1
|
Ruperti F, Dzieciatkowska M, Pankey MS, Asensio CS, Anselmetti D, Fernàndez-Busquets X, Nichols SA. Proteomic analysis of the sponge Aggregation Factor implicates an ancient toolkit for allorecognition and adhesion in animals. Proc Natl Acad Sci U S A 2024; 121:e2409125121. [PMID: 39693348 DOI: 10.1073/pnas.2409125121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/12/2024] [Indexed: 12/20/2024] Open
Abstract
The discovery that sponges (Porifera) can fully regenerate from aggregates of dissociated cells launched them as one of the earliest experimental models to study the evolution of cell adhesion and allorecognition in animals. This process depends on an extracellular glycoprotein complex called the Aggregation Factor (AF), which is composed of proteins thought to be unique to sponges. We used quantitative proteomics to identify additional AF components and interacting proteins in the classical model, Clathria prolifera, and compared them to proteins involved in cell interactions in Bilateria. Our results confirm MAFp3/p4 proteins as the primary components of the AF but implicate related proteins with calx-beta and wreath domains as additional components. Using AlphaFold, we unveiled close structural similarities of AF components to protein domains in other animals, previously masked by the mutational decay of sequence similarity. The wreath domain, believed to be unique to the AF, was predicted to contain a central beta-sandwich of the same organization as the vWFD domain (also found in extracellular, gel-forming glycoproteins in other animals). Additionally, many copurified proteins share a conserved C-terminus, containing divergent immunoglobulin (Ig) and Fn3 domains predicted to serve as an AF-interaction interface. One of these proteins, MAF-associated protein 1, resembles Ig superfamily cell adhesion molecules and we hypothesize that it may function to link the AF to the surface of cells. Our results highlight the existence of an ancient toolkit of conserved protein domains regulating cell-cell and cell-extracellular matrix protein interactions in all animals, and likely reflect a common origin of cell adhesion and allorecognition.
Collapse
Affiliation(s)
- Fabian Ruperti
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045
| | - M Sabrina Pankey
- Department of Molecular, Cellular and Biomedical Science, University of New Hampshire, Durham, NH 03824
| | - Cedric S Asensio
- Department of Biological Sciences, University of Denver, Denver, CO 80208
| | - Dario Anselmetti
- Nanomalaria Group, Faculty of Physics, Experimental Biophysics, Bielefeld University, Bielefeld 33501, Germany
| | - Xavier Fernàndez-Busquets
- Nanomalaria Group, Barcelona Institute for Global Health, Hospital Clínic Universitat de Barcelona, Barcelona 08036, Spain
- Nanomalaria Group, Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Scott A Nichols
- Department of Biological Sciences, University of Denver, Denver, CO 80208
| |
Collapse
|
2
|
Deng S. The origin of genetic and metabolic systems: Evolutionary structuralinsights. Heliyon 2023; 9:e14466. [PMID: 36967965 PMCID: PMC10036676 DOI: 10.1016/j.heliyon.2023.e14466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/16/2023] Open
Abstract
DNA is derived from reverse transcription and its origin is related to reverse transcriptase, DNA polymerase and integrase. The gene structure originated from the evolution of the first RNA polymerase. Thus, an explanation of the origin of the genetic system must also explain the evolution of these enzymes. This paper proposes a polymer structure model, termed the stable complex evolution model, which explains the evolution of enzymes and functional molecules. Enzymes evolved their functions by forming locally tightly packed complexes with specific substrates. A metabolic reaction can therefore be considered to be the result of adaptive evolution in this way when a certain essential molecule is lacking in a cell. The evolution of the primitive genetic and metabolic systems was thus coordinated and synchronized. According to the stable complex model, almost all functional molecules establish binding affinity and specific recognition through complementary interactions, and functional molecules therefore have the nature of being auto-reactive. This is thermodynamically favorable and leads to functional duplication and self-organization. Therefore, it can be speculated that biological systems have a certain tendency to maintain functional stability or are influenced by an inherent selective power. The evolution of dormant bacteria may support this hypothesis, and inherent selectivity can be unified with natural selection at the molecular level.
Collapse
Affiliation(s)
- Shaojie Deng
- Chongqing (Fengjie) Municipal Bureau of Planning and Natural Resources, China
| |
Collapse
|
3
|
Alex A, Antunes A. Genus-wide comparison of Pseudovibrio bacterial genomes reveal diverse adaptations to different marine invertebrate hosts. PLoS One 2018; 13:e0194368. [PMID: 29775460 PMCID: PMC5959193 DOI: 10.1371/journal.pone.0194368] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 03/01/2018] [Indexed: 11/18/2022] Open
Abstract
Bacteria belonging to the genus Pseudovibrio have been frequently found in association with a wide variety of marine eukaryotic invertebrate hosts, indicative of their versatile and symbiotic lifestyle. A recent comparison of the sponge-associated Pseudovibrio genomes has shed light on the mechanisms influencing a successful symbiotic association with sponges. In contrast, the genomic architecture of Pseudovibrio bacteria associated with other marine hosts has received less attention. Here, we performed genus-wide comparative analyses of 18 Pseudovibrio isolated from sponges, coral, tunicates, flatworm, and seawater. The analyses revealed a certain degree of commonality among the majority of sponge- and coral-associated bacteria. Isolates from other marine invertebrate host, tunicates, exhibited a genetic repertoire for cold adaptation and specific metabolic abilities including mucin degradation in the Antarctic tunicate-associated bacterium Pseudovibrio sp. Tun.PHSC04_5.I4. Reductive genome evolution was simultaneously detected in the flatworm-associated bacteria and the sponge-associated bacterium P. axinellae AD2, through the loss of major secretion systems (type III/VI) and virulence/symbioses factors such as proteins involved in adhesion and attachment to the host. Our study also unraveled the presence of a CRISPR-Cas system in P. stylochi UST20140214-052 a flatworm-associated bacterium possibly suggesting the role of CRISPR-based adaptive immune system against the invading virus particles. Detection of mobile elements and genomic islands (GIs) in all bacterial members highlighted the role of horizontal gene transfer for the acquisition of novel genetic features, likely enhancing the bacterial ecological fitness. These findings are insightful to understand the role of genome diversity in Pseudovibrio as an evolutionary strategy to increase their colonizing success across a wide range of marine eukaryotic hosts.
Collapse
Affiliation(s)
- Anoop Alex
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- * E-mail: (AA); (AA)
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- * E-mail: (AA); (AA)
| |
Collapse
|
4
|
Gardères J, Domart-Coulon I, Marie A, Hamer B, Batel R, Müller WEG, Bourguet-Kondracki ML. Purification and partial characterization of a lectin protein complex, the clathrilectin, from the calcareous sponge Clathrina clathrus. Comp Biochem Physiol B Biochem Mol Biol 2016; 200:17-27. [PMID: 27113336 DOI: 10.1016/j.cbpb.2016.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/14/2016] [Accepted: 04/20/2016] [Indexed: 11/26/2022]
Abstract
Carbohydrate-binding proteins were purified from the marine calcareous sponge Clathrina clathrus via affinity chromatography on lactose and N-acetyl glucosamine-agarose resins. Proteomic analysis of acrylamide gel separated protein subunits obtained in reducing conditions pointed out several candidates for lectins. Based on amino-acid sequence similarity, two peptides displayed homology with the jack bean lectin Concanavalin A, including a conserved domain shared by proteins in the L-type lectin superfamily. An N-acetyl glucosamine - binding protein complex, named clathrilectin, was further purified via gel filtration chromatography, bioguided with a diagnostic rabbit erythrocyte haemagglutination assay, and its activity was found to be calcium dependent. Clathrilectin, a protein complex of 3200kDa estimated by gel filtration, is composed of monomers with apparent molecular masses of 208 and 180kDa estimated on 10% SDS-PAGE. Nine internal peptides were identified using proteomic analyses, and compared to protein libraries from the demosponge Amphimedon queenslandica and a calcareous sponge Sycon sp. from the Adriatic Sea. The clathrilectin is the first lectin isolated from a calcareous sponge and displays homologies with predicted sponge proteins potentially involved in cell aggregation and interaction with bacteria.
Collapse
Affiliation(s)
- Johan Gardères
- Unité Molécules de Communication et Adaptation des Microorganismes, UMR 7245 CNRS-MNHN, Sorbonne Universités, Muséum National d'Histoire Naturelle, CP 54, 57 rue Cuvier, 75005 Paris, France; Laboratory for Marine Molecular Biology, Center for Marine Research, Ruđer Bošković Institute, G. Paliaga 5, 52210 Rovinj, Croatia
| | - Isabelle Domart-Coulon
- Unité Molécules de Communication et Adaptation des Microorganismes, UMR 7245 CNRS-MNHN, Sorbonne Universités, Muséum National d'Histoire Naturelle, CP 54, 57 rue Cuvier, 75005 Paris, France
| | - Arul Marie
- Unité Molécules de Communication et Adaptation des Microorganismes, UMR 7245 CNRS-MNHN, Sorbonne Universités, Muséum National d'Histoire Naturelle, CP 54, 57 rue Cuvier, 75005 Paris, France
| | - Bojan Hamer
- Laboratory for Marine Molecular Biology, Center for Marine Research, Ruđer Bošković Institute, G. Paliaga 5, 52210 Rovinj, Croatia
| | - Renato Batel
- Laboratory for Marine Molecular Biology, Center for Marine Research, Ruđer Bošković Institute, G. Paliaga 5, 52210 Rovinj, Croatia
| | - Werner E G Müller
- ERC Advanced Investigator Grant Research Group at Institute for Physiological Chemistry, University Medical Center of Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | - Marie-Lise Bourguet-Kondracki
- Unité Molécules de Communication et Adaptation des Microorganismes, UMR 7245 CNRS-MNHN, Sorbonne Universités, Muséum National d'Histoire Naturelle, CP 54, 57 rue Cuvier, 75005 Paris, France.
| |
Collapse
|
5
|
Yan S, Ding N, Zhang W, Wang P, Li Y, Li M. A Facile and Efficient Method for the One-Pot Synthesis of Per-O-acetylated Thioglycosides from Unprotected Sugars. J Carbohydr Chem 2012. [DOI: 10.1080/07328303.2012.673669] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
6
|
Kamerling JP, de Souza AC. Studying carbohydrate self-recognition in marine sponges using synthetic aggregation factor epitopes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 705:493-510. [PMID: 21618126 DOI: 10.1007/978-1-4419-7877-6_26] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Johannis P Kamerling
- Department of Bio-Organic Chemistry, Bijvoet Center, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | | |
Collapse
|
7
|
Chemo-enzymatic synthesis of glycosylated insulin using a GlcNAc tag. Bioorg Med Chem 2010; 18:1259-64. [DOI: 10.1016/j.bmc.2009.12.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 12/08/2009] [Accepted: 12/09/2009] [Indexed: 12/29/2022]
|
8
|
|
9
|
Bowers-Morrow VM, Ali SO, Williams KL. Comparison of molecular mechanisms mediating cell contact phenomena in model developmental systems: an exploration of universality. Biol Rev Camb Philos Soc 2004; 79:611-42. [PMID: 15366765 DOI: 10.1017/s1464793103006389] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Are there universal molecular mechanisms associated with cell contact phenomena during metazoan ontogenesis? Comparison of adhesion systems in disparate model systems indicates the existence of unifying principles. Requirements for multicellularity are (a) the construction of three-dimensional structures involving a crucial balance between adhesiveness and motility; and (b) the establishment of integration at molecular, cellular, tissue, and organismal levels of organization. Mechanisms for (i) cell-cell and cell-substrate adhesion, (ii) cell movement, (iii) cell-cell communication, (iv) cellular responses, (v) regulation of these processes, and (vi) their integration with patterning, growth, and other developmental processes are all crucial to metazoan development, and must have been present for the emergence and radiation of Metazoa. The principal unifying themes of this review are the dynamics and regulation of cell contact phenomena. Our knowledge of the dynamic molecular mechanisms underlying cell contact phenomena remains fragmentary. Here we examine the molecular bases of cell contact phenomena using extant model developmental systems (representing a wide range of phyla) including the simplest i.e. sponges, and the eukaryotic protist Dictyostelium discoideum, the more complex Drosophila melanogaster, and vertebrate systems. We discuss cell contact phenomena in a broad developmental context. The molecular language of cell contact phenomena is complex; it involves a plethora of structurally and functionally diverse molecules, and diverse modes of intermolecular interactions mediated by protein and/or carbohydrate moieties. Reasons for this are presumably the necessity for a high degree of specificity of intermolecular interactions, the requirement for a multitude of different signals, and the apparent requirement for an increasingly large repertoire of cell contact molecules in more complex developmental systems, such as the developing vertebrate nervous system. However, comparison of molecular models for dynamic adhesion in sponges and in vertebrates indicates that, in spite of significant differences in the details of the way specific cell-cell adhesion is mediated, similar principles are involved in the mechanisms employed by members of disparate phyla. Universal requirements are likely to include (a) rapidly reversible intermolecular interactions; (b) low-affinity intermolecular interactions with fast on-off rates; (c) the compounding of multiple intermolecular interactions; (d) associated regulatory signalling systems. The apparent widespread employment of molecular mechanisms involving cadherin-like cell adhesion molecules suggests the fundamental importance of cadherin function during development, particularly in epithelial morphogenesis, cell sorting, and segregation of cells.
Collapse
|
10
|
Yang Y, Dang D, Mogi S, Ramos DM. Tenascin-C deposition requires β3 integrin and Src. Biochem Biophys Res Commun 2004; 322:935-42. [PMID: 15336554 DOI: 10.1016/j.bbrc.2004.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Indexed: 12/16/2022]
Abstract
In this study we now show that deposition of the mesenchymal matrix marker, tenascin-C (TN-C), is mediated through beta3 expression and activation of Src. There was a striking upregulation of TN-C matrix organization in cell lines expressing beta3 and activated Src when compared to cell lines with neither of these attributes. When beta3 function was suppressed so was the deposition of TN-C. The same was true for function and activation of Src. When Src was inactive, the deposition of TN-C was low. We also determined that one of the downstream effectors of Src, MAPK, was also required to promote TN-C deposition. When MAPK activation was inhibited, TN-C deposition was also decreased. MMP activation is also implicated in TN-C deposition. The broad spectrum MMP inhibitor, GM6001, suppressed TN-C organization. These results indicate that beta3 integrin ligand binding and the activation of the Src/MAPK/MMP pathway modulate deposition of TN-C.
Collapse
Affiliation(s)
- Yongjian Yang
- Department of Stomatology, University of California at San Francisco, San Francisco, CA, USA
| | | | | | | |
Collapse
|
11
|
Peterson KJ, Eernisse DJ. Animal phylogeny and the ancestry of bilaterians: inferences from morphology and 18S rDNA gene sequences. Evol Dev 2001; 3:170-205. [PMID: 11440251 DOI: 10.1046/j.1525-142x.2001.003003170.x] [Citation(s) in RCA: 400] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Insight into the origin and early evolution of the animal phyla requires an understanding of how animal groups are related to one another. Thus, we set out to explore animal phylogeny by analyzing with maximum parsimony 138 morphological characters from 40 metazoan groups, and 304 18S rDNA sequences, both separately and together. Both types of data agree that arthropods are not closely related to annelids: the former group with nematodes and other molting animals (Ecdysozoa), and the latter group with molluscs and other taxa with spiral cleavage. Furthermore, neither brachiopods nor chaetognaths group with deuterostomes; brachiopods are allied with the molluscs and annelids (Lophotrochozoa), whereas chaetognaths are allied with the ecdysozoans. The major discordance between the two types of data concerns the rooting of the bilaterians, and the bilaterian sister-taxon. Morphology suggests that the root is between deuterostomes and protostomes, with ctenophores the bilaterian sister-group, whereas 18S rDNA suggests that the root is within the Lophotrochozoa with acoel flatworms and gnathostomulids as basal bilaterians, and with cnidarians the bilaterian sister-group. We suggest that this basal position of acoels and gnathostomulids is artifactal because for 1,000 replicate phylogenetic analyses with one random sequence as outgroup, the majority root with an acoel flatworm or gnathostomulid as the basal ingroup lineage. When these problematic taxa are eliminated from the matrix, the combined analysis suggests that the root lies between the deuterostomes and protostomes, and Ctenophora is the bilaterian sister-group. We suggest that because chaetognaths and lophophorates, taxa traditionally allied with deuterostomes, occupy basal positions within their respective protostomian clades, deuterostomy most likely represents a suite of characters plesiomorphic for bilaterians.
Collapse
Affiliation(s)
- K J Peterson
- Department of Biological Sciences, Dartmouth College, Hanover NH 03755, USA
| | | |
Collapse
|
12
|
Metzler DE, Metzler CM, Sauke DJ. Some Pathways of Carbohydrate Metabolism. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50023-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
|
14
|
Abstract
Sponges are the lowest extant metazoan phylum and for about a century they have been used as a model system to study cell adhesion. There are three classes of molecules in the extracellular matrix of vertebrates: collagens, proteoglycans, and adhesive glycoproteins, all of them have been identified in sponges. Species-specific cell recognition in sponges is mediated by supramolecular proteoglycan-like complexes termed aggregation factors, still to be identified in higher animals. Polyvalent glycosaminoglycan interactions are involved in the species-specificity, representing one of the few known examples of a regulatory role for carbohydrates. Aggregation factors mediate cell adhesion via a bifunctional activity that combines a calcium-dependent self-interaction of aggregation factor molecules plus a calcium-independent heterophilic interaction with cell surface receptors. Important cases of cell adhesion are the phenomena involved in histocompatibility reactions. A long-standing prediction has been that the evolutionary ancestors of histocompatibility systems might be found among primitive cell-cell interaction molecules. A surprising characteristic of sponges, considering their low phylogenetic position, is that they possess an exquisitely sophisticated histocompatibility system. Any grafting between two different sponge individuals (allograft) is almost invariably incompatible in the many species investigated, exhibiting a variety of transitive qualitatively and quantitatively different responses, which can only be explained by the existence of a highly polymorphic gene system. Individual variability of protein and glycan components in the aggregation factor of the red beard sponge, Microciona prolifera, matches the elevated sponge alloincompatibility, suggesting an involvement of the cell adhesion system in sponge allogeneic reactions and, therefore, an evolutionary relationship between cell adhesion and histocompatibility systems.
Collapse
|
15
|
Fernàndez-Busquets X, Burger MM. The main protein of the aggregation factor responsible for species-specific cell adhesion in the marine sponge Microciona prolifera is highly polymorphic. J Biol Chem 1997; 272:27839-47. [PMID: 9346930 DOI: 10.1074/jbc.272.44.27839] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Species-specific cell recognition in sponges, the oldest living metazoans, is based on a proteoglycan-like aggregation factor. We have screened individual sponge cDNA libraries, identifying multiple related forms for the aggregation factor core protein (MAFp3). Northern blots show the presence in several human tissues of transcripts strongly binding a MAFp3-specific probe. The open reading frame for MAFp3 is not interrupted in the 5' direction, revealing variable protein sequences that contain numerous introns equally spaced. We have studied tissue histocompatibility within a sponge population, finding 100% correlation between rejection behavior and the individual-specific restriction fragment length polymorphism pattern using aggregation factor-related probes. PCR amplifications with specific primers showed that at least some of the MAFp3 forms are allelic and distribute in the population used. A pronounced polymorphism is also observed when analyzing purified aggregation factor in polyacrylamide gels. Protease digestion of the polymorphic glycosaminoglycan-containing bands indicates that glycans are also responsible for the variability. The data presented reveal a high polymorphism of aggregation factor components, which matches the elevated sponge alloincompatibility, suggesting an involvement of the cell adhesion system in sponge allogeneic reactions.
Collapse
|