1
|
Hemmis CW, Schildbach JF. Thioredoxin-like proteins in F and other plasmid systems. Plasmid 2013; 70:168-89. [PMID: 23721857 DOI: 10.1016/j.plasmid.2013.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 05/12/2013] [Accepted: 05/13/2013] [Indexed: 11/29/2022]
Abstract
Bacterial conjugation is the process by which a conjugative plasmid transfers from donor to recipient bacterium. During this process, single-stranded plasmid DNA is actively and specifically transported from the cytoplasm of the donor, through a large membrane-spanning assembly known as the pore complex, and into the cytoplasm of the recipient. In Gram negative bacteria, construction of the pore requires localization of a subset of structural and catalytically active proteins to the bacterial periplasm. Unlike the cytoplasm, the periplasm contains proteins that promote disulfide bond formation within or between cysteine-containing proteins. To ensure proper protein folding and assembly, bacteria employ periplasmic redox systems for thiol oxidation, disulfide bond/sulfenic acid reduction, and disulfide bond isomerization. Recent data suggest that plasmid-based proteins belonging to the disulfide bond formation family play an integral role in the conjugative process by serving as mediators in folding and/or assembly of pore complex proteins. Here we report the identification of 165 thioredoxin-like family members across 89 different plasmid systems. Using phylogenetic analysis, all but nine family members were categorized into thioredoxin-like subfamilies. In addition, we discuss the diversity, conservation, and putative roles of thioredoxin-like proteins in plasmid systems, which include homologs of DsbA, DsbB, DsbC, DsbD, DsbG, and CcmG from Escherichia coli, TlpA from Bradyrhizobium japonicum, Com1 from Coxiella burnetii, as well as TrbB and TraF from plasmid F, and the absolute conservation of a disulfide isomerase in plasmids containing homologs of the transfer proteins TraH, TraN, and TraU.
Collapse
Affiliation(s)
- Casey W Hemmis
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | | |
Collapse
|
2
|
Wright NT, Majumdar A, Schildbach JF. Chemical shift assignments for F-plasmid TraI (381-569). BIOMOLECULAR NMR ASSIGNMENTS 2011; 5:67-70. [PMID: 20936510 PMCID: PMC3057352 DOI: 10.1007/s12104-010-9269-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Accepted: 09/22/2010] [Indexed: 05/30/2023]
Abstract
TraI, the F plasmid-encoded nickase, is a 1,756 amino acid protein essential for conjugative transfer of F plasmid DNA from one bacterium to another. While crystal structures of N- and C-terminal domains of F TraI have been determined, central domains of the protein are structurally unexplored. These middle domains (between residues 306 and 1,500) are known to both bind single-stranded DNA (ssDNA) and unwind DNA through a highly processive helicase activity. Of this central region, the more C-terminal portion (~900-1500) appears related to helicase RecD of the E. coli RecBCD complex. The more N-terminal portion (306-900), however, shows limited sequence similarity to other proteins. In an attempt to define the structure of well-folded domains of this middle region and discern their function, we have isolated stable regions of TraI following limited proteolysis. One of these regions, TraI (381-569), was identified and a genetic construct encoding it was engineered. The protein was expressed, purified, and the sequence-specific chemical shifts for it were assigned.
Collapse
Affiliation(s)
- Nathan T. Wright
- Department of Biology, Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218, USA
| | - Ananya Majumdar
- Biomolecular NMR Center, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Joel F. Schildbach
- Department of Biology, Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218, USA
| |
Collapse
|
3
|
Murakami T, Sumida N, Bibb M, Yanai K. ZouA, a putative relaxase, is essential for dna amplification in Streptomyces kanamyceticus. J Bacteriol 2011; 193:1815-22. [PMID: 21296959 PMCID: PMC3133025 DOI: 10.1128/jb.01325-10] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 01/25/2011] [Indexed: 11/20/2022] Open
Abstract
Previously, we showed that a 145-kb DNA region, including the entire kanamycin biosynthetic gene cluster (with two kanamycin resistance genes), was tandemly amplified up to 36-fold in an industrial strain of Streptomyces kanamyceticus. Strain improvement had included the use of increased kanamycin resistance as an initial potential indicator of higher kanamycin productivity. We were able to recapitulate the DNA amplification by cultivating S. kanamyceticus under selection for kanamycin resistance. To identify the genes required for amplification, various chromosome deletions were constructed, and the DNA amplification was shown to depend on orf1082 (zouA), present in a putative mobile genetic element. ZouA consists of 1,481 amino acids and is homologous to the products of traA-like genes of some conjugative plasmids. These genes encode relaxases that initiate DNA transfer during conjugation by single-strand nicking at oriT. As in the original high-producing strain, DNA amplification occurred between 16-nucleotide (nt) sites (RsA and RsB) containing 14 identical nucleotides. Interestingly, RsA lies just 80 bp upstream of the initiation codon of zouA and is partially contained in an inverted repeat structure similar to those found in plasmid oriT sequences, suggesting that it might function in a manner similar to that of oriT. We therefore propose that DNA amplification in S. kanamyceticus is initiated by relaxase-mediated recombination between oriT-related sequences.
Collapse
Affiliation(s)
- Takeshi Murakami
- Bioscience Laboratories, Meiji Seika Kaisha, Ltd., 788 Kayama, Odawara-shi, Kanagawa 250-0852, Japan
| | - Naomi Sumida
- Bioscience Laboratories, Meiji Seika Kaisha, Ltd., 788 Kayama, Odawara-shi, Kanagawa 250-0852, Japan
| | - Mervyn Bibb
- Department of Molecular Microbiology, John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom
| | - Koji Yanai
- Bioscience Laboratories, Meiji Seika Kaisha, Ltd., 788 Kayama, Odawara-shi, Kanagawa 250-0852, Japan
| |
Collapse
|
4
|
Abstract
DNA and RNA helicases are organized into six superfamilies of enzymes on the basis of sequence alignments, biochemical data, and available crystal structures. DNA helicases, members of which are found in each of the superfamilies, are an essential group of motor proteins that unwind DNA duplexes into their component single strands in a process that is coupled to the hydrolysis of nucleoside 5'-triphosphates. The purpose of this DNA unwinding is to provide nascent, single-stranded DNA (ssDNA) for the processes of DNA repair, replication, and recombination. Not surprisingly, DNA helicases share common biochemical properties that include the binding of single- and double-stranded DNA, nucleoside 5'-triphosphate binding and hydrolysis, and nucleoside 5'-triphosphate hydrolysis-coupled, polar unwinding of duplex DNA. These enzymes participate in every aspect of DNA metabolism due to the requirement for transient separation of small regions of the duplex genome into its component strands so that replication, recombination, and repair can occur. In Escherichia coli, there are currently twelve DNA helicases that perform a variety of tasks ranging from simple strand separation at the replication fork to more sophisticated processes in DNA repair and genetic recombination. In this chapter, the superfamily classification, role(s) in DNA metabolism, effects of mutations, biochemical analysis, oligomeric nature, and interacting partner proteins of each of the twelve DNA helicases are discussed.
Collapse
|
5
|
Nash RP, Habibi S, Cheng Y, Lujan SA, Redinbo MR. The mechanism and control of DNA transfer by the conjugative relaxase of resistance plasmid pCU1. Nucleic Acids Res 2010; 38:5929-43. [PMID: 20448025 PMCID: PMC2943615 DOI: 10.1093/nar/gkq303] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Bacteria expand their genetic diversity, spread antibiotic resistance genes, and obtain virulence factors through the highly coordinated process of conjugative plasmid transfer (CPT). A plasmid-encoded relaxase enzyme initiates and terminates CPT by nicking and religating the transferred plasmid in a sequence-specific manner. We solved the 2.3 Å crystal structure of the relaxase responsible for the spread of the resistance plasmid pCU1 and determined its DNA binding and nicking capabilities. The overall fold of the pCU1 relaxase is similar to that of the F plasmid and plasmid R388 relaxases. However, in the pCU1 structure, the conserved tyrosine residues (Y18,19,26,27) that are required for DNA nicking and religation were displaced up to 14 Å out of the relaxase active site, revealing a high degree of mobility in this region of the enzyme. In spite of this flexibility, the tyrosines still cleaved the nic site of the plasmid’s origin of transfer, and did so in a sequence-specific, metal-dependent manner. Unexpectedly, the pCU1 relaxase lacked the sequence-specific DNA binding previously reported for the homologous F and R388 relaxase enzymes, despite its high sequence and structural similarity with both proteins. In summary, our work outlines novel structural and functional aspects of the relaxase-mediated conjugative transfer of plasmid pCU1.
Collapse
Affiliation(s)
- Rebekah Potts Nash
- Department of Chemistry, University of North Carolina, Chapel Hill, CB 3290 and Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, CB 7260, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
6
|
Larkin C, Haft RJF, Harley MJ, Traxler B, Schildbach JF. Roles of active site residues and the HUH motif of the F plasmid TraI relaxase. J Biol Chem 2007; 282:33707-33713. [PMID: 17890221 DOI: 10.1074/jbc.m703210200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacterial conjugation, transfer of a single strand of a conjugative plasmid between bacteria, requires sequence-specific single-stranded DNA endonucleases called relaxases or nickases. Relaxases contain an HUH (His-hydrophobe-His) motif, part of a three-His cluster that binds a divalent cation required for the cleavage reaction. Crystal structures of the F plasmid TraI relaxase domain, with and without bound single-stranded DNA, revealed an extensive network of interactions involving HUH and other residues. Here we study the roles of these residues in TraI function. Whereas substitutions for the three His residues alter metal-binding properties of the protein, the same substitution at each position elicits different effects, indicating that the residues contribute asymmetrically to metal binding. Substitutions for a conserved Asp that interacts with one HUH His demonstrate that the Asp modulates metal affinity despite its distance from the metal. The bound metal enhances binding of ssDNA to the protein, consistent with a role for the metal in positioning the scissile phosphate for cleavage. Most substitutions tested caused significantly reduced in vitro cleavage activities and in vivo transfer efficiencies. In summary, the results suggest that the metal-binding His cluster in TraI is a finely tuned structure that achieves a sufficient affinity for metal while avoiding the unfavorable electrostatics that would result from placing an acidic residue near the scissile phosphate of the bound ssDNA.
Collapse
Affiliation(s)
- Christopher Larkin
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218
| | - Rembrandt J F Haft
- Department of Microbiology, University of Washington, Seattle, Washington 98195
| | - Matthew J Harley
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218
| | - Beth Traxler
- Department of Microbiology, University of Washington, Seattle, Washington 98195
| | - Joel F Schildbach
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218.
| |
Collapse
|
7
|
Robertson AB, Pattishall SR, Gibbons EA, Matson SW. MutL-catalyzed ATP hydrolysis is required at a post-UvrD loading step in methyl-directed mismatch repair. J Biol Chem 2006; 281:19949-59. [PMID: 16690604 DOI: 10.1074/jbc.m601604200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Methyl-directed mismatch repair is a coordinated process that ensures replication fidelity and genome integrity by resolving base pair mismatches and insertion/deletion loops. This post-replicative event involves the activities of several proteins, many of which appear to be regulated by MutL. MutL interacts with and modulates the activities of MutS, MutH, UvrD, and perhaps other proteins. The purified protein catalyzes a slow ATP hydrolysis reaction that is essential for its role in mismatch repair. However, the role of the ATP hydrolysis reaction is not understood. We have begun to address this issue using two point mutants: MutL-E29A, which binds nucleotide but does not catalyze ATP hydrolysis, and MutL-D58A, which does not bind nucleotide. As expected, both mutants failed to complement the loss of MutL in genetic assays. Purified MutL-E29A protein interacted with MutS and stimulated the MutH-catalyzed nicking reaction in a mismatch-dependent manner. Importantly, MutL-E29A stimulated the loading of UvrD on model substrates. In fact, stimulation of UvrD-catalyzed unwinding was more robust with MutL-E29A than the wild-type protein. MutL-D58A, on the other hand, did not interact with MutS, stimulate MutH-catalyzed nicking, or stimulate the loading of UvrD. We conclude that ATP-bound MutL is required for the incision steps associated with mismatch repair and that ATP hydrolysis by MutL is required for a step in the mismatch repair pathway subsequent to the loading of UvrD and may serve to regulate helicase loading.
Collapse
Affiliation(s)
- Adam B Robertson
- Department of Biology, University of North Carolina at Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
8
|
Matson SW, Ragonese H. The F-plasmid TraI protein contains three functional domains required for conjugative DNA strand transfer. J Bacteriol 2005; 187:697-706. [PMID: 15629940 PMCID: PMC543555 DOI: 10.1128/jb.187.2.697-706.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The F-plasmid-encoded TraI protein, also known as DNA helicase I, is a bifunctional protein required for conjugative DNA transfer. The enzyme catalyzes two distinct but functionally related reactions required for the DNA processing events associated with conjugation: the site- and strand-specific transesterification (relaxase) reaction that provides the nick required to initiate strand transfer and a processive 5'-to-3' helicase reaction that provides the motive force for strand transfer. Previous studies have identified the relaxase domain, which encompasses the first approximately 310 amino acids of the protein. The helicase-associated motifs lie between amino acids 990 and 1450. The function of the region between amino acids 310 and 990 and the region from amino acid 1450 to the C-terminal end is unknown. A protein lacking the C-terminal 252 amino acids (TraIDelta252) was constructed and shown to have essentially wild-type levels of transesterase and helicase activity. In addition, the protein was capable of a functional interaction with other components of the minimal relaxosome. However, TraIDelta252 was not able to support conjugative DNA transfer in genetic complementation experiments. We conclude that TraIDelta252 lacks an essential C-terminal domain that is required for DNA transfer. We speculate this domain may be involved in essential protein-protein interactions with other components of the DNA transfer machinery.
Collapse
Affiliation(s)
- Steven W Matson
- Department of Biology, CB#3280, Coker Hall, University of North Carolina, Chapel Hill, NC 27599-3280, USA.
| | | |
Collapse
|
9
|
Lu J, Zhao W, Frost LS. Mutational analysis of TraM correlates oligomerization and DNA binding with autoregulation and conjugative DNA transfer. J Biol Chem 2004; 279:55324-33. [PMID: 15509578 DOI: 10.1074/jbc.m409352200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
F plasmid TraM, an autoregulatory homotetramer, is essential for F plasmid bacterial conjugative transfer, one of the major mechanisms for horizontal gene dissemination. TraM cooperatively binds to three sites (sbmA, -B, and -C) near the origin of transfer in the F plasmid. To examine whether or not tetramerization of TraM is required for autoregulation and F conjugation, we used a two-plasmid system to screen for autoregulation-defective traM mutants generated by random PCR mutagenesis. A total of 72 missense mutations in TraM affecting autoregulation were selected, all of which also resulted in a loss of TraM function during F conjugation. Mutational analysis of TraM defined three regions important for F conjugation, including residues 3-10 (region I), 31-53 (region II), and 80-121 (region III); in addition, residues 3-47 were also important for the immunoreactivity of TraM. Biochemical analysis of mutant proteins indicated that region I defined a DNA binding domain that was not involved in tetramerization, whereas regions II and III were important for both tetramerization and efficient DNA binding. Mutations in region III affected the cooperativity of binding of TraM to sbmA, -B, and -C. Our results suggest that tetramerization is important for specific DNA binding, which, in turn, is essential for traM autoregulation and F conjugation. These findings support the hypothesis that TraM functions as a "signaling" factor that triggers DNA transport during F conjugation.
Collapse
Affiliation(s)
- Jun Lu
- Department of Biological Sciences, CW405 Biological Sciences Building, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | | | | |
Collapse
|
10
|
Csitkovits VC, Dermić D, Zechner EL. Concomitant reconstitution of TraI-catalyzed DNA transesterase and DNA helicase activity in vitro. J Biol Chem 2004; 279:45477-84. [PMID: 15322083 DOI: 10.1074/jbc.m407970200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TraI protein of plasmid R1 possesses two activities, a DNA transesterase and a highly processive 5'-3' DNA helicase, which are essential for bacterial conjugation. Regulation of the functional domains of the enzyme is poorly understood. TraI cleaves supercoiled oriT DNA with site and strand specificity in vitro but fails to initiate unwinding from this site (nic). The helicase requires an extended region of adjacent single-stranded DNA to enter the duplex, yet interaction of purified TraI with oriT DNA alone or as an integral part of the IncF relaxosome does not melt sufficient duplex to load the helicase. This study aims to gain insights into the controlled initiation of both TraI-catalyzed activities. Linear double-stranded DNA substrates with a central region of sequence heterogeneity were used to trap defined lengths of R1 oriT sequence in unwound conformation. Concomitant reconstitution of TraI DNA transesterase and helicase activities was observed. Efficient helicase activity was measured on substrates containing 60 bases of open duplex but not on substrates containing < or =30 bases in open conformation. The additional presence of auxiliary DNA-binding proteins TraY and Escherichia coli integration host factor did not stimulate TraI activities on these substrates. This model system offers a novel approach to investigate factors controlling helicase loading and the directionality of DNA unwinding from nic.
Collapse
Affiliation(s)
- Vanessa C Csitkovits
- Institut für Molekulare Biowissenschaften, Karl-Franzens Universität Graz, Universitätsplatz 2, A-8010 Graz, Austria
| | | | | |
Collapse
|
11
|
Stern JC, Anderson BJ, Owens TJ, Schildbach JF. Energetics of the sequence-specific binding of single-stranded DNA by the F factor relaxase domain. J Biol Chem 2004; 279:29155-9. [PMID: 15123728 DOI: 10.1074/jbc.m402965200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transfer of conjugative plasmids between bacteria requires the activity of relaxases or mobilization proteins. These proteins nick the plasmid in a site- and strand-specific manner prior to transfer of the cut strand from donor to recipient. TraI36, the relaxase domain of TraI from plasmid F factor, binds a single-stranded DNA (ssDNA) oligonucleotide containing an F factor sequence with high affinity and sequence specificity. To better understand the energetics of this interaction, we examined the temperature, salt, and pH dependence of TraI36 recognition. Binding is entropically driven below 25 degrees C and enthalpically driven at higher temperatures. van't Hoff analysis yields an estimated deltaC(P)(0) of binding (-3300 cal x mol(-1) x K(-1)) that is larger and more negative than that observed for most double-stranded DNA (dsDNA)-binding proteins. Based on analyses of circular dichroism data and the crystal structure of the unliganded protein, we attribute the deltaC(P)(0) to both burial of hydrophobic surface area and coupled folding and binding of the protein. The salt dependence of the binding indicates that several ssDNA phosphates are buried in the complex, and the pH dependence of the binding suggests that some of these ssDNA phosphates form ionic interactions with basic residues of the protein. Although data are available for relatively few sequence-specific ssDNA-binding proteins, sufficient differences exist between TraI36 and other proteins to indicate that, like dsDNA-binding proteins, ssDNA-binding proteins use different motifs and combinations of forces to achieve specific recognition.
Collapse
Affiliation(s)
- Jennifer C Stern
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | |
Collapse
|
12
|
Datta S, Larkin C, Schildbach JF. Structural Insights into Single-Stranded DNA Binding and Cleavage by F Factor TraI. Structure 2003; 11:1369-79. [PMID: 14604527 DOI: 10.1016/j.str.2003.10.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Conjugative plasmid transfer between bacteria disseminates antibiotic resistance and diversifies prokaryotic genomes. Relaxases, proteins essential for conjugation, cleave one plasmid strand sequence specifically prior to transfer. Cleavage occurs through a Mg(2+)-dependent transesterification involving a tyrosyl hydroxyl and a DNA phosphate. The structure of the F plasmid TraI relaxase domain, described here, is a five-strand beta sheet flanked by alpha helices. The protein resembles replication initiator protein AAV-5 Rep but is circularly permuted, yielding a different topology. The beta sheet forms a binding cleft lined with neutral, nonaromatic residues, unlike most single-stranded DNA binding proteins which use aromatic and charged residues. The cleft contains depressions, suggesting base recognition occurs in a knob-into-hole fashion. Unlike most nucleases, three histidines but no acidic residues coordinate a Mg(2+) located near the catalytic tyrosine. The full positive charge on the Mg(2+) and the architecture of the active site suggest multiple roles for Mg(2+) in DNA cleavage.
Collapse
Affiliation(s)
- Saumen Datta
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | | | | |
Collapse
|
13
|
Harley MJ, Schildbach JF. Swapping single-stranded DNA sequence specificities of relaxases from conjugative plasmids F and R100. Proc Natl Acad Sci U S A 2003; 100:11243-8. [PMID: 14504391 PMCID: PMC208742 DOI: 10.1073/pnas.2035001100] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2003] [Indexed: 11/18/2022] Open
Abstract
Conjugative plasmid transfer is an important mechanism for diversifying prokaryotic genomes and disseminating antibiotic resistance. Relaxases are conjugative plasmid-encoded proteins essential for plasmid transfer. Relaxases bind and cleave one plasmid strand site- and sequence-specifically before transfer of the cleaved strand. TraI36, a domain of F plasmid TraI that contains relaxase activity, binds a plasmid sequence in single-stranded form with subnanomolar KD and high sequence specificity. Despite 91% amino acid sequence identity, TraI36 domains from plasmids F and R100 discriminate between binding sites. The binding sites differ by 2 of 11 bases, but both proteins bind their cognate site with three orders of magnitude higher affinity than the other site. To identify specificity determinants, we generated variants having R100 amino acids in the F TraI36 background. Although most retain F specificity, the Q193R/R201Q variant binds the R100 site with 10-fold greater affinity than the F site. The reverse switch (R193Q/Q201R) in R100 TraI36 confers a wild-type F specificity on the variant. Nonadditivity of individual amino acid and base contributions to recognition suggests that the specificity difference derives from multiple interactions. The F TraI36 crystal structure shows positions 193 and 201 form opposite sides of a pocket within the binding cleft, suggesting binding involves knob-into-hole interactions. Specificity is presumably modulated by altering the composition of the pocket. Our results demonstrate that F-like relaxases can switch between highly sequence-specific recognition of different sequences with minimal amino acid substitution.
Collapse
Affiliation(s)
- Matthew J Harley
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | | |
Collapse
|
14
|
Csitkovits VC, Zechner EL. Extent of single-stranded DNA required for efficient TraI helicase activity in vitro. J Biol Chem 2003; 278:48696-703. [PMID: 14506243 DOI: 10.1074/jbc.m310025200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The IncF plasmid protein TraI functions during bacterial conjugation as a site- and strand-specific DNA transesterase and a highly processive 5' to 3' DNA helicase. The N-terminal DNA transesterase domain of TraI localizes the protein to nic and cleaves this site within the plasmid transfer origin. In the cell the C-terminal DNA helicase domain of TraI is essential for driving the 5' to 3' unwinding of plasmid DNA from nic to provide the strand destined for transfer. In vitro, however, purified TraI protein cannot enter and unwind nicked plasmid DNA and instead requires a 5' tail of single-stranded DNA at the duplex junction. In this study we evaluate the extent of single-stranded DNA adjacent to the duplex that is required for efficient TraI-catalyzed DNA unwinding in vitro. A series of linear partial duplex DNA substrates containing a central stretch of single-stranded DNA of defined length was created and its structure verified. We found that substrates containing >or=27 nucleotides of single-stranded DNA 5' to the duplex were unwound efficiently by TraI, whereas substrates containing 20 or fewer nucleotides were not. These results imply that during conjugation localized unwinding of >20 nucleotides at nic is necessary to initiate unwinding of plasmid DNA strands.
Collapse
Affiliation(s)
- Vanessa C Csitkovits
- Institut für Molekularbiologie, Biochemie und Mikrobiologie, Karl-Franzens Universität Graz, Universitätsplatz 2, 8010 Graz, Austria
| | | |
Collapse
|
15
|
Street LM, Harley MJ, Stern JC, Larkin C, Williams SL, Miller DL, Dohm JA, Rodgers ME, Schildbach JF. Subdomain organization and catalytic residues of the F factor TraI relaxase domain. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1646:86-99. [PMID: 12637015 DOI: 10.1016/s1570-9639(02)00553-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
TraI from conjugative plasmid F factor is both a "relaxase" that sequence-specifically binds and cleaves single-stranded DNA (ssDNA) and a helicase that unwinds the plasmid during transfer. Using limited proteolysis of a TraI fragment, we generated a 36-kDa fragment (TraI36) retaining TraI ssDNA binding specificity and relaxase activity but lacking the ssDNA-dependent ATPase activity of the helicase. Further proteolytic digestion of TraI36 generates stable N-terminal 26-kDa (TraI26) and C-terminal 7-kDa fragments. Both TraI36 and TraI26 are stably folded and unfold in a highly cooperative manner, but TraI26 lacks affinity for ssDNA. Mutational analysis of TraI36 indicates that N-terminal residues Tyr(16) and Tyr(17) are required for efficient ssDNA cleavage but not for high-affinity ssDNA binding. Although the TraI36 N-terminus provides the relaxase catalytic residues, both N- and C-terminal structural domains participate in binding, suggesting that both domains combine to form the TraI relaxase active site.
Collapse
Affiliation(s)
- Lara M Street
- Department of Biology, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
All eukaryotic DNA transposons reported so far belong to a single category of elements transposed by the so-called "cut-and-paste" mechanism. Here, we report a previously unknown category of eukaryotic DNA transposons, Helitron, which transpose by rolling-circle replication. Autonomous Helitrons encode a 5'-to-3' DNA helicase and nuclease/ligase similar to those encoded by known rolling-circle replicons. Helitron-like transposons have conservative 5'-TC and CTRR-3' termini and do not have terminal inverted repeats. They contain 16- to 20-bp hairpins separated by 10--12 nucleotides from the 3'-end and transpose precisely between the 5'-A and T-3', with no modifications of the AT target sites. Together with their multiple diverged nonautonomous descendants, Helitrons constitute approximately 2% of both the Arabidopsis thaliana and Caenorhabditis elegans genomes and also colonize the Oriza sativa genome. Sequence conservation suggests that Helitrons continue to be transposed.
Collapse
Affiliation(s)
- V V Kapitonov
- Genetic Information Research Institute, 2081 Landings Drive, Mountain View, CA 94043, USA.
| | | |
Collapse
|
17
|
Odegrip R, Haggård-Ljungquist E. The two active-site tyrosine residues of the a protein play non-equivalent roles during initiation of rolling circle replication of bacteriophage p2. J Mol Biol 2001; 308:147-63. [PMID: 11327759 DOI: 10.1006/jmbi.2001.4607] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The A protein of bacteriophage P2 initiates rolling circle DNA replication by a single-stranded cut at the origin. Two well-conserved tyrosine residues, interspaced by three amino acid residues, are required for the cleavage-joining activity of the protein. The functional relationship between these tyrosine residues was investigated by site-directed mutagenesis. We found that the two tyrosine residues located in the presumed catalytic site of P2 A play non-equivalent functional roles. Tyrosine residue 454 is superior in nicking single-stranded DNA compared to tyrosine residue 450, while both could promote joining at equal efficiency. Specific peptide-oligonucleotide adducts after cleavage reaction and protease digestion could be observed for both tyrosine residues. We propose that tyrosine 454 initiates replication and that tyrosine 450 is able to cleave the DNA only when tyrosine 454 is covalently joined to DNA, thereby reinitiating replication. Also, the involvement of divalent cations in the catalytic activity of P2 A was investigated. While the cleavage reaction was strongly discriminating between different divalent cations, primarily prefering magnesium, the joining reaction showed the same efficiency independently of what divalent cation was provided. This phenomenon could reflect conformational changes of the protein upon binding to DNA. Finally, we found that a large part of the C terminus but not the N terminus is dispensable for initiation of replication both in vivo and in vitro.
Collapse
Affiliation(s)
- R Odegrip
- Department of Genetics, Stockholm University, Stockholm, S-106 91, Sweden
| | | |
Collapse
|
18
|
Karl W, Bamberger M, Zechner EL. Transfer protein TraY of plasmid R1 stimulates TraI-catalyzed oriT cleavage in vivo. J Bacteriol 2001; 183:909-14. [PMID: 11208788 PMCID: PMC94957 DOI: 10.1128/jb.183.3.909-914.2001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effect of TraY protein on TraI-catalyzed strand scission at the R1 transfer origin (oriT) in vivo was investigated. As expected, the cleavage reaction was not detected in Escherichia coli cells expressing tral and the integration host factor (IHF) in the absence of other transfer proteins. The TraM dependence of strand scission was found to be inversely correlated with the presence of TraY. Thus, the TraY and TraM proteins could each enhance cleaving activity at oriT in the absence of the other. In contrast, no detectable intracellular cleaving activity was exhibited by TraI in an IHF mutant strain despite the additional presence of both TraM and TraY. An essential role for IHF in this reaction in vivo is, therefore, implied. Mobilization experiments employing recombinant R1 oriT constructions and a heterologous conjugative helper plasmid were used to investigate the independent contributions of TraY and TraM to the R1 relaxosome during bacterial conjugation. In accordance with earlier observations, traY was dispensable for mobilization in the presence of traM, but mobilization did not occur in the absence of both traM and traY. Interestingly, although the cleavage assays demonstrate that TraM and TraY independently promote strand scission in vivo, TraM remained essential for mobilization of the R1 origin even in the presence of TraY. These findings suggest that, whereas TraY and TraM function may overlap to a certain extent in the R1 relaxosome, TraM additionally performs a second function that is essential for successful conjugative transmission of plasmid DNA.
Collapse
Affiliation(s)
- W Karl
- Institut für Molekularbiologie, Biochemie und Mikrobiologie, Karl-Franzens-Universität Graz, A-8010 Graz, Austria
| | | | | |
Collapse
|
19
|
Matson SW, Sampson JK, Byrd DR. F plasmid conjugative DNA transfer: the TraI helicase activity is essential for DNA strand transfer. J Biol Chem 2001; 276:2372-9. [PMID: 11054423 DOI: 10.1074/jbc.m008728200] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The product of the Escherichia coli F plasmid traI gene is required for DNA transfer via bacterial conjugation. This bifunctional protein catalyzes the unwinding of duplex DNA and is a sequence-specific DNA transesterase. The latter activity provides the site- and strand-specific nick required to initiate DNA transfer. To address the role of the TraI helicase activity in conjugative DNA transfer traI mutants were constructed and their function in DNA transfer was evaluated using genetic and biochemical methods. A traI deletion/insertion mutant was transfer-defective as expected. A traI C-terminal deletion that removed the helicase-associated motifs was also transfer-defective despite the fact that the region of traI encoding the transesterase activity was intact. Biochemical studies demonstrated that the N-terminal domain was sufficient to catalyze oriT-dependent transesterase activity. Thus, a functional transesterase was not sufficient to support DNA transfer. Finally, a point mutant, TraI-K998M, that lacked detectable helicase activity was characterized. This protein catalyzed oriT-dependent transesterase activity in vitro and in vivo but failed to complement a traI deletion strain in conjugative DNA transfer assays. Thus, both the transesterase and helicase activities of TraI are essential for DNA strand transfer.
Collapse
Affiliation(s)
- S W Matson
- Department of Biology and the Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill 27599, USA.
| | | | | |
Collapse
|
20
|
Chain PS, Hernandez-Lucas I, Golding B, Finan TM. oriT-directed cloning of defined large regions from bacterial genomes: identification of the Sinorhizobium meliloti pExo megaplasmid replicator region. J Bacteriol 2000; 182:5486-94. [PMID: 10986253 PMCID: PMC110993 DOI: 10.1128/jb.182.19.5486-5494.2000] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have developed a procedure to directly clone large fragments from the genome of the soil bacterium Sinorhizobium meliloti. Specific regions to be cloned are first flanked by parallel copies of an origin of transfer (oriT) together with a plasmid replication origin capable of replicating large clones in Escherichia coli but not in the target organism. Supplying transfer genes in trans specifically transfers the oriT-flanked region, and in this process, site-specific recombination at the oriT sites results in a plasmid carrying the flanked region of interest that can replicate in E. coli from the inserted origin of replication (in this case, the F origin carried on a BAC cloning vector). We have used this procedure with the oriT of the plasmid RK2 to clone contiguous fragments of 50, 60, 115, 140, 240, and 200 kb from the S. meliloti pExo megaplasmid. Analysis of the 60-kb fragment allowed us to identify a 9-kb region capable of autonomous replication in the bacterium Agrobacterium tumefaciens. The nucleotide sequence of this fragment revealed a replicator region including homologs of the repA, repB, and repC genes from other Rhizobiaceae, which encode proteins involved in replication and segregation of plasmids in many organisms.
Collapse
Affiliation(s)
- P S Chain
- Department of Biology, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| | | | | | | |
Collapse
|
21
|
Fekete RA, Frost LS. Mobilization of chimeric oriT plasmids by F and R100-1: role of relaxosome formation in defining plasmid specificity. J Bacteriol 2000; 182:4022-7. [PMID: 10869081 PMCID: PMC94588 DOI: 10.1128/jb.182.14.4022-4027.2000] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Cleavage at the F plasmid nic site within the origin of transfer (oriT) requires the F-encoded proteins TraY and TraI and the host-encoded protein integration host factor in vitro. We confirm that F TraY, but not F TraM, is required for cleavage at nic in vivo. Chimeric plasmids were constructed which contained either the entire F or R100-1 oriT regions or various combinations of nic, TraY, and TraM binding sites, in addition to the traM gene. The efficiency of cleavage at nic and the frequency of mobilization were assayed in the presence of F or R100-1 plasmids. The ability of these chimeric plasmids to complement an F traM mutant or affect F transfer via negative dominance was also measured using transfer efficiency assays. In cases where cleavage at nic was detected, R100-1 TraI was not sensitive to the two-base difference in sequence immediately downstream of nic, while F TraI was specific for the F sequence. Plasmid transfer was detected only when TraM was able to bind to its cognate sites within oriT. High-affinity binding of TraY in cis to oriT allowed detection of cleavage at nic but was not required for efficient mobilization. Taken together, our results suggest that stable relaxosomes, consisting of TraI, -M, and -Y bound to oriT are preferentially targeted to the transfer apparatus (transferosome).
Collapse
Affiliation(s)
- R A Fekete
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
22
|
Schildbach JF, Robinson CR, Sauer RT. Biophysical characterization of the TraY protein of Escherichia coli F factor. J Biol Chem 1998; 273:1329-33. [PMID: 9430665 DOI: 10.1074/jbc.273.3.1329] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The TraY protein is required for efficient bacterial conjugation by Escherichia coli F factor. TraY has two functional roles: participating in the "relaxosome," a protein-DNA complex that nicks one strand of the F factor plasmid, and up-regulating transcription from the traYI promoter. The traY gene was cloned, and the TraY protein was expressed, purified, and characterized. TraY has a mixed alpha-helix and beta-sheet secondary structure as judged by its circular dichroism spectrum, is monomeric, and undergoes reversible urea denaturation with delta Gu = 6 kcal/mol at 25 degrees C. The kinetics of protein unfolding and refolding, as measured by changes in fluorescence, are complex, suggesting the presence of intermediates or of heterogeneity in the folding reaction. TraY has been classified as a member of the ribbon-helix-helix family of transcription factors but is unusual in appearing to have tandem repeats of the beta alpha alpha motif in the same polypeptide chain. The data presented here show that folding and assembly of the functional (beta alpha alpha)2 unit occurs as an intramolecular reaction and not by cross-folding between different polypeptide chains.
Collapse
Affiliation(s)
- J F Schildbach
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA.
| | | | | |
Collapse
|
23
|
Mahmood A, Kimura T, Takenaka M, Yoshida K. The construction of novel mobilizable YAC plasmids and their behavior during trans-kingdom conjugation between bacteria and yeasts. GENETIC ANALYSIS : BIOMOLECULAR ENGINEERING 1996; 13:25-31. [PMID: 8880145 DOI: 10.1016/1050-3862(95)00146-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Trans-kingdom conjugation is an easy and efficient method for gene transfer from prokaryotes to eukaryotes since it does not require DNA extraction and purification. We constructed novel mobilizable plasmids pAY-YAC-B and pAY-YAC-E. The origin of conjugal transfer (oriT) was inserted at two different positions, pAY-YAC-B contains oriT region in between two telomeres whereas pAY-YAC-E has oriT at the cloning site of pYAC4. By conjugation, both plasmids were successfully transferred from E. coli to S. cerevisiae and S. kluyveri yeasts with the aid of helper plasmid pRH220 which harbors mob and tra genes. The plasmids were transferred more efficiently in S. cerevisiae compared to S. kluyveri. The analyses by restriction enzyme digestion and Southern hybridization indicated that both plasmids maintained their original structure and size in transconjugant yeasts, therefore, reflecting the faithful nicking and subsequent resealing of plasmids during conjugation. The comparison between conjugative transfer and transformation has also been performed and discussed.
Collapse
Affiliation(s)
- A Mahmood
- Department of Biological Science, Faculty of Science, Hiroshima University, Japan
| | | | | | | |
Collapse
|
24
|
Pansegrau W, Lanka E. Enzymology of DNA transfer by conjugative mechanisms. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1996; 54:197-251. [PMID: 8768076 DOI: 10.1016/s0079-6603(08)60364-5] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- W Pansegrau
- Max-Planck-Institut für Molekulare Genetik, Berlin, Germany
| | | |
Collapse
|
25
|
Howard MT, Nelson WC, Matson SW. Stepwise Assembly of a Relaxosome at the F Plasmid Origin of Transfer. J Biol Chem 1995. [DOI: 10.1074/jbc.270.47.28381] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
26
|
Nelson WC, Howard MT, Sherman JA, Matson SW. The traY Gene Product and Integration Host Factor Stimulate Escherichia coli DNA Helicase I-catalyzed Nicking at the F Plasmid oriT. J Biol Chem 1995. [DOI: 10.1074/jbc.270.47.28374] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|