1
|
Mishra P, Singh BK, Dhingra S, Sharma RK. Spectroscopic characterization of complexes of tetracycline with cobalt(II), nickel(II), cadmium(II) and inorganic Sn(II). MAIN GROUP CHEMISTRY 2007. [DOI: 10.1080/10241220701837470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
2
|
Hirata T, Saito A, Nishino K, Tamura N, Yamaguchi A. Effects of efflux transporter genes on susceptibility of Escherichia coli to tigecycline (GAR-936). Antimicrob Agents Chemother 2004; 48:2179-84. [PMID: 15155219 PMCID: PMC415592 DOI: 10.1128/aac.48.6.2179-2184.2004] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The activity of tigecycline, 9-(t-butylglycylamido)-minocycline, against Escherichia coli KAM3 (acrB) strains harboring plasmids encoding various tetracycline-specific efflux transporter genes, tet(B), tet(C), and tet(K), and multidrug transporter genes, acrAB, acrEF, and bcr, was examined. Tigecycline showed potent activity against all three Tet-expressing, tetracycline-resistant strains, with the MICs for the strains being equal to that for the host strain. In the Tet(B)-containing vesicle study, tigecycline did not significantly inhibit tetracycline efflux-coupled proton translocation and at 10 microM did not cause proton translocation. This suggests that tigecycline is not recognized by the Tet efflux transporter at a low concentration; therefore, it exhibits significant antibacterial activity. These properties can explain its potent activity against bacteria with a Tet efflux resistance determinant. Tigecycline induced the Tet(B) protein approximately four times more efficiently than tetracycline, as determined by Western blotting, indicating that it is at least recognized by a TetR repressor. The MICs for multidrug efflux proteins AcrAB and AcrEF were increased fourfold. Tigecycline inhibited active ethidium bromide efflux from intact E. coli cells overproducing AcrAB. Therefore, tigecycline is a possible substrate of AcrAB and its close homolog, AcrEF, which are resistance-modulation-division-type multicomponent efflux transporters.
Collapse
Affiliation(s)
- Takahiro Hirata
- Department of Cell Membrane Biology, Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| | | | | | | | | |
Collapse
|
3
|
Lewis GS, Jewell JE, Phang T, Miller KW. Mutational and sequence analysis of transmembrane segment 6 orientation in TetA proteins. Biochem Biophys Res Commun 2003; 305:1067-72. [PMID: 12767939 DOI: 10.1016/s0006-291x(03)00904-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The packing orientations of the 8 transmembrane (TM) segments that line the central, aqueous transport channel within tetracycline resistance proteins (TetA) have been established. However, the orientations of the remaining 4 segments, TMs 3, 6, 9, and 12, located at the periphery, and away from the transport channel, have not yet been determined. In this study, the packing orientation of TM6 within the class C TetA protein encoded by plasmid pBR322 was evaluated by substitution mutagenesis and analysis of sequence conservation and amphipathicity. The combined data support a model in which the conserved and polar face of the TM6 alpha-helix containing Asn170 and Asn173 orients towards channel-lining TM segments, and the relatively non-conserved and hydrophobic face of TM6 points towards membrane lipids.
Collapse
Affiliation(s)
- G Shane Lewis
- Department of Molecular Biology, University of Wyoming, P.O. Box 3944, Laramie, WY 82071-3944, USA
| | | | | | | |
Collapse
|
4
|
McMurry LM, Aldema-Ramos ML, Levy SB. Fe(2+)-tetracycline-mediated cleavage of the Tn10 tetracycline efflux protein TetA reveals a substrate binding site near glutamine 225 in transmembrane helix 7. J Bacteriol 2002; 184:5113-20. [PMID: 12193628 PMCID: PMC135328 DOI: 10.1128/jb.184.18.5113-5120.2002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TetA specified by Tn10 is a class B member of a group of related bacterial transport proteins of 12 transmembrane alpha helices that mediate resistance to the antibiotic tetracycline. A tetracycline-divalent metal cation complex is expelled from the cell in exchange for a entering proton. The site(s) where tetracycline binds to this export pump is not known. We found that, when chelated to tetracycline, Fe(2+) cleaved the backbone of TetA predominantly at a single position, glutamine 225 in transmembrane helix 7. The related class D TetA protein from plasmid RA1 was cut at exactly the same position. There was no cleavage with glycylcycline, an analog of tetracycline that does not bind to TetA. The Fe(2+)-tetracycline complex was not detectably transported by TetA. However, cleavage products of the same size as with Fe(2+) occurred with Co(2+), known to be cotransported with tetracycline. The known substrate Mg (2+)-tetracycline interfered with cleavage by Fe(2+). These findings suggest that cleavage results from binding at a substrate-specific site. Fe(2+) is known to be able to cleave amide bonds in proteins at distances up to approximately 12 A. We conclude that the alpha carbon of glutamine 225 is probably within 12 A of the position of the Fe(2+) ion in the Fe(2+)-tetracycline complex bound to the protein.
Collapse
Affiliation(s)
- Laura M McMurry
- Center for Adaptation Genetics and Drug Resistance and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA.
| | | | | |
Collapse
|
5
|
Lewis GS, Jewell JE, Phang T, Miller KW. Mutational analysis of tetracycline resistance protein transmembrane segment insertion. Arch Biochem Biophys 2002; 404:317-25. [PMID: 12147271 DOI: 10.1016/s0003-9861(02)00287-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The tetracycline resistance proteins (TetA) of gram-negative bacteria are secondary active transport proteins that contain buried charged amino acids that are important for tetracycline transport. Earlier studies have shown that insertion of TetA proteins into the cytoplasmic membrane is mediated by helical hairpin pairs of transmembrane (TM) segments. However, whether helical hairpins direct spontaneous insertion of TetA or are required instead for its interaction with the cellular secretion (Sec) machinery is unknown. To gain insight into how TetA proteins are inserted into the membrane, we have investigated how tolerant the class C TetA protein encoded by plasmid pBR322 is to placement of charged residues in TM segments. The results show that the great majority of charge substitutions do not interfere with insertion even when placed at locations that cannot be shielded internally within helical hairpins. The only mutations that frequently block insertion are proline substitutions, which may interfere with helical hairpin folding. The ability of TetA to broadly tolerate charge substitutions indicates that the Sec machinery assists in its insertion into the membrane. The results also demonstrate that it is feasible to engineer charged residues into the interior of TetA proteins for the purpose of structure-function analysis.
Collapse
Affiliation(s)
- G Shane Lewis
- Department of Molecular Biology, University of Wyoming, P.O. Box 3944, Laramie, WY 82071-3944, USA
| | | | | | | |
Collapse
|
6
|
Ditty JL, Harwood CS. Charged amino acids conserved in the aromatic acid/H+ symporter family of permeases are required for 4-hydroxybenzoate transport by PcaK from Pseudomonas putida. J Bacteriol 2002; 184:1444-8. [PMID: 11844776 PMCID: PMC134867 DOI: 10.1128/jb.184.5.1444-1448.2002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Charged amino acids in the predicted transmembrane portion of PcaK, a permease from Pseudomonas putida that transports 4-hydroxybenzoate (4-HBA), were required for 4-HBA transport, and they were also required for P. putida to have a chemotactic response to 4-HBA. An essential amino acid motif (DGXD) containing aspartate residues is located in the first transmembrane segment of PcaK and is conserved in the aromatic acid/H+ symporter family of the major facilitator superfamily of transporters.
Collapse
Affiliation(s)
- Jayna L Ditty
- Department of Microbiology, The University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
7
|
Tamura N, Konishi S, Iwaki S, Kimura-Someya T, Nada S, Yamaguchi A. Complete cysteine-scanning mutagenesis and site-directed chemical modification of the Tn10-encoded metal-tetracycline/H+ antiporter. J Biol Chem 2001; 276:20330-9. [PMID: 11278375 DOI: 10.1074/jbc.m007993200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacterial Tn10-encoded metal-tetracycline/H(+) antiporter was the first found drug exporter and has been studied as a paradigm of antiporter-type major facilitator superfamily transporters. Here the 400 amino acid residues of this protein were individually replaced by cysteine except for the initial methionine. As a result, we could obtain a complete map of the functionally or structurally important residues. In addition, we could determine the precise boundaries of all the transmembrane segments on the basis of the reactivity with N-ethylmaleimide (NEM). The NEM binding results indicated the presence of a transmembrane water-filled channel in the transporter. The twelve transmembrane segments can be divided into three groups; four are totally embedded in the hydrophobic interior, four face a putative water-filled channel along their full length, and the remaining four face the channel for half their length, the other halves being embedded in the hydrophobic interior. These three types of transmembrane segments are mutually arranged with a 4-fold symmetry. The competitive binding of membrane-permeable and -impermeable SH reagents in intact cells indicates that the transmembrane water-filled channel has a thin barrier against hydrophilic molecules in the middle of the transmembrane region. Inhibition and stimulation of NEM binding in the presence of tetracycline reflects the substrate-induced protection or conformational change of the Tn10-encoded metal-tetracycline/H(+) antiporter. The mutations protected from NEM binding by tetracycline were mainly located around the permeability barrier in the N-terminal half, suggesting the location of the substrate binding site.
Collapse
Affiliation(s)
- N Tamura
- Department of Cell Membrane Biology, Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | | | | | | | | | | |
Collapse
|
8
|
Saraceni-Richards CA, Levy SB. Second-site suppressor mutations of inactivating substitutions at gly247 of the tetracycline efflux protein, Tet(B). J Bacteriol 2000; 182:6514-6. [PMID: 11053399 PMCID: PMC94801 DOI: 10.1128/jb.182.22.6514-6516.2000] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An Asp or Asn substitution for Gly247 in transmembrane helix 8 (TM-8) of Tet(B), the tetracycline efflux protein, eliminated tetracycline resistance. Second site suppressor mutations which partially restored resistance were located in TM-5, -8, -10, or -11 or in cytoplasmic loop 8-9 or loop 10-11. These results indicate physical proximity or functional relationships between TM-8 and these other regions of Tet(B).
Collapse
Affiliation(s)
- C A Saraceni-Richards
- The Center for Adaptation Genetics and Drug Resistance and the Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
9
|
Kim MH, Lu M, Kelly M, Hersh LB. Mutational analysis of basic residues in the rat vesicular acetylcholine transporter. Identification of a transmembrane ion pair and evidence that histidine is not involved in proton translocation. J Biol Chem 2000; 275:6175-80. [PMID: 10692409 DOI: 10.1074/jbc.275.9.6175] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The function of positively charged residues and the interaction of positively and negatively charged residues of the rat vesicular acetylcholine transporter (rVAChT) were studied. Changing Lys-131 in transmembrane domain helix 2 (TM2) to Ala or Leu eliminated transport activity, with no effect on vesamicol binding. However, replacement by His or Arg retained transport activity, suggesting a positive charge in this position is critical. Mutation of His-444 in TM12 or His-413 in the cytoplasmic loop between TM10 and TM11 was without effect on ACh transport, but vesamicol binding was reduced with His-413 mutants. Changing His-338 in TM8 to Ala or Lys did not effect ACh transport, however replacement with Cys or Arg abolished activity. Mutation of both of the transmembrane histidines or all three of the luminal loop histidines showed no change in acetylcholine transport. The mutant H338A/D398N between oppositely charged residues in transmembrane domains showed no vesamicol binding, however the charge reversal mutant H338D/D398H restored binding. This suggests that His-338 forms an ion pair with Asp-398. The charge neutralizing mutant K131A/D425N or the charge exchanged mutant K131D/D425K did not restore ACh transport. Taken together these results provide new insights into the tertiary structure in VAChT.
Collapse
Affiliation(s)
- M H Kim
- Department of Biochemistry, University of Kentucky, Lexington, Kentucky 40536-0298, USA
| | | | | | | |
Collapse
|
10
|
Saraceni-Richards CA, Levy SB. Evidence for interactions between helices 5 and 8 and a role for the interdomain loop in tetracycline resistance mediated by hybrid Tet proteins. J Biol Chem 2000; 275:6101-6. [PMID: 10692399 DOI: 10.1074/jbc.275.9.6101] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An interdomain hybrid Tet protein consisting of a class C alpha domain and a class B beta domain (Tet(C/B)) lacks detectable efflux ability and provides only minimal levels of resistance to tetracycline (Tc) (3 microg/ml) compared with intact class B (256 microg/ml) and class C (64 microg/ml). Twenty-one independently isolated mutants of the Tet(C/B) protein with increased Tc resistance were generated by random chemical mutagenesis. Nine mutants with a Glu substitution for Gly-152 in helix 5 of the class C alpha domain produced a resistance of 48 microg/ml, whereas another 9 with an Asp replacement of Gly-247 in helix 8 of the class B beta domain mediated resistance at 32 microg/ml. The third type of mutation, found in 3 mutants expressing 24 microg/ml resistance, was a S202F replacement in the putative interdomain cytoplasmic loop of Tet(C/B). The latter underscores a previously unappreciated function of the interdomain cytoplasmic loop. All three types of Tet(C/B) mutant proteins were expressed in amounts comparable with that of the original protein and demonstrated restored energy-dependent efflux of tetracycline. Site-directed mutational analysis demonstrated that a Gly-247 to Asn mutation could also facilitate Tc resistance by the Tet(C/B) hybrid, and a negatively charged side chain at position 152 was required for Tet(C/B) activity. These mutations appear to promote the necessary functional interactions between the interclass domains that do not occur in the Tet(C/B) hybrid protein and suggest a direct association between helix 5 and helix 8 in the function of Tet efflux proteins.
Collapse
Affiliation(s)
- C A Saraceni-Richards
- Center for Adaptation Genetics and Drug Resistance and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
11
|
Schnabel EL, Jones AL. Distribution of tetracycline resistance genes and transposons among phylloplane bacteria in Michigan apple orchards. Appl Environ Microbiol 1999; 65:4898-907. [PMID: 10543801 PMCID: PMC91659 DOI: 10.1128/aem.65.11.4898-4907.1999] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/1999] [Accepted: 09/01/1999] [Indexed: 11/20/2022] Open
Abstract
The extent and nature of tetracycline resistance in bacterial populations of two apple orchards with no or a limited history of oxytetracycline usage were assessed. Tetracycline-resistant (Tc(r)) bacteria were mostly gram negative and represented from 0 to 47% of the total bacterial population on blossoms and leaves (versus 26 to 84% for streptomycin-resistant bacteria). A total of 87 isolates were screened for the presence of specific Tc(r) determinants. Tc(r) was determined to be due to the presence of Tet B in Pantoea agglomerans and other members of the family Enterobacteriacae and Tet A, Tet C, or Tet G in most Pseudomonas isolates. The cause of Tc(r) was not identified in 16% of the isolates studied. The Tc(r) genes were almost always found on large plasmids which also carried the streptomycin resistance transposon Tn5393. Transposable elements with Tc(r) determinants were detected by entrapment following introduction into Escherichia coli. Tet B was found within Tn10. Two of eighteen Tet B-containing isolates had an insertion sequence within Tn10; one had IS911 located within IS10-R and one had Tn1000 located upstream of Tet B. Tet A was found within a novel variant of Tn1721, named Tn1720, which lacks the left-end orfI of Tn1721. Tet C was located within a 19-kb transposon, Tn1404, with transposition genes similar to those of Tn501, streptomycin (aadA2) and sulfonamide (sulI) resistance genes within an integron, Tet C flanked by direct repeats of IS26, and four open reading frames, one of which may encode a sulfate permease. Two variants of Tet G with 92% sequence identity were detected.
Collapse
Affiliation(s)
- E L Schnabel
- Department of Botany and Plant Pathology, Michigan State University, East Lansing, Michigan 48824-1312, USA
| | | |
Collapse
|
12
|
Kawabe T, Yamaguchi A. Transmembrane remote conformational suppression of the Gly-332 mutation of the Tn10-encoded metal-tetracycline/H+ antiporter. FEBS Lett 1999; 457:169-73. [PMID: 10486587 DOI: 10.1016/s0014-5793(99)01032-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Gly-332 is a conformationally important residue of the Tn10-encoded metal-tetracycline/H+ antiporter (TetA(B)), which was found by random mutagenesis and confirmed by site-directed mutagenesis. A bulky side chain at position 332 is deleterious to the transport function. A spontaneous second-site suppressor revertant was isolated from G332S mutant and identified as the Ala-354-->Asp mutant. Gly-332 and Ala-354 are located on opposite ends of transmembrane segment XI. As judged from [14C]NEM binding to Cys mutants, the residue at position 354, which is originally exposed to water, was buried in the membrane by a G332S mutation through a remote conformational change of transmembrane segment XI. This effect is the same as that of a G62L mutation at position 30 through transmembrane segment II [Kimura, T., Sawai, T. and Yamaguchi, A. (1997) Biochemistry 36, 6941-6946]. Interestingly, the G332S mutation was also suppressed by the L30S mutation, and the G62L mutation was moderately suppressed by the A354D mutation. These results indicate the presence of a close conformational relationship between the flanking regions of the transmembrane segments II and XI.
Collapse
Affiliation(s)
- T Kawabe
- Department of Cell Membrane Biology, Osaka University, Japan
| | | |
Collapse
|
13
|
Nelson ML, Levy SB. Reversal of tetracycline resistance mediated by different bacterial tetracycline resistance determinants by an inhibitor of the Tet(B) antiport protein. Antimicrob Agents Chemother 1999; 43:1719-24. [PMID: 10390229 PMCID: PMC89350 DOI: 10.1128/aac.43.7.1719] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Active efflux is a useful strategy by which bacteria evade growth inhibition by antibiotics. Certain semisynthetic tetracycline (TC) analogs, substituted at the 13th carbon at C-6 on ring C of the TC molecule, blocked TC efflux as revealed in everted membrane vesicles from class B TC-resistant (Tcr) Escherichia coli (M. L. Nelson, B. H. Park, J. S. Andrews, V. A. Georgian, R. C. Thomas, and S. B. Levy, J. Med. Chem. 36:370-377, 1993). A representative C-13-substituted analog, 13-cyclopentylthio-5-OH-TC (13-CPTC), was shown to competitively inhibit TC translocation by the Tet(B) protein, blocking the uptake of TC into vesicles and therefore the efflux of TC from whole cells. Against Tcr E. coli, 13-CPTC, when used in combination with doxycycline, produced synergistic inhibition of growth. 13-CPTC was shown to increase the uptake of [3H]TC into the resistant cells. 13-CPTC alone was a potent growth inhibitor against TC-susceptible (Tcs) and Tcr Staphylococcus aureus and enterococci specifying class K or class L efflux-dependent TC resistance mechanisms or, unexpectedly, the class M ribosomal protection mechanism. These findings indicate that derivatives of TC, identified by their ability to block the Tet(B) efflux protein, can restore TC activity against Tcr bacteria bearing either of the two known resistance mechanisms. Blocking drug efflux and increasing intracellular drug concentrations constitute an effective approach to reversing TC resistance and may be generally applicable to other antibiotics rendered ineffective by efflux proteins.
Collapse
Affiliation(s)
- M L Nelson
- Center for Adaptation Genetics and Drug Resistance, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
14
|
Jewell JE, Orwick J, Liu J, Miller KW. Functional importance and local environments of the cysteines in the tetracycline resistance protein encoded by plasmid pBR322. J Bacteriol 1999; 181:1689-93. [PMID: 10049405 PMCID: PMC93563 DOI: 10.1128/jb.181.5.1689-1693.1999] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The properties of the cysteines in the pBR322-encoded tetracycline resistance protein have been examined. Cysteines are important but not essential for tetracycline transport activity. None of the cysteines reacted with biotin maleimide, suggesting that they are shielded from the aqueous phase or reside in a negatively charged local environment.
Collapse
Affiliation(s)
- J E Jewell
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071, USA
| | | | | | | |
Collapse
|
15
|
Magalhães VD, Schuman W, Castilho BA. A new tetracycline resistance determinant cloned from Proteus mirabilis. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1443:262-6. [PMID: 9838156 DOI: 10.1016/s0167-4781(98)00210-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The chromosomal inducible Tcr determinant from Proteus mirabilis was cloned and the nucleotide sequence of both the structural and repressor genes determined. The deduced amino acid sequence of the structural protein shows the highest similarity to TetA(H) from Pasteurella multocida (78.4%), followed by TetA(B) from Tn10 (50.9%). Based on this analysis, we suggest that this new determinant can be assigned to a new class, TetJ.
Collapse
Affiliation(s)
- V D Magalhães
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Botucatú, 862 3 degrees andar, São Paulo, SP 04023-062, Brazil
| | | | | |
Collapse
|
16
|
Kennan RM, McMurry LM, Levy SB, Rood JI. Glutamate residues located within putative transmembrane helices are essential for TetA(P)-mediated tetracycline efflux. J Bacteriol 1997; 179:7011-5. [PMID: 9371447 PMCID: PMC179641 DOI: 10.1128/jb.179.22.7011-7015.1997] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The tetA(P) gene from Clostridium perfringens encodes a unique membrane protein that is responsible for the active efflux of tetracycline from resistant cells. The novel TetA(P) protein has neither the typical structure nor the conserved motifs that are found in tetracycline efflux proteins from classes A through H or classes K and L. Site-directed mutagenesis of selected residues within TetA(P) was performed to elucidate their role in tetracycline efflux. Glutamate residues 52 and 59, negatively charged residues located within putative transmembrane helix 2, could not be replaced by either glutamine or aspartate and so were essential for tetracycline efflux. Replacement of Glu89, which was located at the end of helix 3, by aspartate but not by glutamine allowed TetA(P) function, indicating the importance of a carboxyl group at this position. After mutation of the Asp67 residue, located within cytoplasmic loop 1, no immunoreactive protein was detected. It is concluded that negatively charged residues that appear to be located within or near the membrane are important for the function of TetA(P).
Collapse
Affiliation(s)
- R M Kennan
- Department of Microbiology, Monash University, Clayton, Australia.
| | | | | | | |
Collapse
|
17
|
Sarker RI, Ogawa W, Shimamoto T, Shimamoto T, Tsuchiya T. Primary structure and properties of the Na+/glucose symporter (Sg1S) of Vibrio parahaemolyticus. J Bacteriol 1997; 179:1805-8. [PMID: 9045844 PMCID: PMC178897 DOI: 10.1128/jb.179.5.1805-1808.1997] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Previously, we cloned and sequenced a DNA fragment from Vibrio parahaemolyticus and found four open reading frames (ORFs). Here, we clearly demonstrate that one of the ORFs, ORF1, is the gene (sglS) encoding a Na+/glucose symporter (SglS). We characterize the Na+/glucose symporter produced in Escherichia coli mutant (JM1100) cells which lack original glucose transport activity and galactose transport activity. We also show that phlorizin, a potent inhibitor of the SGLT1 Na+/glucose symporter of animal cells, inhibited glucose transport, but not galactose transport, via the SglS system.
Collapse
Affiliation(s)
- R I Sarker
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Okayama University, Tsushima, Japan
| | | | | | | | | |
Collapse
|
18
|
Chapter 8 Multidrug resistance in prokaryotes: Molecular mechanisms of drug efflux. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s1383-8121(96)80049-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
19
|
Lolkema JS. Friction analysis of kinetic schemes: the friction coefficient. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1252:284-94. [PMID: 7578235 DOI: 10.1016/0167-4838(95)00112-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Friction analysis is proposed as the application of general control analysis to single enzymes to describe the control of elementary kinetic steps on the overall catalytic rate. For each transition, a friction coefficient is defined that measures the sensitivity of the turnover rate to the free energy of the transition state complex of the transition. The latter is captured in a single property of the transition, termed friction, as the geometrical mean of the inverse of the forward and backward rate constants. By definition, the friction coefficient measures the relative change in the turnover rate in response to a small change in the friction. The friction coefficient is the sum of the flux control coefficients of the forward and backward rate constants from general control theory and measures the extent to which an elementary step is rate determining. Two basic rules apply to the friction coefficients: (i) the summation theorem states that summation of the friction coefficients over all the steps in a scheme results in a value of 1, and (ii) the group rule states that grouping of rate constants of similar transitions results in a friction coefficient for the group that is the sum of the friction coefficients of the individual steps in the group. The friction coefficients are derived for a number a kinetic schemes taking the rate equations as the starting point and both rules are demonstrated. In fully coupled systems the friction coefficients of individual steps lie between 0 and 1. In partially uncoupled systems the summation theorem applies to all the rates in the system, however, the summation of subsets of friction coefficients may exceed the value of one, implying negative values for other steps in the scheme. The values of individual friction coefficients lie between -1 and 1. The friction coefficient is redefined in a numerical treatment of the steady state of more complex enzymatic schemes.
Collapse
Affiliation(s)
- J S Lolkema
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Haren, The Netherlands
| |
Collapse
|
20
|
Someya Y, Moriyama Y, Futai M, Sawai T, Yamaguchi A. Reconstitution of the metal-tetracycline/H+ antiporter of Escherichia coli in proteoliposomes including F0F1-ATPase. FEBS Lett 1995; 374:72-6. [PMID: 7589516 DOI: 10.1016/0014-5793(95)01079-t] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The tetracycline resistance gene (tetA) was cloned downstream of the lac promoter. When expression of the tetA gene in E. coli cells carrying the lac Iq gene was induced with isopropyl beta-D-thiogalactopyranoside, the tetracycline resistance protein (TetA) was overproduced, amounting to about 30% of the integral cytoplasmic membrane protein. Essentially pure TetA protein could be obtained by solubilization with 1.25% n-octyl-beta-D-glucopyranoside and one-step purification by DEAE Sepharose CL-6B column chromatography. The TetA protein was incorporated into proteoliposomes with F0F1-ATPase. The proteoliposomes exhibited [3H]tetracycline transport dependent on ATP hydrolysis. The specific activity was about 2 nmol/mg protein/min. The proteoliposomes also showed H+ efflux coupled with tetracycline influx. Tetracycline/H+ antiport by proteoliposomes reconstituted with the Ser-65-->Cys mutant TetA protein was inhibited by N-ethylmaleimide. These results proved for the first time that the tetracycline/H+ antiport is only mediated by the TetA protein.
Collapse
Affiliation(s)
- Y Someya
- Division of Microbial Chemistry, Faculty of Pharmaceutical Sciences, Chiba University, Japan
| | | | | | | | | |
Collapse
|
21
|
McNicholas P, McGlynn M, Guay GG, Rothstein DM. Genetic analysis suggests functional interactions between the N- and C-terminal domains of the TetA(C) efflux pump encoded by pBR322. J Bacteriol 1995; 177:5355-7. [PMID: 7665527 PMCID: PMC177333 DOI: 10.1128/jb.177.18.5355-5357.1995] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Genetic analysis of the tetA(C) gene of pBR322 indicates the importance of two-cytoplasmic loops in the TetA(C) protein (P. McNicholas, I. Chopra, and D. M. Rothstein, J. Bacteriol. 174:7926-7933, 1992). In this study, we characterized second-site suppressor mutations that suggest a functional interaction between these two cytoplasmic regions of the protein.
Collapse
Affiliation(s)
- P McNicholas
- Department of Microbial Genetics and Biochemistry, Lederle Laboratories, Pearl River, New York 10965, USA
| | | | | | | |
Collapse
|
22
|
Allen NE. Biochemical mechanisms of resistance to non-cell wall antibacterial agents. PROGRESS IN MEDICINAL CHEMISTRY 1995; 32:157-238. [PMID: 8577918 DOI: 10.1016/s0079-6468(08)70454-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- N E Allen
- Infectious Disease Research, Eli Lilly and Company, Indianapolis, IN 46285, USA
| |
Collapse
|
23
|
Walmsley A, Martin G, Henderson P. 8-Anilino-1-naphthalenesulfonate is a fluorescent probe of conformational changes in the D-galactose-H+ symport protein of Escherichia coli. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32512-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
24
|
Krämer R. Functional principles of solute transport systems: concepts and perspectives. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1185:1-34. [PMID: 7511415 DOI: 10.1016/0005-2728(94)90189-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- R Krämer
- Institut für Biotechnologie 1, Forschungszentrum Jülich, Germany
| |
Collapse
|
25
|
Site-specific alteration of arginine 376, the unique positively charged amino acid residue in the mid-membrane-spanning regions of the proline carrier of Escherichia coli. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37520-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
26
|
Yamaguchi A, O'yauchi R, Someya Y, Akasaka T, Sawai T. Second-site mutation of Ala-220 to Glu or Asp suppresses the mutation of Asp-285 to Asn in the transposon Tn10-encoded metal-tetracycline/H+ antiporter of Escherichia coli. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74208-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
27
|
Affiliation(s)
- B Poolman
- Department of Microbiology, University of Groningen, Haren, The Netherlands
| | | |
Collapse
|
28
|
Allard JD, Bertrand KP. Sequence of a class E tetracycline resistance gene from Escherichia coli and comparison of related tetracycline efflux proteins. J Bacteriol 1993; 175:4554-60. [PMID: 8331085 PMCID: PMC204899 DOI: 10.1128/jb.175.14.4554-4560.1993] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We determined the nucleotide sequence of the class E tetA gene on plasmid pSL1456 from Escherichia coli SLH1456A. The deduced amino acid sequence of the class E TetA protein shows 50 to 56% identity with the sequences of five related TetA proteins (classes A through D and G). Hydrophobicity profiles identify 12 putative transmembrane segments with similar boundaries in all six TetA sequences. The N-terminal alpha domain of the six sequences is more highly conserved than the C-terminal beta domain; the central hydrophilic loop connecting the alpha and beta domains is the least conserved region. Amino acid residues that have been shown to be important for class B (Tn10) TetA function are conserved in all six TetA sequences. Unlike the class B tetA gene, the class D and E tetA genes do not exhibit a negative gene dosage effect when present on multicopy plasmids derived from pACYC177.
Collapse
Affiliation(s)
- J D Allard
- Department of Microbiology, Washington State University, Pullman 99164
| | | |
Collapse
|
29
|
Yamaguchi A, Someya Y, Sawai T. The in vivo assembly and function of the N- and C-terminal halves of the Tn10-encoded TetA protein in Escherichia coli. FEBS Lett 1993; 324:131-5. [PMID: 8389718 DOI: 10.1016/0014-5793(93)81378-d] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The tetA gene was cut into its N- and C-terminal halves at the central EcoRI site and the two halves were subcloned individually or together under a separate lac promoter/operator. The expression of the C-terminal half was detected with a C-terminal-specific antibody. The amount of the N-terminal half in the cytoplasmic membrane was not affected by the presence of the C-terminal half. In contrast, the amount of the C-terminal half in the membrane was increased in the presence of the N-terminal half, indicating that the N-terminal half helps the stable folding of the C-terminal half in the membrane. Each half individually showed no tetracycline transport activity, however, when both halves were expressed together, the resultant complex showed about 40% of the tetracycline transport activity of the wild-type per number of the C-terminals of TetA protein in the membrane.
Collapse
Affiliation(s)
- A Yamaguchi
- Division of Microbial Chemistry, Faculty of Pharmaceutical Sciences, Chiba University, Japan
| | | | | |
Collapse
|
30
|
Paulsen IT, Littlejohn TG, Rådström P, Sundström L, Sköld O, Swedberg G, Skurray RA. The 3' conserved segment of integrons contains a gene associated with multidrug resistance to antiseptics and disinfectants. Antimicrob Agents Chemother 1993; 37:761-8. [PMID: 8494372 PMCID: PMC187754 DOI: 10.1128/aac.37.4.761] [Citation(s) in RCA: 230] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Nucleotide sequence analysis of ORF1 from the integron on the broad-host-range plasmid R751 revealed that the first 94 of 110 codons of ORF1 from R751 are identical to ORF4, an open reading frame from the 3' conserved segment of other integrons found in gram-negative bacteria, after which point they diverged completely. The predicted products of both ORF1 and ORF4 share homology with the multidrug exporter QacC. Phenotypic analysis revealed that ORF1 specifies a resistance profile to antiseptics and disinfectants almost identical to that of qacC, whereas ORF4 specifies much lower levels of resistance to these compounds. ORF4, whose product lacks the C-terminal 16 amino acids of the ORF1 protein, may have evolved by the interruption of ORF1 from the insertion of a DNA segment carrying a sulI sulfonamide resistance determinant. Hence, ORF1 was designated qacE, and its partially functional deletion derivative, ORF4, was designated qacE delta 1. Fluorimetric experiments indicated that the mechanism of resistance mediated by QacE, the protein specified by qacE, is active export energized by proton motive force. Amino acid sequence comparisons revealed that QacE is related to a family of small multidrug export proteins with four transmembrane segments.
Collapse
Affiliation(s)
- I T Paulsen
- School of Biological Sciences, University of Sydney, New South Wales, Australia
| | | | | | | | | | | | | |
Collapse
|
31
|
Yamaguchi A, Kimura T, Someya Y, Sawai T. Metal-tetracycline/H+ antiporter of Escherichia coli encoded by transposon Tn10. The structural resemblance and functional difference in the role of the duplicated sequence motif between hydrophobic segments 2 and 3 and segments 8 and 9. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53278-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
32
|
Paulsen IT, Skurray RA. Topology, structure and evolution of two families of proteins involved in antibiotic and antiseptic resistance in eukaryotes and prokaryotes--an analysis. Gene 1993; 124:1-11. [PMID: 8440470 DOI: 10.1016/0378-1119(93)90755-r] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Analysis of deduced amino acid sequences has demonstrated that the sequences of eukaryotic and prokaryotic proteins mediating resistance to antibiotics and antiseptics are highly related. Hydropathy analysis and alignment of conserved motifs revealed that these proteins can be divided into two separate families with either 12 or 14 transmembrane segments (TMS). Conserved motifs have been identified which are either characteristic for each family or conserved in both families. The conservation of these motifs suggested that they may be essential for the function of these proteins. Phylogenetic and structural analysis revealed that the two families may have evolved from a common ancestor with six TMS.
Collapse
Affiliation(s)
- I T Paulsen
- School of Biological Sciences, University of Sydney, NSW, Australia
| | | |
Collapse
|
33
|
Allard JD, Gibson ML, Vu LH, Nguyen TT, Bertrand KP. Nucleotide sequence of class D tetracycline resistance genes from Salmonella ordonez. MOLECULAR & GENERAL GENETICS : MGG 1993; 237:301-5. [PMID: 8384294 DOI: 10.1007/bf00282811] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Plasmid pIP173, isolated from Salmonella ordonez strain BM2000, confers resistance to tetracycline and a number of other antibiotics. We determined the nucleotide sequence of the pIP173 tetR repressor and tetA resistance genes. The pIP173 tetR gene is essentially identical to the class D tetR gene from plasmid RA1. The pIP173 tet genes are flanked by directly repeated copies of the insertion sequence IS26. Interestingly, the 3' end of the tetR gene, encoding the C-terminal 16 amino acids of the TetR protein, extends into the flanking IS26 sequence. The relationships between the class A, B, C, and D TetA sequences parallel the relationships between the corresponding TetR sequences; class D is more closely related to class B than to either class A or C. Overall, the four TetA sequences show 38% identity and 57% similarity.
Collapse
Affiliation(s)
- J D Allard
- Department of Microbiology, Washington State University, Pullman 99164
| | | | | | | | | |
Collapse
|
34
|
Brighty KE, Kohlbrenner W, McGuirk PR. Chapter 15. Recent Developments in Antibacterial Resistance Mechanisms. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 1993. [DOI: 10.1016/s0065-7743(08)60885-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
35
|
Gutmann M, Hoischen C, Krämer R. Carrier-mediated glutamate secretion by Corynebacterium glutamicum under biotin limitation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 1992; 1112:115-23. [PMID: 1358200 DOI: 10.1016/0005-2736(92)90261-j] [Citation(s) in RCA: 95] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Previous studies have demonstrated the involvement of a carrier system in glutamate secretion by Corynebacterium glutamicum under biotin limitation (Hoischen, C. and Krämer, R. (1989) Arch. Microbiol. 151, 342-347). In a detailed analysis of the export process we found secretion to be independent of secondary forces: (i) glutamate was secreted at high rate even when external glutamate exceeded the internal concentration, (ii) movement of neither protons nor potassium or chloride ions was found to be coupled to glutamate secretion, and (iii) secretion continued unaffected after breakdown of the membrane potential. Instead, under conditions leading to variation of glutamate secretion activity, a correlation of secretion rate and the intracellular ATP-pool was observed. Thus, ATP or a related high-energy metabolite is thought to be involved in the activity of the glutamate secretion system.
Collapse
Affiliation(s)
- M Gutmann
- Institut für Biotechnologie I, Forschungszentrum Jülich, Germany
| | | | | |
Collapse
|
36
|
Abstract
The TetA(C) protein, encoded by the tetA(C) gene of plasmid pBR322, is a member of a family of membrane-bound proteins that mediate energy-dependent efflux of tetracycline from the bacterial cell. The tetA(C) gene was mutagenized with hydroxylamine, and missense mutations causing the loss of tetracycline resistance were identified at 30 distinct codons. Mutations that encoded substitutions within putative membrane-spanning alpha-helical regions were scattered throughout the gene. In contrast, mutations outside the alpha-helical regions were clustered in two cytoplasmic loops, between helices 2 and 3 and helices 10 and 11, suggesting that these regions play a critical role in the recognition of tetracycline and/or energy transduction. All of the missense mutations encoded a protein that retained the ability to rescue an Escherichia coli strain defective in potassium uptake, suggesting that the loss of tetracycline resistance was not due to an unstable TetA(C) protein or to the failure of the protein to be inserted in the membrane. We postulate that the mutations encode residues that are critical for the active efflux of tetracycline, except for mutations that result in the introduction of charged residues within hydrophobic regions of the TetA(C) protein.
Collapse
Affiliation(s)
- P McNicholas
- Department of Microbial Genetics, Lederle Laboratories, Pearl River, New York 10965
| | | | | |
Collapse
|
37
|
McMurry LM, Stephan M, Levy SB. Decreased function of the class B tetracycline efflux protein Tet with mutations at aspartate 15, a putative intramembrane residue. J Bacteriol 1992; 174:6294-7. [PMID: 1328154 PMCID: PMC207700 DOI: 10.1128/jb.174.19.6294-6297.1992] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The aspartate 15 residue within the first predicted intramembrane helix of the tetracycline efflux protein Tet has been conserved in four tetracycline resistance determinants from gram-negative bacteria. Its replacement in class B Tet by tyrosine, histidine, or asparagine resulted in a 60 to 85% loss of tetracycline resistance and a similar loss of tetracycline-proton antiport. The tyrosine and histidine substitutions lowered the Vmax of the efflux system by some 90% but did not alter the Km. The asparagine substitution raised the Km over 13-fold, while the Vmax was equal to or greater than that of the wild type. Therefore, although the nature of its role is unclear, aspartate 15 is important for normal Tet function.
Collapse
Affiliation(s)
- L M McMurry
- Department of Molecular Biology, Tufts University School of Medicine, Boston, Massachusetts 02111
| | | | | |
Collapse
|
38
|
Yamaguchi A, Someya Y, Sawai T. Metal-tetracycline/H+ antiporter of Escherichia coli encoded by transposon Tn10. The role of a conserved sequence motif, GXXXXRXGRR, in a putative cytoplasmic loop between helices 2 and 3. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)41755-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
39
|
Allard J, Bertrand K. Membrane topology of the pBR322 tetracycline resistance protein. TetA-PhoA gene fusions and implications for the mechanism of TetA membrane insertion. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)37116-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
40
|
Fluit A, Visser M. Nucleic acid analysis of antibiotic resistance. Int J Antimicrob Agents 1992; 1:205-21. [DOI: 10.1016/0924-8579(92)90031-l] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/1992] [Indexed: 11/30/2022]
|
41
|
Yamaguchi A, Ono N, Akasaka T, Sawai T. Serine residues responsible for tetracycline transport are on a vertical stripe including Asp-84 on one side of transmembrane helix 3 in transposon Tn10-encoded tetracycline/H+ antiporter of Escherichia coli. FEBS Lett 1992; 307:229-32. [PMID: 1322829 DOI: 10.1016/0014-5793(92)80773-a] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Putative transmembrane helix 3 of the tetracycline/H+ antiporter encoded by a transposon, Tn10, contains four serine residues, Ser-77, Ser-82, Ser-91 and Ser-92. Each of these serine residues was replaced by site-directed mutagenesis. Of these four serine residues, Ser-77 was important for the transport function, and a bulky side chain at position 91 hindered substrate translocation, whereas Ser-82 and Ser-92 did not play any role. Ser-77 and Ser-91 are on the same vertical stripe, that includes the essential Asp-84, on the hydrophilic side of putative helix 3. These observations suggest that helix 3 is part of the tetracycline translocation channel across the membrane.
Collapse
Affiliation(s)
- A Yamaguchi
- Division of Microbial Chemistry, Faculty of Pharmaceutical Sciences, Chiba University, Japan
| | | | | | | |
Collapse
|
42
|
Yamaguchi A, Akasaka T, Ono N, Someya Y, Nakatani M, Sawai T. Metal-tetracycline/H+ antiporter of Escherichia coli encoded by transposon Tn10. Roles of the aspartyl residues located in the putative transmembrane helices. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42544-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
43
|
Sugar—Cation Symport Systems in Bacteria. ACTA ACUST UNITED AC 1992. [DOI: 10.1016/s0074-7696(08)62676-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
|
44
|
Bröer S, Krämer R. Lysine excretion by Corynebacterium glutamicum. 2. Energetics and mechanism of the transport system. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 202:137-43. [PMID: 1657604 DOI: 10.1111/j.1432-1033.1991.tb16354.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Lysine excretion in Corynebacterium glutamicum was characterized as secondary transport process. It is modulated by three forces: the membrane potential, the chemical potential of lysine, and the proton gradient. The ATP content of the cells did not correlate with the export activity. Lysine is excreted in symport with presumably two OH- ions which is not distinguishable experimentally from an antiport mechanism against two protons. The substrate-loaded carrier is uncharged. When the external substrate concentration is low and no proton gradient present, reorientation of the positively charged, unloaded carrier is rate-limiting. Export then depends on the membrane potential. When the external substrate is high, translocation of the loaded, uncharged carrier is rate-limiting, and export is not modulated by the membrane potential. The lysine secretion system in C. glutamicum is shown to be well adapted to the requirements of metabolite export.
Collapse
Affiliation(s)
- S Bröer
- Institut für Biotechnologie I, Forschungszentrum Jülich, Federal Republic of Germany
| | | |
Collapse
|
45
|
|