paracoccus denitrificans. BIOCHIMICA ET BIOPHYSICA ACTA 1981; 636:162-7. [PMID: 6269600 DOI: 10.1016/0005-2728(81)90089-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The two-subunit cytochrome c oxidase from Paracoccus denitrificans contains two heme a groups and two copper atoms. However, when the enzyme is isolated from cells grown on a commonly employed medium, its electron paramagnetic resonance (EPR) spectrum reveals not only a Cu(II) powder pattern, but also a hyperfine pattern from tightly bound Mn(II). The pure Mn(II) spectrum is observed at -40 degrees C; the pure Cu(II) spectrum can be seen with cytochrome c oxidase from P. denitrificans cells that had been grown in a Mn(II)-depleted medium. This Cu(II) spectrum is very similar to that of cytochrome c oxidase from yeast or bovine heart. Manganese is apparently not an essential component of P. denitrificans cytochrome c oxidase since it is present in substoichometric amounts relative to copper or heme a and since the manganese-free enzyme retains essentially full activity in oxidizing ferrocytochrome c. However, the manganese is not removed by EDTA and its EPR spectrum responds to the oxidation state of the oxidase. In contrast, manganese added to the yeast oxidase or to the manganese-free P. denitrificans enzyme can be removed by EDTA and does not respond to the oxidation state of the enzyme. This suggests that the manganese normally associated with P. denitrificans cytochrome c oxidase is incorporated into one or more internal sites during the biogenesis of the enzyme.
Collapse
|
38
|
|
39
|
|
40
|
Froncisz W, Hyde JS. Broadening by strains of lines in theg‐parallel region of Cu2+EPR spectra. J Chem Phys 1980. [DOI: 10.1063/1.440548] [Citation(s) in RCA: 128] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
41
|
Beinert H. Structure and function of copper proteins Report, on the fourth La Cura Conference held at Villa Giulia, Manziana, Rome, Italy, 4-8 September 1979. Coord Chem Rev 1980. [DOI: 10.1016/s0010-8545(00)80398-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
42
|
|