1
|
Shibata T, Ikawa S, Iwasaki W, Sasanuma H, Masai H, Hirota K. Homology recognition without double-stranded DNA-strand separation in D-loop formation by RecA. Nucleic Acids Res 2024; 52:2565-2577. [PMID: 38214227 PMCID: PMC10954442 DOI: 10.1093/nar/gkad1260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/15/2023] [Accepted: 12/30/2023] [Indexed: 01/13/2024] Open
Abstract
RecA protein and RecA/Rad51 orthologues are required for homologous recombination and DNA repair in all living creatures. RecA/Rad51 catalyzes formation of the D-loop, an obligatory recombination intermediate, through an ATP-dependent reaction consisting of two phases: homology recognition between double-stranded (ds)DNA and single-stranded (ss)DNA to form a hybrid-duplex core of 6-8 base pairs and subsequent hybrid-duplex/D-loop processing. How dsDNA recognizes homologous ssDNA is controversial. The aromatic residue at the tip of the β-hairpin loop (L2) was shown to stabilize dsDNA-strand separation. We tested a model in which dsDNA strands were separated by the aromatic residue before homology recognition and found that the aromatic residue was not essential to homology recognition, but was required for D-loop processing. Contrary to the model, we found that the double helix was not unwound even a single turn during search for sequence homology, but rather was unwound only after the homologous sequence was recognized. These results suggest that dsDNA recognizes its homologous ssDNA before strand separation. The search for homologous sequence with homologous ssDNA without dsDNA-strand separation does not generate stress within the dsDNA; this would be an advantage for dsDNA to express homology-dependent functions in vivo and also in vitro.
Collapse
Affiliation(s)
- Takehiko Shibata
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami Ohsawa, Hachioji, Tokyo 192-0397, Japan
- Genome Dynamics Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
- Cellular & Molecular Biology Laboratory, RIKEN, Wako-shi, Saitama 351-0198, Japan
| | - Shukuko Ikawa
- Cellular & Molecular Biology Laboratory, RIKEN, Wako-shi, Saitama 351-0198, Japan
| | - Wakana Iwasaki
- Laboratory for Translation Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Hiroyuki Sasanuma
- Genome Dynamics Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Hisao Masai
- Genome Dynamics Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Kouji Hirota
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami Ohsawa, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
2
|
Bao HL, Xu Y. Oligonucleotide Containing 8-Trifluoromethyl-2'-Deoxyguanosine as a Z-DNA Probe. Methods Mol Biol 2023; 2651:115-130. [PMID: 36892763 DOI: 10.1007/978-1-0716-3084-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Z-DNA structure is a noncanonical left-handed alternative form of DNA, which has been suggested to be biologically important and is related to several genetic diseases and cancer. Therefore, investigation of Z-DNA structure associated with biological events is of great importance to understanding the functions of these molecules. Here, we described the development of a trifluoromethyl labeled deoxyguanosine derivative and employed it as a 19F NMR probe to study Z-form DNA structure in vitro and in living cells.
Collapse
Affiliation(s)
- Hong-Liang Bao
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki, Japan.,Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Xu
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki, Japan.
| |
Collapse
|
3
|
Pant P. Harmonizing Interstrand Electrostatic Repulsion by Conformational Rigidity in Counterion-Deprived Z-DNA: A Molecular Dynamics Study. J Phys Chem B 2022; 126:9956-9963. [PMID: 36412276 DOI: 10.1021/acs.jpcb.2c04527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Deoxyribonucleic acid (DNA) is a vital biomacromolecule. Although the right-handed B-DNA type helical structure is the most abundant and extensively studied form of DNA, several noncanonical forms, such as triplex, quadruplex, Z-DNA, A-DNA, and ss-DNA, have been probed from time to time to gain insights into the DNA's function. Z-DNA was recently found to be involved in cancer and several autoimmune diseases. In the present Article, we evaluated the conformational stability of locked-sugar-based Z-DNA via all-atom explicit-solvent molecular dynamics simulations and found that the modified DNA maintained the left-handed conformation even in the absence of counterions, wherein the structural rigidity dominates over the electrostatic repulsion between the complementary strands. The control Z-DNA without counterions, as expected, instantaneously resulted in unfolded states. The remarkable stability of the conformationally locked model system was thoroughly investigated via structural and energetic perspectives and was probably the result of the backbone widening in tandem with enhanced electrostatics between complementary strands. We believe that the design of the proposed modified Z-DNA construct could help understand the otherwise delicate Z-DNA conformation even in salt-deprived conditions. The design could also motivate the medicinal use of short segments of such modified nucleotides and could be utilized in more advanced modeling techniques, such as DNA origami which has gained popularity in recent years.
Collapse
Affiliation(s)
- Pradeep Pant
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
4
|
Bao HL, Xu Y. Observation of Z-DNA Structure via the Synthesis of Oligonucleotide DNA Containing 8-Trifluoromethyl-2-Deoxyguanosine. Curr Protoc 2021; 1:e28. [PMID: 33484490 DOI: 10.1002/cpz1.28] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This article contains detailed synthetic protocols for the preparation of DNA oligonucleotides containing 8-trifluoromethyl-2'-deoxyguanosine (CF3 dG) and their application to observe Z-DNA structure in vitro and in living HeLa cells. First, using a catalytic system consisting of FeSO4 , H2 SO4 , and H2 O2 in DMSO, we achieved a one-step synthesis of CF3 dG through a radical reaction between deoxyguanosine (dG) and CF3 I, with a yield of 45%. We then obtained the 3'-phosphoramidite of CF3 dG through a routine three-step procedure. Next, we employed the CF3 dG phosphoramidite monomer in the synthesis of oligonucleotides on a solid-phase DNA synthesizer. Finally, we used the CF3 dG-modified DNA oligonucleotides to observe Z-DNA structure in vitro and in living HeLa cells through 19 F NMR spectroscopy. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Synthesis of CF3 dG phosphoramidites Basic Protocol 2: Preparation of CF3 dG-modified DNA oligonucleotides Basic Protocol 3: Evaluation of CF3 dG stabilization of Z-DNA structure by CD spectroscopy Basic Protocol 4: Investigation of Z-DNA structure in vitro and in HeLa cells with CF3 dG-modified DNA oligonucleotides and 19 F NMR spectroscopy.
Collapse
Affiliation(s)
- Hong-Liang Bao
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, Japan
| | - Yan Xu
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, Japan
| |
Collapse
|
5
|
Bao HL, Masuzawa T, Oyoshi T, Xu Y. Oligonucleotides DNA containing 8-trifluoromethyl-2'-deoxyguanosine for observing Z-DNA structure. Nucleic Acids Res 2020; 48:7041-7051. [PMID: 32678885 PMCID: PMC7367190 DOI: 10.1093/nar/gkaa505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/01/2020] [Accepted: 06/10/2020] [Indexed: 01/05/2023] Open
Abstract
Z-DNA is known to be a left-handed alternative form of DNA and has important biological roles as well as being related to cancer and other genetic diseases. It is therefore important to investigate Z-DNA structure and related biological events in living cells. However, the development of molecular probes for the observation of Z-DNA structures inside living cells has not yet been realized. Here, we have succeeded in developing site-specific trifluoromethyl oligonucleotide DNA by incorporation of 8-trifluoromethyl-2′-deoxyguanosine (FG). 2D NMR strongly suggested that FG adopted a syn conformation. Trifluoromethyl oligonucleotides dramatically stabilized Z-DNA, even under physiological salt concentrations. Furthermore, the trifluoromethyl DNA can be used to directly observe Z-form DNA structure and interaction of DNA with proteins in vitro, as well as in living human cells by19F NMR spectroscopy for the first time. These results provide valuable information to allow understanding of the structure and function of Z-DNA.
Collapse
Affiliation(s)
- Hong-Liang Bao
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Tatsuki Masuzawa
- Faculty of Science, Department of Chemistry, Shizuoka University, 836 Ohya Suruga Shizuoka 422-8529, Japan
| | - Takanori Oyoshi
- Faculty of Science, Department of Chemistry, Shizuoka University, 836 Ohya Suruga Shizuoka 422-8529, Japan
| | - Yan Xu
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| |
Collapse
|
6
|
Balasubramaniyam T, Ishizuka T, Xu Y. Stability and properties of Z-DNA containing artificial nucleobase 2'-O-methyl-8-methyl guanosine. Bioorg Med Chem 2018; 27:364-369. [PMID: 30545733 DOI: 10.1016/j.bmc.2018.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 10/27/2022]
Abstract
We synthesized several DNA oligonucleotides containing one or several 2'-O-methyl-8-methyl guanosine (m8Gm) and demonstrated that these oligonucleotides not only stabilize the Z-DNA with a wide range of sequences under low salt conditions but also possess high thermal stability. Using artificial nucleobase-containing oligonucleotides, we studied the interaction of the Zα domain with Z-DNA. Furthermore, we showed that the m8Gm-contained oligonucleotides allow to study the photochemical reaction of Z-DNA.
Collapse
Affiliation(s)
- Thananjeyan Balasubramaniyam
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyo-take, Miyazaki 889-1692, Japan
| | - Takumi Ishizuka
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyo-take, Miyazaki 889-1692, Japan
| | - Yan Xu
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyo-take, Miyazaki 889-1692, Japan.
| |
Collapse
|
7
|
Man VH, Pan F, Sagui C, Roland C. Comparative melting and healing of B-DNA and Z-DNA by an infrared laser pulse. J Chem Phys 2016; 144:145101. [DOI: 10.1063/1.4945340] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Viet Hoang Man
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, USA
| | - Feng Pan
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, USA
| | - Celeste Sagui
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, USA
| | - Christopher Roland
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, USA
| |
Collapse
|
8
|
George B, Alam CM, Kumar RV, Gnanasekaran P, Chakraborty S. Potential linkage between compound microsatellites and recombination in geminiviruses: Evidence from comparative analysis. Virology 2015; 482:41-50. [DOI: 10.1016/j.virol.2015.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 02/16/2015] [Accepted: 03/05/2015] [Indexed: 01/10/2023]
|
9
|
Pan F, Roland C, Sagui C. Ion distributions around left- and right-handed DNA and RNA duplexes: a comparative study. Nucleic Acids Res 2014; 42:13981-96. [PMID: 25428372 PMCID: PMC4267617 DOI: 10.1093/nar/gku1107] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/22/2014] [Accepted: 10/23/2014] [Indexed: 12/30/2022] Open
Abstract
The ion atmosphere around nucleic acids is an integral part of their solvated structure. However, detailed aspects of the ionic distribution are difficult to probe experimentally, and comparative studies for different structures of the same sequence are almost non-existent. Here, we have used large-scale molecular dynamics simulations to perform a comparative study of the ion distribution around (5'-CGCGCGCGCGCG-3')2 dodecamers in solution in B-DNA, A-RNA, Z-DNA and Z-RNA forms. The CG sequence is very sensitive to ionic strength and it allows the comparison with the rare but important left-handed forms. The ions investigated include Na(+), K(+) and Mg(2 +), with various concentrations of their chloride salts. Our results quantitatively describe the characteristics of the ionic distributions for different structures at varying ionic strengths, tracing these differences to nucleic acid structure and ion type. Several binding pockets with rather long ion residence times are described, both for the monovalent ions and for the hexahydrated Mg[(H2O)6](2+) ion. The conformations of these binding pockets include direct binding through desolvated ion bridges in the GpC steps in B-DNA and A-RNA; direct binding to backbone oxygens; binding of Mg[(H2O)6](2+) to distant phosphates, resulting in acute bending of A-RNA; tight 'ion traps' in Z-RNA between C-O2 and the C-O2' atoms in GpC steps; and others.
Collapse
Affiliation(s)
- Feng Pan
- Center for High Performance Simulations (CHiPS) and Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| | - Christopher Roland
- Center for High Performance Simulations (CHiPS) and Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| | - Celeste Sagui
- Center for High Performance Simulations (CHiPS) and Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| |
Collapse
|
10
|
Moradi M, Babin V, Roland C, Sagui C. Reaction path ensemble of the B-Z-DNA transition: a comprehensive atomistic study. Nucleic Acids Res 2012; 41:33-43. [PMID: 23104380 PMCID: PMC3592462 DOI: 10.1093/nar/gks1003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Since its discovery in 1979, left-handed Z-DNA has evolved from an in vitro curiosity to a challenging DNA structure with crucial roles in gene expression, regulation and recombination. A fundamental question that has puzzled researchers for decades is how the transition from B-DNA, the prevalent right-handed form of DNA, to Z-DNA is accomplished. Due to the complexity of the B–Z-DNA transition, experimental and computational studies have resulted in several different, apparently contradictory models. Here, we use molecular dynamics simulations coupled with state-of-the-art enhanced sampling techniques operating through non-conventional reaction coordinates, to investigate the B–Z-DNA transition at the atomic level. Our results show a complex free energy landscape, where several phenomena such as over-stretching, unpeeling, base pair extrusion and base pair flipping are observed resulting in interconversions between different DNA conformations such as B-DNA, Z-DNA and S-DNA. In particular, different minimum free energy paths allow for the coexistence of different mechanisms (such as zipper and stretch–collapse mechanisms) that previously had been proposed as independent, disconnected models. We find that the B–Z-DNA transition—in absence of other molecular partners—can encompass more than one mechanism of comparable free energy, and is therefore better described in terms of a reaction path ensemble.
Collapse
Affiliation(s)
- Mahmoud Moradi
- Center for High Performance Simulations and Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| | | | | | | |
Collapse
|
11
|
Kastenholz MA, Schwartz TU, Hünenberger PH. The transition between the B and Z conformations of DNA investigated by targeted molecular dynamics simulations with explicit solvation. Biophys J 2006; 91:2976-90. [PMID: 16998239 PMCID: PMC1578494 DOI: 10.1529/biophysj.106.083667] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The transition between the B and Z conformations of double-helical deoxyribonucleic acid (DNA) belongs to the most complex and elusive conformational changes occurring in biomolecules. Since the accidental discovery of the left-handed Z-DNA form in the late 1970s, research on this DNA morphology has been engaged in resolving questions relative to its stability, occurrence, and function in biological processes. While the occurrence of Z-DNA in vivo is now widely recognized and the major factors influencing its thermodynamical stability are largely understood, the intricate conformational changes that take place during the B-to-Z transition are still unknown at the atomic level. In this article, we report simulations of this transition for the 3'-(CGCGCG)-5' hexamer duplex using targeted molecular dynamics with the GROMOS96 force field in explicit water under different ionic-strength conditions. The results suggest that for this oligomer length and sequence, the transition mechanism involves: 1), a stretched intermediate conformation, which provides a simple solution to the important sterical constraints involved in this transition; 2), the transient disruption of Watson-Crick hydrogen-bond pairing, partly compensated energetically by an increase in the number of solute-solvent hydrogen bonds; and 3), an asynchronous flipping of the bases compatible with a zipperlike progression mechanism.
Collapse
Affiliation(s)
- Mika A Kastenholz
- Laboratorium für Physikalische Chemie, ETH Hönggerberg, HCI, Zürich, Switzerland
| | | | | |
Collapse
|
12
|
Abstract
Repetitive DNA sequences are abundant in eukaryotic genomes, and many of these sequences have the potential to adopt non-B DNA conformations. Genes harboring non-B DNA structure-forming sequences increase the risk of genetic instability and thus are associated with human diseases. In this review, we discuss putative mechanisms responsible for genetic instability events occurring at these non-B DNA structures, with a focus on hairpins, left-handed Z-DNA, and intramolecular triplexes or H-DNA. Slippage and misalignment are the most common events leading to DNA structure-induced mutagenesis. However, a number of other mechanisms of genetic instability have been proposed based on the finding that these structures not only induce expansions and deletions, but can also induce DNA strand breaks and rearrangements. The available data implicate a variety of proteins, such as mismatch repair proteins, nucleotide excision repair proteins, topoisomerases, and structure specific-nucleases in the processing of these mutagenic DNA structures. The potential mechanisms of genetic instability induced by these structures and their contribution to human diseases are discussed.
Collapse
Affiliation(s)
- Guliang Wang
- Department of Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, 1808 Park Road 1-C, P.O. Box 389, Smithville, 78957, USA
| | | |
Collapse
|
13
|
Beschetnova IA, Kaluzhny DN, Livshits MA, Shchyolkina AK, Borisova OF. Ethidium probing of the parallel double- and four-stranded structures formed by the telomeric DNA sequences dG(GT)4G and d(GT)5. J Biomol Struct Dyn 2003; 20:789-99. [PMID: 12744708 DOI: 10.1080/07391102.2003.10506895] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Oligonucleotides 3'-d(GT)(5)-(CH(2)CH(2)O)(3)-d(GT)(5)-3' (parGT), containing GT repeats present in the telomeric DNA from Saccharomyces cerevisiae, had been demonstrated to form bimolecular structure, GT-quadruplex (qGT) [O. F. Borisova et al. FEBS Letters 306, 140-142 (1992)]. Four d(GT)(5) strands of the GT-quadruplex are parallel and form five G-quartets while thymines are bulged out. The four GT repeats when flanked by guanines, 3'-dG(TG)(4)G-(CH(2)CH(2)O)(3)-dG(GT)(4)G-3' (hp-GT), had been shown to form a novel parallel-stranded (ps) double helix with G.G and T.T base pairs (hp-GT ps-DNA) [A. K. Shchyolkina et al. J. Biomol. Struct. Dyn. 18, 493-503 (2001)]. In the present study the intercalator ethidium bromide (Et) was used for probing the two structures. The mode of Et binding and its effect on thermostability of qGT and hp-GT were compared. The quantum yield (q) and the fluorescence lifetime (tau) of Et:qGT (q = 0.15 +/- 0.01 and tau = 24 +/- 1 ns) and Et:hp-GT (q = 0.10 +/- 0.01 and tau = 16.5 +/- 1 ns) indicative of intercalation mode of Et binding were determined. Et binding to qGT was found to be cooperative with corresponding coefficient omega = 3.9 +/- 0.1 and the binding constant Kappa = (6.4 +/- 0.1).10(4) M(-1). The maximum number of Et molecules intercalating into GT-quadruplex is as high as twice the number of innerspaces between G-quartets (eight in our case). The data conform to the model of Et association with GT-quadruplex suggested earlier [O. F. Borisova et al. Mol. Biol. (Russ) 35, 732-739 (2001)]. The anticooperative type of Et binding was observed in case of hp-GT ps-DNA, with the maximum number of bound Et molecules, N = 4 / 5, and the association constant Kappa = (1.5 +/- 0.1).10(5) M(-1). Thermodynamic parameters of formation of Et:qGT and EtBr:hp-GT complexes were calculated from UV thermal denaturation profiles.
Collapse
Affiliation(s)
- Irina A Beschetnova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia
| | | | | | | | | |
Collapse
|
14
|
Berger I, Winston W, Manoharan R, Schwartz T, Alfken J, Kim YG, Lowenhaupt K, Herbert A, Rich A. Spectroscopic characterization of a DNA-binding domain, Z alpha, from the editing enzyme, dsRNA adenosine deaminase: evidence for left-handed Z-DNA in the Z alpha-DNA complex. Biochemistry 1998; 37:13313-21. [PMID: 9748339 DOI: 10.1021/bi9813126] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Double-stranded RNA adenosine deaminase (ADAR1) is an ubiquitous enzyme in metazoa that edits pre-mRNA changing adenosine to inosine in regions of double-stranded RNA. Zalpha, an N-terminal domain of human ADAR1 encompassing 76 amino acid residues, shows apparent specificity for the left-handed Z-DNA conformation adopted by alternating (dGdC) polymers modified by bromination or methylation, as well as for (dGdC)13 inserts present in supercoiled plasmids. Here, a combination of circular dichroism, fluorescence, and gel-retardation studies is utilized to characterize recombinant Zalpha peptide and to examine its interaction with DNA. Results from laser-Raman spectroscopy experiments provide direct evidence for the existence of Z-DNA in peptide-DNA complexes.
Collapse
Affiliation(s)
- I Berger
- Department of Biology, George R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
|
16
|
Abstract
The effect of GT/CA dinucleotide repeat tracts on RecA-dependent homologous recombination was examined in vitro. By measuring the binding of RecA protein to oligonucleotides containing GT or CA repeats using the surface plasmon resonance (BIAcore), we show that the efficiency of RecA protein binding is sequence dependent: the protein binds to non-repetitive, poly(CA) or poly(GT) sequences with an increasing affinity. This preferential binding to repetitive sequences is specific for RecA protein and is not observed with the single-strand DNA binding (SSB) protein. Despite the fact that RecA filaments formed on GT tracts efficiently bind duplex DNAs, they are unable to promote stable joint formation. Moreover, strand exchange between a duplex DNA and a fully homologous single-stranded DNA (ssDNA) containing dinucleotide repeats, is inhibited as a function of the length of the repetitive tract. The number of molecules which underwent a complete strand exchange decreased from 100% to 80% and 30% for DNA containing seven, 16 and 39 GT repeats, respectively. The inhibition is less pronounced when the ssDNA contains CA instead of GT dinucleotide repeats. We propose that the high affinity of RecA protein for (CA)n or (GT)n tracts prevents strand exchange from progressing across such sequences. Thus, our results suggest that repetitive tracts of dinucleotides CA/GT could influence recombinational activity potentially leading to an increase in genomic rearrangements.
Collapse
Affiliation(s)
- M Dutreix
- Institut Curie, section de Recherche UMR144-CNRS, Paris, France
| |
Collapse
|
17
|
Tuite E, Sehlstedt U, Hagmar P, Nordén B, Takahashi M. Effects of minor and major groove-binding drugs and intercalators on the DNA association of minor groove-binding proteins RecA and deoxyribonuclease I detected by flow linear dichroism. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 243:482-92. [PMID: 9030776 DOI: 10.1111/j.1432-1033.1997.0482a.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Linear and circular dichroic spectroscopies have been employed to investigate the effects of small DNA ligands on the interactions of two proteins which bind to the minor groove of DNA, viz. RecA protein from Escherichia coli and deoxyribonuclease I (bovine pancreas). Ligands representing three specific non-covalent binding modes were investigated: 4',6-diamidino-2-phenylindole and distamycin A (minor groove binders), methyl green (major groove binder), and methylene blue, ethidium bromide and ethidium dimer (intercalators). Linear dichroism was demonstrated to be an excellent detector, in real time, of DNA double-strand cleavage by deoxyribonuclease I. Ligands bound in all three modes interfered with the deoxyribonuclease I digestion of dsDNA, although the level of interference varied in a manner which could be related to the ligand binding site, the ligand charge appearing to be less important. In particular, the retardation of deoxyribonuclease I cleavage by the major groove binder methyl green demonstrates that accessibility to the minor groove can be affected by occupancy of the opposite groove. Binding of all three types of ligand also had marked effects on the interaction of RecA with dsDNA in the presence of non-hydrolyzable cofactor adenosine 5'-O-3-thiotriphosphate, decreasing the association rate to varying extents but with the strongest effects from ligands having some minor groove occupancy. Finally, each ligand was displaced from its DNA binding site upon completion of RecA association, again demonstrating that modification of either groove can affect the properties and behaviour of the other. The conclusions are discussed against the background of previous work on the use of small DNA ligands to probe DNA-protein interactions.
Collapse
Affiliation(s)
- E Tuite
- Department of Physical Chemistry, Chalmers University of Technology, Göteborg, Sweden
| | | | | | | | | |
Collapse
|
18
|
Roca AI, Cox MM. RecA protein: structure, function, and role in recombinational DNA repair. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1997; 56:129-223. [PMID: 9187054 DOI: 10.1016/s0079-6603(08)61005-3] [Citation(s) in RCA: 324] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- A I Roca
- Department of Biochemistry, College of Agriculture and Life Sciences, University of Wisconsin, Madison 53706, USA
| | | |
Collapse
|
19
|
Kim JM, DasSarma S. Isolation and chromosomal distribution of natural Z-DNA-forming sequences in Halobacterium halobium. J Biol Chem 1996; 271:19724-31. [PMID: 8702677 DOI: 10.1074/jbc.271.33.19724] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Conditions favoring left-handed Z-DNA such as high salinity (> 4 ), high negative DNA supercoiling, and GC-rich DNA [statistically favoring d(CG)n repeat sequences], are all found in the extremely halophilic archaeum (archaebacterium) Halobacterium halobium. In order to identify and study Z-DNA regions of the H. halobium genome, an affinity chromatography method with high Z-DNA selection efficiency was developed. Supercoiled plasmids were incubated with a Z-DNA-specific antibody (Z22) and passed over a protein A-agarose column, and the bound plasmids were eluted using an ethidium bromide gradient. In control experiments using mixtures of pUC12 (Z-negative) and a d(CG)5-containing (Z-positive) pUC12 derivative, up to 4,000-fold enrichment of the Z-DNA-containing plasmid was demonstrated per cycle of the Z-DNA selection procedure. The selection efficiency was determined by transformation of Escherichia coli DH5alpha with eluted plasmids and blue-white screening on X-gal plates. Twenty recombinant plasmids containing Z-DNA-forming sequences of H. halobium were isolated from a genomic library using affinity chromatography. Z-DNA-forming sequences in selected plasmids were identified by bandshift and antibody footprinting assays using Z22 monoclonal antibody. Alternating purine-pyrimidine sequences ranging from 8 base pairs (bp) to 13 bp with at least a 6-bp alternating d(GC) stretch were found in the Z22 antibody binding regions of isolated plasmids. The distribution of Z-DNA-forming sequences in the Halobacterium salinarum GRB chromosome was analyzed by dot-blot hybridization of an ordered cosmid library using the cloned H. halobium Z-DNA segments as probe. Among the 11 Z-DNA segments tested, five were found to be clustered in a 100-kilobase pair region of the genome, whereas six others were distributed throughout the rest of the genome.
Collapse
Affiliation(s)
- J m Kim
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | |
Collapse
|
20
|
Chen YZ, Prohofsky EW. Nonlinear effects and thermal expansion as expressed in self-consistent phonon calculations on the temperature dependence of a phase change: Application to the B to Z conformation change in DNA. PHYSICAL REVIEW. E, STATISTICAL PHYSICS, PLASMAS, FLUIDS, AND RELATED INTERDISCIPLINARY TOPICS 1994; 49:3444-3451. [PMID: 9961613 DOI: 10.1103/physreve.49.3444] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
|
21
|
Abstract
The Escherichia coli RecA protein plays a central role in homologous genetic recombination, recombinational repair, and several other processes in bacteria. In vitro, an extended filament involving thousands of RecA monomers promotes a reaction in which individual DNA strands switch pairing partners (DNA strand exchange). This reaction has been extensively studied as a paradigm for the central steps in recombination. Because the strand-exchange reaction is relatively simple and isoenergetic, the complexity of the RecA system that carries it out has led to controversy about the functional significance of many fundamental properties of RecA. Filamentous protein structures involving thousands of RecA monomers, which hydrolyse 100 ATPs per base pair of heteroduplex DNA formed, are hard to rationalize in the context of recombination between two homologous DNAs. The thermodynamic barriers to strand exchange are much too small. These molecular features of the system can be easily rationalized, however, by shifting the focus to DNA repair.
Collapse
Affiliation(s)
- M M Cox
- Department of Biochemistry, University of Wisconsin-Madison 53706
| |
Collapse
|
22
|
Gruss A, Moretto V, Ehrlich SD, Duwat P, Dabert P. GC-rich DNA sequences block homologous recombination in vitro. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(20)89547-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
23
|
Abstract
Processes fundamental to all models of genetic recombination include the homologous pairing and subsequent exchange of DNA strands. Biochemical analysis of these events has been conducted primarily on the recA protein of Escherichia coli, although proteins which can promote such reactions have been purified from many sources, both prokaryotic and eukaryotic. The activities of these homologous pairing and DNA strand exchange proteins are either ATP-dependent, as predicted based on the recA protein paradigm, or, more unexpectedly, ATP-independent. This review examines the reactions promoted by both classes of proteins and highlights their similarities and differences. The mechanistic implications of the apparent existence of 2 classes of strand exchange protein are discussed.
Collapse
Affiliation(s)
- A K Eggleston
- Department of Cell, Molecular, and Structural Biology, Northwestern University Medical School, IL 60611
| | | |
Collapse
|
24
|
Abstract
The effect of Z-binding ligands on the supercoiling threshold in the supercoil-induced B-Z transition has been examined from the point of view of a two-state model. Expressions have been derived for the determination of the shift in critical supercoil density in terms of the physical parameters of the DNA-ligand system. Representative calculations indicate that the stabilizing action of Z-binding ligands on the Z conformation in closed circular DNA depends largely on the binding characteristics of the ligand. Application of the theoretical data has been demonstrated using the experimental results reported by Lafer et al. (J. Biol. Chem. 261 (1986) 6438).
Collapse
Affiliation(s)
- A Lahiri
- Theoretical Nuclear Physics Division, Saha Institute of Nuclear Physics, Calcutta, India
| |
Collapse
|
25
|
Krishna P, van de Sande JH. Interaction of RecA protein with acidic phospholipids inhibits DNA-binding activity of RecA. J Bacteriol 1990; 172:6452-8. [PMID: 2228969 PMCID: PMC526833 DOI: 10.1128/jb.172.11.6452-6458.1990] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The RecA protein of Escherichia coli binds specifically to acidic phospholipids such as cardiolipin and phosphatidylglycerol. This binding appears to be affected by the presence of divalent cations such as Ca2+ and Mg2+. The interaction leads to the inhibition of RecA binding to at least two different conformations of DNA, single-stranded DNA and left-handed Z-DNA, thus suggesting that the phospholipids interact at the DNA-binding site of the RecA protein. Inclusion of a nucleotide cofactor [adenosine 5'-O-(gamma-thiotriphosphate)] in the reactions did not prevent the inhibition of DNA-binding activities of RecA protein by the phospholipids. The interaction of RecA protein with cardiolipin and phosphatidylglycerol, which represent two of the three major phospholipids of the E. coli membrane, may be physiologically important, as it provides a possible mechanism for the RecA-membrane association during the SOS response. These observations raise the possibility that the Z-DNA-binding activity of RecA protein is merely a manifestation of its phospholipid-binding property.
Collapse
Affiliation(s)
- P Krishna
- Department of Medical Biochemistry, University of Calgary, Alberta, Canada
| | | |
Collapse
|
26
|
Rohner K, Hobi R, Kuenzle C. Z-DNA-binding proteins. Identification critically depends on the proper choice of ligands. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(17)30631-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
27
|
Pearlman DA, Kollman PA. The calculated free energy effects of 5-methyl cytosine on the B to Z transition in DNA. Biopolymers 1990; 29:1193-209. [PMID: 2369632 DOI: 10.1002/bip.360290810] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have examined the free energy effects of 5-methylation of cytosine on the B in equilibrium Z conformational equilibrium in DNA. Free energy differences were calculated using the free energy perturbation approach, which uses an easily derived equation from classical statistical mechanics to relate the free energy difference between two states to the ensemble average of the potential energy difference between the states. Calculations were carried both in explicit solvent and (for comparison) in vacuo. The free energy values obtained for the explicit solvent systems are total free energies, with contributions from all parts of the system (solvent + solute), and so are relevant to the B in equilibrium Z transitions observed under real (physiological) conditions. We calculate that in solution, methylation makes the B in equilibrium Z transition more favorable by about -0.4 kcal/mole base pair (bp) in free energy. This value compares well with approximate experimentally derived values of about -0.3 kcal/mole-bp. We also discuss a method for determining the free energy difference between conformational states poorly maintained by a potential energy model. Finally, the effects of methylation on the melting temperature of DNA are examined.
Collapse
Affiliation(s)
- D A Pearlman
- Department of Pharmaceutical Chemistry, University of California, San Francisco 94143-0446
| | | |
Collapse
|
28
|
Purification and characterization of a protein from human cells which promotes homologous pairing of DNA. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38564-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
29
|
Affiliation(s)
- A I Roca
- Department of Biochemistry, University of Wisconsin-Madison 53706
| | | |
Collapse
|
30
|
Le Ber P, Schwaller MA, Auclair C. Effect of intercalative binding compared to external binding on Z/B equilibrium of poly d(GMe5C) using fluorescent oxazolopyridocarbazoles as probes. J Mol Recognit 1989; 2:152-7. [PMID: 2637042 DOI: 10.1002/jmr.300020403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Using the fluorimetric determination of the binding isotherms in combination with circular dichroism, we have investigated the effect of the binding of the intercalating chromophore oxazolopyridocarbazole (OPC) to poly d(GMe5C) on B/Z equilibrium, compared to the effect of the external binder OPC derivative pentyl-2-OPC. The intercalating OPC appears to be very efficient in reversing left-handed poly d(GMe5C) into the right-handed conformation, according to a cooperative mode. For each OPC molecule intercalated into the B form, 7 base pairs were switched from the Z to B conformation. In contrast, the binding of the external binder pentyl-OPC resulted in a limited Z to B transition, involving the switch of 1.4 base pairs from the Z to B conformation. Moreover, OPC appears much more efficient than pentyl-OPC in inhibiting both the extent and kinetics of the salt-induced B/Z transition. At low drug to DNA ratio (D/P = 1/50), a 7-fold and 1.5-fold inhibition of the B/Z transition kinetics occurs in the presence of OPC and pentyl-OPC, respectively. These features are discussed in terms of the difference existing between the entropic contribution in the DNA binding of intercalating agents, compared to external binders.
Collapse
Affiliation(s)
- P Le Ber
- Laboratoire de Biochimie-Enzymologie, INSERM U140, Villejuif, France
| | | | | |
Collapse
|
31
|
Kim JI, Heuser J, Cox MM. Enhanced recA Protein Binding to Z DNA Represents a Kinetic Perturbation of a General Duplex DNA Binding Pathway. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(20)88262-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
32
|
Abstract
Biological processes such as transcription may generate domains of supercoiling on a circular DNA. The existence of these domains in Escherichia coli was investigated by the ability of different lengths of (CG) tracts, cloned upstream or downstream from the tetracycline resistance gene (tet) of pBR322, to adopt the Z structure in vivo. Segments as short as 12 base pairs adopt the Z form when cloned upstream from the tet gene (Eco RI site), whereas no Z DNA was detected when this sequence was cloned downstream (Sty I site), even with a 74-base pair (CG) tract that requires less supercoiling than shorter tracts for the B-Z transition. Hence the localized supercoil density in pBR322 can be as high as -0.038 and as low as -0.021 at different loci. These data demonstrate the existence of the Z structure for commonly found natural sequences and support the notion of domains of negative supercoiling in vivo.
Collapse
Affiliation(s)
- A R Rahmouni
- Department of Biochemistry, School of Medicine, University of Alabama, Birmingham 35294
| | | |
Collapse
|
33
|
Wallis JW, Chrebet G, Brodsky G, Rolfe M, Rothstein R. A hyper-recombination mutation in S. cerevisiae identifies a novel eukaryotic topoisomerase. Cell 1989; 58:409-19. [PMID: 2546682 DOI: 10.1016/0092-8674(89)90855-6] [Citation(s) in RCA: 456] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A hyper-recombination mutation was isolated that causes an increase in recombination between short repeated delta sequences surrounding the SUP4-omicron gene in S. cerevisiae. The wild-type copy of this gene was cloned by complementation of one of its pleiotropic phenotypes, slow growth. DNA sequence of the clone revealed a 656 amino acid open reading frame capable of encoding a protein homologous to the bacterial type I topoisomerase. No homology was detected with previously identified eukaryotic topoisomerases. Construction of double mutants with either of the two known yeast topoisomerase genes revealed synergistic effects on growth suggesting overlapping functions. Expression of bacterial topoisomerase I in yeast can fully complement the slow growth defect of a null mutation. We have named this locus TOP3 and suggest that it defines a novel eukaryotic topoisomerase gene.
Collapse
Affiliation(s)
- J W Wallis
- Department of Genetics and Development, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | | | | | | | | |
Collapse
|
34
|
Jaworski A, Blaho JA, Larson JE, Shimizu M, Wells RD. Tetracycline promoter mutations decrease non-B DNA structural transitions, negative linking differences and deletions in recombinant plasmids in Escherichia coli. J Mol Biol 1989; 207:513-26. [PMID: 2547968 DOI: 10.1016/0022-2836(89)90461-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The ability to clone a variety of sequences with varying capabilities of adopting non-B structures (left-handed Z-DNA, cruciforms or triplexes) into three loci of pBR322 was investigated. In general, the inserts were stable (non-deleted) in the EcoRI site (an untranslated region) of pBR322. However, sequences most likely to adopt left-handed Z-DNA or triplexes in vivo suffered deletions when cloned into the BamHI site, which is located in the tetracycline resistance structural gene (tet). Conversely, when the promoter for the tet gene was altered by filling-in the unique HindIII or ClaI sites, the inserts in the BamHI site were not deleted. Concomitantly, the negative linking differences of the plasmids were reduced. Also, inserts with a high potential to adopt Z-DNA conformations were substantially deleted in the PvuII site of pBR322 (near the replication origin and the copy number control region), but were less deleted if the tet promoter was insertion-mutated. The deletion phenomena are due to the capacity of these sequences to adopt left-handed Z-DNA or triplexes in vivo since shorter inserts, less prone to form non-B DNA structures, or random sequences, did not exhibit this behavior. Sequences with the potential to adopt cruciforms were stable in all sites under all conditions. These results reveal a complex interrelationship between insert deletions (apparently the result of genetic recombination), negative supercoiling, and the formation of non-B DNA structures in living Escherichia coli cells.
Collapse
Affiliation(s)
- A Jaworski
- Department of Biochemistry, School of Medicine, University of Alabama, Birmingham 35294
| | | | | | | | | |
Collapse
|
35
|
Takahashi M, Kubista M, Nordén B. Binding of RecA Protein to Z-form DNA Studied with Circular and Linear Dichroism Spectroscopy. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)81829-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
36
|
Lindsley JE, Cox MM. Dissociation pathway for recA nucleoprotein filaments formed on linear duplex DNA. J Mol Biol 1989; 205:695-711. [PMID: 2538635 DOI: 10.1016/0022-2836(89)90315-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
recA protein forms stable filaments on duplex DNA at low pH. When the pH is shifted above 6.8, recA protein remains stably bound to nicked circular DNA, but not to linear DNA. Dissociation of recA protein from linear duplex DNA proceeds to a non-zero endpoint. The kinetics and final extent of dissociation vary with several experimental parameters. The instability on linear DNA is most readily explained by a progressive unidirectional dissociation of recA protein from one end of the filament. Dissociation of recA protein from random points in the filament is eliminated as a possible mechanism by several observations: (1) the requirement for a free end; (2) the inverse and linear dependence of the rate of dissociation on DNA length (at constant DNA base-pair concentration); and (3) the kinetics of exposure of a restriction endonuclease site in the middle of the DNA. Evidence against another possible mechanism, ATP-mediated translocation of the filament along the DNA, is provided by a novel effect of the non-hydrolyzable ATP analog, ATP gamma S, which generally induces recA protein to bind any DNA tightly and completely inhibits ATP hydrolysis. We find that very low, sub-saturating levels of ATP gamma S completely stabilize the filament, while most of the ATP hydrolysis continues. If these levels of ATP gamma S are introduced after dissociation has commenced, further dissociation is blocked, but re-association does not occur. These observations are inconsistent with movement of recA protein along DNA that is tightly coupled to ATP hydrolysis. The recA nucleoprotein filament is polar and the protein binds the two strands asymmetrically, polymerizing mainly in the 5' to 3' direction on the initiating strand of a single-stranded DNA tailed duplex molecule. A model consistent with these results is presented.
Collapse
Affiliation(s)
- J E Lindsley
- Department of Biochemistry, College of Agriculture and Life Sciences, University of Wisconsin-Madison 53706
| | | |
Collapse
|
37
|
Blaho JA, Wells RD. Left-handed Z-DNA and genetic recombination. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1989; 37:107-26. [PMID: 2672108 DOI: 10.1016/s0079-6603(08)60696-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
38
|
Koffel-Schwartz N, Fuchs RP. Genetic control of AAF-induced mutagenesis at alternating GC sequences: an additional role for RecA. MOLECULAR & GENERAL GENETICS : MGG 1989; 215:306-11. [PMID: 2651884 DOI: 10.1007/bf00339733] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In a previous study, the forward mutation spectrum induced by the chemical carcinogen N-acetoxy-N-2-acetylaminofluorene was determined (Koffel-Schwartz et al. 1984). It was found that 90% of the induced mutations are frameshift mutations located within specific sequences (mutation hot spots). Two classes of mutation hot spots were found: (i) -1 frameshift mutations occurring within runs of guanines (i.e. GGGG----GGG; (ii) -2 frameshift mutations occurring within the NarI recognition sequence (GGCGCC----GGCC). In the present work, we further investigate the genetic requirements of these frameshift events by using specific reversion assays. Like UV-induced mutagenesis, frameshift mutations occurring within runs of G's (also referred to as the "slippage pathway") require the activated form of the RecA protein (RecA*). On the other hand, frameshift mutations occurring at the NarI site (the "NarI mutation pathway") require a LexA-controlled function(s) that is not UmuDC. The LexA-controlled gene(s) that is (are) involved in this pathway remain to be identified. Moreover, this pathway does not require RecA* for the proteolytic processing of a protein other than LexA (like the cleavage of UmuD in UV-induced mutagenesis). An "additional" role of RecA can be defined as follows: (i) The non-activated form of the RecA protein acts as an inhibitor in the NarI mutation pathway. (ii) This inhibition is relieved upon activation of RecA by UV irradiation of the bacteria. (iii) A recA deletion mutant is totally proficient in the NarI mutation pathway provided the SOS system is derepressed [lexA (Def) allele]. Therefore, RecA does not actively participate in the fixation of the mutation. A molecular model for this "additional" role of RecA is proposed.
Collapse
Affiliation(s)
- N Koffel-Schwartz
- Institut de biologie moléculaire et cellulaire du CNRS, Strasbourg, France
| | | |
Collapse
|
39
|
Krishna P, Kennedy BP, van de Sande JH, McGhee JD. Yolk proteins from nematodes, chickens, and frogs bind strongly and preferentially to left-handed Z-DNA. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)37390-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
40
|
Blaho JA, Larson JE, McLean MJ, Wells RD. Multiple DNA secondary structures in perfect inverted repeat inserts in plasmids. Right-handed B-DNA, cruciforms, and left-handed Z-DNA. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)68240-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
41
|
Cheng S, Van Houten B, Gamper HB, Sancar A, Hearst JE. Use of psoralen-modified oligonucleotides to trap three-stranded RecA-DNA complexes and repair of these cross-linked complexes by ABC excinuclease. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)68152-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
42
|
Abstract
RecA protein binding to duplex DNA occurs by a multi-step process. The tau analysis, originally developed to examine the binding of RNA polymerase to promoter DNA, is adapted here to study two kinetically distinguishable reaction segments of RecA-double stranded (ds) DNA complex formation in greater detail. One, which is probably a rapid preequilibrium in which RecA protein binds weakly to native dsDNA, is found to have the following properties: (1) a sensitivity to pH, involving a net release of approximately one proton; (2) a sensitivity to salts; (3) little or no dependence on temperature; (4) little or no dependence on DNA length. The second reaction segment, the rate-limiting nucleation of nucleoprotein filament formation accompanied by partial DNA unwinding, is found to have the following properties: (1) a sensitivity to pH, involving a net uptake of approximately three protons; (2) a sensitivity to salts; (3) a relatively large dependence on temperature, with an Arrhenius activation energy of 39 kcal mol(-1); (4) a sensitivity to DNA topology; (5) a dependence on DNA length. These results contribute to a general mechanism for RecA protein binding to duplex DNA, which can provide a rationale for the apparent preferential binding to altered DNA structures such as pyrimidine dimers and Z-DNA.
Collapse
Affiliation(s)
- B F Pugh
- Department of Biochemistry, College of Agriculture and Life Sciences, University of Wisconsin-Madison 53706
| | | |
Collapse
|
43
|
McLean MJ, Wells RD. The role of sequence in the stabilization of left-handed DNA helices in vitro and in vivo. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 950:243-54. [PMID: 3048405 DOI: 10.1016/0167-4781(88)90120-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- M J McLean
- Department of Pharmacology, University of Cambridge, U.K
| | | |
Collapse
|
44
|
|
45
|
|
46
|
Abstract
Left-handed DNA is shown to exist and elicit a biological response in Escherichia coli. A plasmid encoding the gene for a temperature-sensitive Eco RI methylase (MEco RI) was cotransformed with different plasmids containing inserts that had varying capacities to form left-handed helices or cruciforms with a target Eco RI site in the center or at the ends of the inserts. Inhibition of methylation in vivo was found for the stable inserts with the longest left-handed (presumably Z) helices. In vitro methylation with the purified MEco RI agreed with the results in vivo. Supercoil-induced changes in the structure of the primary helix in vitro provided confirmation that left-handed helices were responsible for this behavior. The presence in vivo of left-handed inserts elicits specific deletions and plasmid incompatibilities in certain instances.
Collapse
Affiliation(s)
- A Jaworski
- Department of Biochemistry, School of Medicine, University of Alabama, Birmingham 35294
| | | | | | | | | |
Collapse
|