1
|
Citta A, Folda A, Scutari G, Cesaro L, Bindoli A, Rigobello MP. Inhibition of thioredoxin reductase by lanthanum chloride. J Inorg Biochem 2012; 117:18-24. [DOI: 10.1016/j.jinorgbio.2012.08.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 08/22/2012] [Accepted: 08/24/2012] [Indexed: 11/30/2022]
|
2
|
Turanov AA, Su D, Gladyshev VN. Characterization of Alternative Cytosolic Forms and Cellular Targets of Mouse Mitochondrial Thioredoxin Reductase. J Biol Chem 2006; 281:22953-63. [PMID: 16774913 DOI: 10.1074/jbc.m604326200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thioredoxin reductase (TR) and thioredoxin (Trx) define a major cellular redox system that maintains cysteine residues in numerous proteins in the reduced state. Both cytosolic (TR1 and Trx1) and mitochondrial (TR3 and Trx2) enzymes are essential in mammals, but the function of the mitochondrial system is less understood. In this study, we characterized subcellular localization of three TR3 forms that are generated by alternative first exon splicing and that differ in their N-terminal sequences. Only one of these forms resides in mitochondria, whereas the two other isoforms are cytosolic. Consistent with this finding, TR3 did not have catalytic preferences for mitochondrial Trx2 versus cytosolic Trx1, both of which could serve as TR3 substrates. Similarly, TR1 was equally active with Trx1, Trx2, or a bacterial Trx. We generated recombinant selenoprotein forms of TR1 and TR3 and found that these enzymes were inhibited by zinc, but not by calcium or cobalt ions. We further developed a proteomic method for identification of targets of TRs in mammalian cells utilizing affinity columns containing recombinant TR3 forms differing in C-terminal sequences. Using this procedure, we found that Trx1 was the major target of TR3 in both rat and mouse liver cytosol. The truncated form of TR3 lacking selenocysteine was particularly efficient in binding Trx1, consistent with the previously observed role of truncated TR1 in apoptosis. Overall, these data establish that the function of TR3 is not limited to its role in Trx2 reduction.
Collapse
Affiliation(s)
- Anton A Turanov
- Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588-0664, USA
| | | | | |
Collapse
|
3
|
Rigobello MP, Vianello F, Folda A, Roman C, Scutari G, Bindoli A. Differential effect of calcium ions on the cytosolic and mitochondrial thioredoxin reductase. Biochem Biophys Res Commun 2006; 343:873-8. [PMID: 16564501 DOI: 10.1016/j.bbrc.2006.03.050] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2006] [Accepted: 03/09/2006] [Indexed: 11/19/2022]
Abstract
The effect of calcium ions has been studied on three different isoforms of thioredoxin reductase. The cytosolic (TrxR1), mitochondrial (TrxR2), and the Escherichia coli enzymes were examined and compared. In our condition, TrxR1 appears extremely sensitive to Ca2+ showing an IC50 of about 160 nM, while Ca2+ exerts only a weak inhibitory effect on the mitochondrial isoform. The thioredoxin reductase purified from E. coli is almost completely insensitive to calcium ions. Circular dichroism analysis of highly purified mitochondrial and cytosolic thioredoxin reductases reveals that Ca2+ induces conformational alterations that are particularly relevant only in the cytosolic isoform. These observations are discussed with reference to the physiological role and, in particular, to the regulatory functions of the thioredoxin system.
Collapse
Affiliation(s)
- Maria Pia Rigobello
- Dipartimento di Chimica Biologica, Università di Padova, Viale G. Colombo 3, 35121 Padova, Italy
| | | | | | | | | | | |
Collapse
|
4
|
Saller F, Kaabache T, Aiach M, Gandrille S, Borgel D. The protein S thrombin-sensitive region modulates phospholipid binding and the gamma-carboxyglutamic acid-rich (Gla) domain conformation in a non-specific manner. J Thromb Haemost 2006; 4:704-6. [PMID: 16460467 DOI: 10.1111/j.1538-7836.2006.01827.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Abstract
This article addresses the role of platelet membrane phosphatidylserine (PS) in regulating the production of thrombin, the central regulatory molecule of blood coagulation. PS is normally located on the cytoplasmic face of the resting platelet membrane but appears on the plasma-oriented surface of discrete membrane vesicles that derive from activated platelets. Thrombin, the central molecule of coagulation, is produced from prothrombin by a complex ("prothrombinase") between factor Xa and its protein cofactor (factor V(a)) that forms on platelet-derived membranes. This complex enhances the rate of activation of prothrombin to thrombin by roughly 150,000 fold relative to factor X(a) in solution. It is widely accepted that the negatively charged surface of PS-containing platelet-derived membranes is at least partly responsible for this rate enhancement, although there is not universal agreement on mechanism by which this occurs. Our efforts have led to an alternative view, namely that PS molecules bind to discrete regulatory sites on both factors X(a) and V(a) and allosterically alter their proteolytic and cofactor activities. In this view, exposure of PS on the surface of activated platelet vesicles is a key regulatory event in blood coagulation, and PS serves as a second messenger in this regulatory process. This article reviews our knowledge of the prothrombinase reaction and summarizes recent evidence leading to this alternative viewpoint. This viewpoint suggests a key role for PS both in normal hemostasis and in thrombotic disease.
Collapse
Affiliation(s)
- Barry R Lentz
- Department of Biochemistry & Biophysics, CB7260, University of North Carolina at Chapel Hill, USA.
| |
Collapse
|
6
|
Banerjee M, Majumder R, Weinreb G, Wang J, Lentz BR. Role of procoagulant lipids in human prothrombin activation. 2. Soluble phosphatidylserine upregulates and directs factor X(a) to appropriate peptide bonds in prothrombin. Biochemistry 2002; 41:950-7. [PMID: 11790118 DOI: 10.1021/bi0116902] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Activation of human prothrombin to thrombin (II(a)) by factor X(a) during blood coagulation requires proteolysis of two bonds and thus involves two possible activation pathways (parallel-sequential activation model). Hydrolysis of Arg(322)-Ile(323) produces meizothrombin (MzII(a)) as an intermediate, while hydrolysis of Arg(273)-Thr(274) produces prethrombin 2-fragment 1.2 (Pre2-F1.2). A soluble lipid, dicaproylphosphatidylserine (C6PS), enhances activation by 60-fold [Koppaka et al. (1996) Biochemistry 35, 7482]. We report here that C6PS binding to factor X(a) not only enhances the rate of activation but also alters the pathway. Activation was monitored using a chromogenic substrate (S-2238) to detect both II(a) and MzII(a) active site formation and SDS-PAGE to detect Pre2-F1.2 as well as II(a) and MzII(a). Of the four kinetic constants needed to describe activation, two (MzII(a) and Pre2-F1.2 consumption) were measured directly, and two (MzII(a) and Pre2-F1.2 formation) were obtained by fitting the three time courses simultaneously to the parallel-sequential reaction model. The time courses of II(a), MzII(a), and Pre2-F1.2 formations were all well described below the C6PS critical micelle concentration (CMC) by this activation model. The rate of Arg(322)-Ile cleavage leading to MzII(a) formation increased by 150-fold, while the rate of Arg(273)-Thr cleavage leading to Pre2-F1.2 formation was inhibited slightly. At concentrations of water-soluble C6PS above its CMC, all four proteolytic reactions increased in rate by 2-5-fold at the C6PS CMC. We conclude that soluble C6PS differentially affects the rate of individual bond cleavages during prothrombin activation in solution such that activation occurs almost exclusively via MzII(a) formation. Finally, C6PS enhanced the rates of all proteolytic reactions to within a factor of 3 of the enhancement seen with PS-containing membranes. We conclude that PS-containing membranes regulate prothrombin activation by factor X(a) mainly via interaction of individual PS molecules with factor X(a).
Collapse
Affiliation(s)
- Mou Banerjee
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, 27599-7260, USA
| | | | | | | | | |
Collapse
|
7
|
Srivastava A, Wang J, Majumder R, Rezaie AR, Stenflo J, Esmon CT, Lentz BR. Localization of phosphatidylserine binding sites to structural domains of factor Xa. J Biol Chem 2002; 277:1855-63. [PMID: 11707438 DOI: 10.1074/jbc.m105697200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Binding of short chain phosphatidylserine (C6PS) enhances the proteolytic activity of factor X(a) by 60-fold (Koppaka, V., Wang, J., Banerjee, M., and Lentz, B. R. (1996) Biochemistry 35, 7482-7491). In the present study, we locate three C6PS binding sites to different domains of factor X(a) using a combination of activity, circular dichroism, fluorescence, and equilibrium dialysis measurements on proteolytic and biosynthetic fragments of factor X(a). Our results demonstrate that the structural responses of human and bovine factor X(a) to C6PS binding are somewhat different. Despite this difference, data obtained with fragments from both human and bovine factor X(a) are consistent with a common hypothesis for the location of C6PS binding sites to different structural domains. First, the gamma-carboxyglutamic acid (Gla) domain binds C6PS only in the absence of Ca(2+) (k(d) approximately 1 mm), although this PS site does not influence the functional response of factor X(a). Second, a Ca(2+)-dependent binding site is in the epidermal growth factor domains (EGF(NC)) that are linked by Ca(2+) and C6PS binding to the Gla domain. This site appears to be the lipid regulatory site of factor X(a). Third, a Ca(2+)-requiring site seems to be in the EGF(C)-catalytic domain. This site appears not to be a lipid regulatory site but rather to share residues with the substrate recognition site. Finally, the full functional response to C6PS requires linkage of the Gla, EGF(NC), and catalytic domains in the presence of Ca(2+), meaning that PS regulation of factor X(a) involves linkage between widely separated parts of the protein.
Collapse
Affiliation(s)
- Arvind Srivastava
- Department of Biochemistry & Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599-7260, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Stenflo J, Stenberg Y, Muranyi A. Calcium-binding EGF-like modules in coagulation proteinases: function of the calcium ion in module interactions. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1477:51-63. [PMID: 10708848 DOI: 10.1016/s0167-4838(99)00262-9] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Epidermal growth factor (EGF)-like modules are involved in protein-protein interactions and are found in numerous extracellular proteins and membrane proteins. Among these proteins are enzymes involved in blood coagulation, fibrinolysis and the complement system as well as matrix proteins and cell surface receptors such as the EGF precursor, the low density lipoprotein receptor and the developmentally important receptor, Notch. The coagulation enzymes, factors VII, IX and X and protein C, all have two EGF-like modules, whereas the cofactor of activated protein C, protein S, has four EGF-like modules in tandem. Certain of the cell surface receptors have numerous EGF modules in tandem. A subset of EGF modules bind one Ca(2+). The Ca(2+)-binding sequence motif is coupled to a sequence motif that brings about beta-hydroxylation of a particular Asp/Asn residue. Ca(2+)-binding to an EGF module is important to orient neighboring modules relative to each other in a manner that is required for biological activity. The Ca(2+) affinity of an EGF module is often influenced by its N-terminal neighbor, be it another EGF module or a module of another type. This can result in an increase in Ca(2+) affinity of several orders of magnitude. Point mutations in EGF modules that involve amino acids which are Ca(2+) ligands result in the biosynthesis of biologically inactive proteins. Such mutations have been identified, for instance, in factor IX, causing hemophilia B, in fibrillin, causing Marfan syndrome, and in the low density lipoprotein receptor, causing hypercholesterolemia. In this review the emphasis will be on the coagulation factors.
Collapse
Affiliation(s)
- J Stenflo
- Department of Clinical Chemistry, University of Lund, University Hospital, Malmö, SE-205 02, Malmö, Sweden.
| | | | | |
Collapse
|
9
|
Persson E, Olsen OH, Ostergaard A, Nielsen LS. Ca2+ binding to the first epidermal growth factor-like domain of factor VIIa increases amidolytic activity and tissue factor affinity. J Biol Chem 1997; 272:19919-24. [PMID: 9242658 DOI: 10.1074/jbc.272.32.19919] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Coagulation factor VIIa belongs to a family of homologous enzymes, including factors IXa and Xa and activated protein C, composed of two epidermal growth factor-like domains located between an N-terminal domain rich in gamma-carboxyglutamic acid residues and a C-terminal serine protease domain. The first epidermal growth factor-like domain in factor VIIa contains a Ca2+ binding site, the function of which is largely unknown. Site-directed mutagenesis of two Ca2+-liganding Asp residues in this domain abolished Ca2+ binding and resulted in a 2-3-fold decrease in amidolytic activity at optimal Ca2+ concentrations. The lower amidolytic activity persisted in complex with soluble tissue factor, apparently due to a lower kcat of the mutant factor VIIa. Mutant and wild-type factor VIIa bound to lipidated tissue factor were equally efficient activators of factor X. The dissociation constants, derived from amidolytic activity and surface plasmon resonance measurements, were 2-5 nM and 50-60 nM for the interactions between wild-type and mutant factor VIIa, respectively, and soluble tissue factor. Binding to lipidated tissue factor was characterized by dissociation constants of 7.5 pM for factor VIIa and 160 pM for the factor VIIa mutant. Hence, a functional Ca2+ binding site in the first epidermal growth factor-like domain added 7-8 kJ/mol to the total binding energy of the interaction with both lipidated and soluble tissue factor.
Collapse
Affiliation(s)
- E Persson
- Vessel Wall Biology, Health Care Discovery, Novo Nordisk A/S, Niels Steensens Vej 1, DK-2820 Gentofte, Denmark.
| | | | | | | |
Collapse
|
10
|
Hernandez JF, Bersch B, Pétillot Y, Gagnon J, Arlaud GJ. Chemical synthesis and characterization of the epidermal growth factor-like module of human complement protease C1r. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 1997; 49:221-31. [PMID: 9151255 DOI: 10.1111/j.1399-3011.1997.tb00881.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
C1r is one of the two serine proteases of C1, the first component of complement, in which it is associated in a calcium-dependent manner to the homologous serine protease C1s. This interaction is mediated by the N-terminal region of C1r, which comprises a single epidermal growth factor (EGF)-like module containing the consensus sequence required for calcium binding, surrounded by two CUB modules. With a view to determine the structure of the EGF-like module of C1r and evaluate its contribution to calcium binding, this module [C1r(123-175)] was synthesized by automated solid-phase methodology using the Boc strategy. A first synthesis using the Boc-His(Z) derivative gave very low yield, due to partial deprotection of His residues leading to chain termination by acetylation, and to insertion of glycine residues. This could be circumvented by using the Boc-His(DNP) derivative and by condensation of appropriate glycine-containing segments. The synthetic peptide was efficiently folded under redox conditions to the species with three correct disulfide bridges, as determined by mass spectrometry and N-terminal sequence analyses of thermolytic fragments. The homogeneity of the synthetic peptide was assessed by reversed-phase HPLC and electrospray mass spectrometry. One-dimensional 1H NMR spectroscopic analysis provided evidence that the EGF-like module had a well defined structure, and was able to bind calcium with an apparent Kd of 10 mM. This value, comparable to that found for the isolated EGF-like modules of coagulation factors IX and X, is much higher than that measured for native C1r. As already proposed for factors IX and X, it is suggested that neighbouring module(s), most probably the N-terminal CUB module, contribute(s) to the calcium binding site.
Collapse
Affiliation(s)
- J F Hernandez
- Molecular Enzymology Laboratory, Institute for Structural Biology Jean-Pierre Ebel (CEA-CNRS), Grenoble, France.
| | | | | | | | | |
Collapse
|
11
|
Inoue K, Shimada H, Ueba J, Enomoto S, Tanaka-Saisaka Y, Kubota T, Koyama M, Morita T. High-affinity calcium-binding site in the gama-carboxyglutamic acid domain of bovine factor VII. Biochemistry 1996; 35:13826-32. [PMID: 8901525 DOI: 10.1021/bi960713n] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The calcium-mediated interaction of factor VIIa with tissue factor is considered to be the primary trigger of blood coagulation. To determine the role of calcium ions in the action of factor VII, we prepared monoclonal antibodies whose binding to factor VII was calcium-dependent. A monoclonal antibody designated C6 strongly inhibited factor VII-induced clotting at a molar ratio of factor VII to antibody of 1:1. The half-maximal binding of factor VII to the C6 antibody was observed at a concentration of calcium ions of 80 microM. Proteolytic fragments of factor VII were assayed for their ability to inhibit competitively the binding of 125I-factor VII to immobilized C6 antibody. The binding was inhibited by increasing amounts of factor VII, by a fragment that contained the gamma-carboxyglutamic acid (Gla) domain linked to first epidermal growth factor-like domain, and by a Gla domain peptide (residues 1-41), over a range of concentration of 10(-9) to 10(-7) M. The antigenic site recognized by the monoclonal antibody C6, which was generated upon the high-affinity binding of calcium ions, was located in the Gla domain. The C6 antibody inhibited the activation of factor X and the amidolytic activity of factor VIIa in the presence of tissue factor. These results demonstrate that a high-affinity calcium-binding site(s) is located in the Gla domain of factor VII, which is concerned with the initiation of tissue factor-mediated blood coagulation by factor VIIa.
Collapse
Affiliation(s)
- K Inoue
- Department of Biochemistry, Meiji College of Pharmacy, Yato-cho, Tanashi, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Sunnerhagen M, Olah GA, Stenflo J, Forsén S, Drakenberg T, Trewhella J. The relative orientation of Gla and EGF domains in coagulation factor X is altered by Ca2+ binding to the first EGF domain. A combined NMR-small angle X-ray scattering study. Biochemistry 1996; 35:11547-59. [PMID: 8794734 DOI: 10.1021/bi960633j] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Coagulation factor X is a serine protease containing three noncatalytic domains: an N-terminal gamma-carboxyglutamic acid (Gla)1 domain followed by two epidermal growth factor (EGF)-like domains. The isolated N-terminal EGF domain binds Ca2+ with a Kd of 10(-3) M. When linked to the Gla domain, however, its Ca2+ affinity is increased 10-fold. In this paper, we present the NMR solution structure of the factor X Gla-EGF domain pair with Ca2+ bound to the EGF domain, as well as small angle X-ray scattering (SAXS) data on the Gla-EGF domain pair with and without Ca2+. Our results show that Ca2+ binding to the EGF domain makes the Gla and EGF domains fold toward each other using the Ca2+ site as a hinge. Presumably, a similar mechanism may be responsible for alterations in the relative orientation of protein domains in many other extracellular proteins containing EGF domains with the consensus for Ca2+ binding. The results of the NMR and SAXS measurements reported in this paper confirm our previous result that the Gla domain is folded also in its apo state when linked to the EGF domain [Sunnerhagen, M., et al. (1995) Nat. Struct. Biol. 2, 504-509]. Finally, our study clearly demonstrates the powerful combination of NMR and SAXS in the study of modular proteins, since this enables reliable evaluation of both short-range (NMR) and long-range interactions (SAXS).
Collapse
|
13
|
Freskgård PO, Olsen OH, Persson E. Structural changes in factor VIIa induced by Ca2+ and tissue factor studied using circular dichroism spectroscopy. Protein Sci 1996; 5:1531-40. [PMID: 8844844 PMCID: PMC2143475 DOI: 10.1002/pro.5560050809] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Factor VIIa (fVIIa) is composed of four discrete domains, a gamma-carboxyglutamic acid (Gla)-containing domain, two epidermal growth factor (EGF)-like domains, and a serine protease domain, all of which appear to be involved, to different extents, in an optimal interaction with tissue factor (TF). All except the second EGF-like domain contain at least one Ca2+ binding site and many properties of fVIIa, e.g., TF and phospholipid binding and amidolytic activity, are Ca(2+)-dependent. A CD study was performed to characterize and locate the conformational changes in fVIIa induced by Ca2+ and TF binding. In addition to intact fVIIa, derivatives lacking the Gla domain or the protease domain were used. Assignment of the Ca(2+)-induced changes in the far-UV region of the fVIIa spectrum to the Gla domain could be made by comparing the CD spectra obtained with these fVIIa derivatives. The changes primarily appeared to reflect a Ca(2+)-induced ordering of alpha-helices existing in the apo state of fVIIa. This was corroborated by models of the apo and Ca2+ forms of fVIIa, obtained as difference spectra between fVIIa derivatives, were very similar to those of isolated Gla peptides from other vitamin K-dependent plasma proteins. The near-UV CD spectrum of fVIIa was dominated by aromatic residues residing in the protease domain and specific bands affected by Ca2+ were indicative of tertiary structural alterations. The formation of a fVIIa:TF complex led to secondary structural changes that appeared to be restricted to the catalytic domain, possibly shedding light on the mechanism by which TF induces an enhancement of fVIIa catalytic activity.
Collapse
Affiliation(s)
- P O Freskgård
- Vessel Wall Biology, Health Care Discovery, Novo Nordisk A/S, Gentofte, Denmark
| | | | | |
Collapse
|
14
|
Baugh RJ, Krishnaswamy S. Role of the activation peptide domain in human factor X activation by the extrinsic Xase complex. J Biol Chem 1996; 271:16126-34. [PMID: 8663201 DOI: 10.1074/jbc.271.27.16126] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The activation of factor X by the extrinsic coagulation system results from the action of an enzyme complex composed of factor VIIa bound to tissue factor on phospholipid membranes in the presence of calcium ions (extrinsic Xase complex). Proteolysis at the Arg52-Ile53 peptide bond in the heavy chain of factor X leads to the formation of the serine protease, factor Xa, and the generation of a heavily glycosylated activation peptide comprising residues 1-52 of the heavy chain. The role of the activation peptide region in mediating substrate recognition and cleavage by the extrinsic Xase complex is unclear. The protease Agkistrodon rhodostoma hydrolase gamma (ARHgamma), from the venom of the Malayan pit viper, was used to selectively cleave human factor X in the activation peptide region. Three cleavage sites were found within this region and gave products designated Xdes1-34, Xdes1-43, and Xdes1-49. The products were purified to yield Xdes 1-49 and a mixture of Xdes 1-34 and Xdes 1-43. Reversed phase high pressure liquid chromatography analysis indicated that the cleaved portion of the activation peptide was likely removed during purification. All cleaved species were inactive and could be completely activated to factor Xa by the extrinsic Xase complex or by a purified activator from Russell's viper venom. Steady state kinetic studies using tissue factor reconstituted into membranes yielded essentially equivalent kinetic constants for the activation of intact factor X and the cleaved derivatives under a wide range of conditions. Since Xdes 1-49 lacks all but three residues of the activation peptide and is devoid of the carbohydrate present in this region, the data suggest that the specific recognition of human factor X by the extrinsic Xase complex is not achieved through specific interactions with residues 1-49 of the activation peptide or with carbohydrate structures attached to these residues.
Collapse
Affiliation(s)
- R J Baugh
- Division of Hematology/Oncology, Department of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
15
|
Bork P, Downing AK, Kieffer B, Campbell ID. Structure and distribution of modules in extracellular proteins. Q Rev Biophys 1996; 29:119-67. [PMID: 8870072 DOI: 10.1017/s0033583500005783] [Citation(s) in RCA: 234] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
It has become standard practice to compare new amino-acid and nucleotide sequences with existing ones in the rapidly growing sequence databases. This has led to the recurring identification of certain sequence patterns, usually corresponding to less than 300 amino-acids in length. Many of these identifiable sequence regions have been shown to fold up to form a ‘domain’ structure; they are often called protein ‘modules’ (see definitions below). Proteins that contain such modules are widely distributed in biology, but they are particularly common in extracellular proteins.
Collapse
Affiliation(s)
- P Bork
- Max-Delbrück-Center for Molecular Medicine, Berlin-Buch, Germany
| | | | | | | |
Collapse
|