1
|
Takimoto R, Tatemichi Y, Aoki W, Kosaka Y, Minakuchi H, Ueda M, Kuroda K. A critical role of an oxygen-responsive gene for aerobic nitrogenase activity in Azotobacter vinelandii and its application to Escherichia coli. Sci Rep 2022; 12:4182. [PMID: 35264690 PMCID: PMC8907163 DOI: 10.1038/s41598-022-08007-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/28/2022] [Indexed: 12/02/2022] Open
Abstract
Since nitrogenase is irreversibly inactivated within a few minutes after exposure to oxygen, current studies on the heterologous expression of nitrogenase are limited to anaerobic conditions. This study comprehensively identified genes showing oxygen-concentration-dependent expression only under nitrogen-fixing conditions in Azotobacter vinelandii, an aerobic diazotroph. Among the identified genes, nafU, with an unknown function, was greatly upregulated under aerobic nitrogen-fixing conditions. Through replacement and overexpressing experiments, we suggested that nafU is involved in the maintenance of nitrogenase activity under aerobic nitrogenase activity. Furthermore, heterologous expression of nafU in nitrogenase-producing Escherichia coli increased nitrogenase activity under aerobic conditions by 9.7 times. Further analysis of NafU protein strongly suggested its localization in the inner membrane and raised the possibility that this protein may lower the oxygen concentration inside the cells. These findings provide new insights into the mechanisms for maintaining stable nitrogenase activity under aerobic conditions in A. vinelandii and provide a platform to advance the use of nitrogenase under aerobic conditions.
Collapse
Affiliation(s)
- Ren Takimoto
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yuki Tatemichi
- Research and Development Division, Kikkoman Corporation, 338 Noda, Noda, Chiba, 278-0037, Japan
| | - Wataru Aoki
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yuishin Kosaka
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | | | - Mitsuyoshi Ueda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Kouichi Kuroda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan.
| |
Collapse
|
2
|
Borisov VB, Siletsky SA, Paiardini A, Hoogewijs D, Forte E, Giuffrè A, Poole RK. Bacterial Oxidases of the Cytochrome bd Family: Redox Enzymes of Unique Structure, Function, and Utility As Drug Targets. Antioxid Redox Signal 2021; 34:1280-1318. [PMID: 32924537 PMCID: PMC8112716 DOI: 10.1089/ars.2020.8039] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/23/2022]
Abstract
Significance: Cytochrome bd is a ubiquinol:oxygen oxidoreductase of many prokaryotic respiratory chains with a unique structure and functional characteristics. Its primary role is to couple the reduction of molecular oxygen, even at submicromolar concentrations, to water with the generation of a proton motive force used for adenosine triphosphate production. Cytochrome bd is found in many bacterial pathogens and, surprisingly, in bacteria formally denoted as anaerobes. It endows bacteria with resistance to various stressors and is a potential drug target. Recent Advances: We summarize recent advances in the biochemistry, structure, and physiological functions of cytochrome bd in the light of exciting new three-dimensional structures of the oxidase. The newly discovered roles of cytochrome bd in contributing to bacterial protection against hydrogen peroxide, nitric oxide, peroxynitrite, and hydrogen sulfide are assessed. Critical Issues: Fundamental questions remain regarding the precise delineation of electron flow within this multihaem oxidase and how the extraordinarily high affinity for oxygen is accomplished, while endowing bacteria with resistance to other small ligands. Future Directions: It is clear that cytochrome bd is unique in its ability to confer resistance to toxic small molecules, a property that is significant for understanding the propensity of pathogens to possess this oxidase. Since cytochrome bd is a uniquely bacterial enzyme, future research should focus on harnessing fundamental knowledge of its structure and function to the development of novel and effective antibacterial agents.
Collapse
Affiliation(s)
- Vitaliy B. Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Sergey A. Siletsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | | | - David Hoogewijs
- Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland
| | - Elena Forte
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Robert K. Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
3
|
Abstract
Azotobacters have been used as biofertilizer since more than a century. Azotobacters fix nitrogen aerobically, elaborate plant hormones, solubilize phosphates and also suppress phytopathogens or reduce their deleterious effect. Application of wild type Azotobacters results in better yield of cereals like corn, wheat, oat, barley, rice, pearl millet and sorghum, of oil seeds like mustard and sunflower, of vegetable crops like tomato, eggplant, carrot, chillies, onion, potato, beans and sugar beet, of fruits like mango and sugar cane, of fiber crops like jute and cotton and of tree like oak. In addition to the structural genes of the enzyme nitrogenase and of other accessory proteins, A. vinelandii chromosomes contain the regulatory genes nifL and nifA. NifA must bind upstream of the promoters of all nif operons for enabling their expression. NifL on activation by oxygen or ammonium, interacts with NifA and neutralizes it. Nitrogen fixation has been enhanced by deletion of nifL and by bringing nifA under the control of a constitutive promoter, resulting in a strain that continues to fix nitrogen in presence of urea fertilizer. Additional copies of nifH (the gene for the Fe-protein of nitrogenase) have been introduced into A. vinelandii, thereby augmenting nitrogen fixation. The urease gene complex ureABC has been deleted, the ammonia transport gene amtB has been disrupted and the expression of the glutamine synthase gene has been regulated to enhance urea and ammonia excretion. Gluconic acid has been produced by introducing the glucose dehydrogenase gene, resulting in enhanced solubilization of phosphate.
Collapse
|
4
|
Ravcheev DA, Thiele I. Systematic genomic analysis reveals the complementary aerobic and anaerobic respiration capacities of the human gut microbiota. Front Microbiol 2014; 5:674. [PMID: 25538694 PMCID: PMC4257093 DOI: 10.3389/fmicb.2014.00674] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 11/19/2014] [Indexed: 11/13/2022] Open
Abstract
Because of the specific anatomical and physiological properties of the human intestine, a specific oxygen gradient builds up within this organ that influences the intestinal microbiota. The intestinal microbiome has been intensively studied in recent years, and certain respiratory substrates used by gut inhabiting microbes have been shown to play a crucial role in human health. Unfortunately, a systematic analysis has not been previously performed to determine the respiratory capabilities of human gut microbes (HGM). Here, we analyzed the distribution of aerobic and anaerobic respiratory reductases in 254 HGM genomes. In addition to the annotation of known enzymes, we also predicted a novel microaerobic reductase and novel thiosulfate reductase. Based on this comprehensive assessment of respiratory reductases in the HGM, we proposed a number of exchange pathways among different bacteria involved in the reduction of various nitrogen oxides. The results significantly expanded our knowledge of HGM metabolism and interactions in bacterial communities.
Collapse
Affiliation(s)
- Dmitry A Ravcheev
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg Esch-sur-Alzette, Luxembourg ; Division 6: Comparative Genomics of Regulation System, A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences Moscow, Russia
| | - Ines Thiele
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg Esch-sur-Alzette, Luxembourg
| |
Collapse
|
5
|
Li H, Jubelirer S, Garcia Costas AM, Frigaard NU, Bryant DA. Multiple antioxidant proteins protect Chlorobaculum tepidum against oxygen and reactive oxygen species. Arch Microbiol 2009; 191:853-67. [PMID: 19784828 DOI: 10.1007/s00203-009-0514-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 08/31/2009] [Accepted: 09/14/2009] [Indexed: 11/25/2022]
Abstract
The genome of the green sulfur bacterium Chlorobaculum (Cba.) tepidum, a strictly anaerobic photolithoautotroph, is predicted to encode more than ten genes whose products are potentially involved in protection from reactive oxygen species and an oxidative stress response. The encoded proteins include cytochrome bd quinol oxidase, NADH oxidase, rubredoxin oxygen oxidoreductase, several thiol peroxidases, alkyl hydroperoxide reductase, superoxide dismutase, methionine sulfoxide reductase, and rubrerythrin. To test the physiological functions of some of these proteins, ten genes were insertionally inactivated. Wild-type Cba. tepidum cells were very sensitive to oxygen in the light but were remarkably resistant to oxygen in the dark. When wild-type and mutant cells were subjected to air for various times under dark or light condition, significant decreases in viability were detected in most of the mutants relative to wild type. Treatments with hydrogen peroxide (H(2)O(2)), tert-butyl hydroperoxide (t-BOOH) and methyl viologen resulted in more severe effects in most of the mutants than in the wild type. The results demonstrated that these putative antioxidant proteins combine to form an effective defense against oxygen and reactive oxygen species. Reverse-transcriptase polymerase chain reaction studies showed that the genes with functions in oxidative stress protection were constitutively transcribed under anoxic growth conditions.
Collapse
Affiliation(s)
- Hui Li
- Department of Biochemistry and Molecular Biology and Center for Biomolecular Structure and Function, The Pennsylvania State University , S-235 Frear Building, University Park, PA 16802, USA
| | | | | | | | | |
Collapse
|
6
|
Expression profile analysis of the oxygen response in the nitrogen-fixing Pseudomonas stutzeri A1501 by genome-wide DNA microarray. Sci Bull (Beijing) 2008. [DOI: 10.1007/s11434-008-0180-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Williams HD, Zlosnik JEA, Ryall B. Oxygen, cyanide and energy generation in the cystic fibrosis pathogen Pseudomonas aeruginosa. Adv Microb Physiol 2006; 52:1-71. [PMID: 17027370 DOI: 10.1016/s0065-2911(06)52001-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pseudomonas aeruginosa is a gram-negative, rod-shaped bacterium that belongs to the gamma-proteobacteria. This clinically challenging, opportunistic pathogen occupies a wide range of niches from an almost ubiquitous environmental presence to causing infections in a wide range of animals and plants. P. aeruginosa is the single most important pathogen of the cystic fibrosis (CF) lung. It causes serious chronic infections following its colonisation of the dehydrated mucus of the CF lung, leading to it being the most important cause of morbidity and mortality in CF sufferers. The recent finding that steep O2 gradients exist across the mucus of the CF-lung indicates that P. aeruginosa will have to show metabolic adaptability to modify its energy metabolism as it moves from a high O2 to low O2 and on to anaerobic environments within the CF lung. Therefore, the starting point of this review is that an understanding of the diverse modes of energy metabolism available to P. aeruginosa and their regulation is important to understanding both its fundamental physiology and the factors significant in its pathogenicity. The main aim of this review is to appraise the current state of knowledge of the energy generating pathways of P. aeruginosa. We first look at the organisation of the aerobic respiratory chains of P. aeruginosa, focusing on the multiple primary dehydrogenases and terminal oxidases that make up the highly branched pathways. Next, we will discuss the denitrification pathways used during anaerobic respiration as well as considering the ability of P. aeruginosa to carry out aerobic denitrification. Attention is then directed to the limited fermentative capacity of P. aeruginosa with discussion of the arginine deiminase pathway and the role of pyruvate fermentation. In the final part of the review, we consider other aspects of the biology of P. aeruginosa that are linked to energy metabolism or affected by oxygen availability. These include cyanide synthesis, which is oxygen-regulated and can affect the operation of aerobic respiratory pathways, and alginate production leading to a mucoid phenotype, which is regulated by oxygen and energy availability, as well as having a role in the protection of P. aeruginosa against reactive oxygen species. Finally, we consider a possible link between cyanide synthesis and the mucoid switch that operates in P. aeruginosa during chronic CF lung infection.
Collapse
Affiliation(s)
- Huw D Williams
- Division of Biology, Faculty of Natural Sciences, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK
| | | | | |
Collapse
|
8
|
Bertsova YV, Bogachev AV, Skulachev VP. Noncoupled NADH:ubiquinone oxidoreductase of Azotobacter vinelandii is required for diazotrophic growth at high oxygen concentrations. J Bacteriol 2001; 183:6869-74. [PMID: 11698376 PMCID: PMC95528 DOI: 10.1128/jb.183.23.6869-6874.2001] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gene encoding the noncoupled NADH:ubiquinone oxidoreductase (NDH II) from Azotobacter vinelandii was cloned, sequenced, and used to construct an NDH II-deficient mutant strain. Compared to the wild type, this strain showed a marked decrease in respiratory activity. It was unable to grow diazotrophically at high aeration, while it was fully capable of growth at low aeration or in the presence of NH(4)(+). This result suggests that the role of NDH II is as a vital component of the respiratory protection mechanism of the nitrogenase complex in A. vinelandii. It was also found that the oxidation of NADPH in the A. vinelandii respiratory chain is catalyzed solely by NDH II.
Collapse
Affiliation(s)
- Y V Bertsova
- Department of Bioenergetics, A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119899, Russia
| | | | | |
Collapse
|
9
|
Wu G, Cruz-Ramos H, Hill S, Green J, Sawers G, Poole RK. Regulation of cytochrome bd expression in the obligate aerobe Azotobacter vinelandii by CydR (Fnr). Sensitivity to oxygen, reactive oxygen species, and nitric oxide. J Biol Chem 2000; 275:4679-86. [PMID: 10671497 DOI: 10.1074/jbc.275.7.4679] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Azotobacter vinelandii is an obligately aerobic bacterium in which aerotolerant nitrogen fixation requires cytochrome bd. Regulation of cytochrome bd expression is achieved by CydR (an Fnr homologue), which represses transcription of the oxidase genes cydAB. cydAB mRNA was mapped by primer extension; the transcriptional start site was determined, and putative -10 and -35 regions were deduced. Two "CydR boxes," one at the +1 site and one upstream of the -35 region, were identified. Transcriptionally inactive, purified CydR was converted, by adding NifS, cysteine, and Fe(2+), into an active form possessing acid-labile sulfide and spectra suggesting a [4Fe-4S](2+) cluster. Reconstituted CydR specifically bound both CydR boxes cooperatively, with higher affinity for the nearer consensus +1 site. Low concentrations of O(2) or NO ([O(2)]/[[CydR] or [NO]/[CydR] = 0.1-0. 6) elicited loss of the 420 nm absorbance attributed to the [4Fe-4S](2+) cluster, formation of a 315 nm species, and loss of ability to retard DNA migration. Retardation by reconstituted CydR was enhanced by superoxide dismutase and/or catalase, suggesting a role for reactive oxygen species in CydR inactivation. The role of CydR in regulating cydAB expression in the supposedly anoxic cytoplasm of A. vinelandii and similarities to cydAB regulation by Fnr in Escherichia coli are discussed.
Collapse
Affiliation(s)
- G Wu
- Department of Molecular Biology and Biotechnology, Krebs Institute for Biomolecular Research, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | | | | | | | | | | |
Collapse
|
10
|
Bertsova YV, Bogachev AV, Skulachev VP. Two NADH:ubiquinone oxidoreductases of Azotobacter vinelandii and their role in the respiratory protection. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1363:125-33. [PMID: 9507087 DOI: 10.1016/s0005-2728(97)00094-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Initial steps of the Azotobacter vinelandii respiratory chain have been studied on the inside-out subcellular vesicles. Two NADH:ubiquinone oxidoreductases were revealed: (i) proton-motive, capsaicin-sensitive and oxidizing dNADH as well as NADH enzyme and (ii) enzyme non-coupled to the energy conservation, capsaicin-resistant and oxidizing only NADH. The level of the oxidoreductases strongly depends upon [O2] and [NH3] in the growth medium. Increase in [O2] results in lowering of the coupled-enzyme level and in rise of the non-coupled one. Exclusion of NH3 from the growth medium increases the level of the non-coupled enzyme whereas that of the coupled enzyme remains constant. The O2-linked control of NADH:ubiquinone oxidoreductases requires CydR, a Fnr-like regulatory protein. Summarizing the above observations with those made in this group on the terminal steps of the A. vinelandii respiratory chains, one can assume that the respiratory protection of nitrogenase could be carried out by co-operation of the non-coupled NADH:ubiquinone oxidoreductase and the "partially coupled" quinoloxidase of the bd-type. Efficiency of this chain seems to be five-fold lower than that of the usual proton-motive chain (the coupled NADH:ubiquinone oxidoreductase, the Q-cycle and cytochrome oxidase of the o-type) which is also present in A. vinelandii and operates at low [O2].
Collapse
Affiliation(s)
- Y V Bertsova
- Department of Bioenergetics, A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119899, Russia
| | | | | |
Collapse
|
11
|
Rey L, Maier RJ. Cytochrome c terminal oxidase pathways of Azotobacter vinelandii: analysis of cytochrome c4 and c5 mutants and up-regulation of cytochrome c-dependent pathways with N2 fixation. J Bacteriol 1997; 179:7191-6. [PMID: 9371471 PMCID: PMC179665 DOI: 10.1128/jb.179.22.7191-7196.1997] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Azotobacter vinelandii cytochrome c5 gene (termed cycB) was cloned and sequenced. Mutants in this c-type cytochrome as well as cytochrome c4 mutants (mutations in cycA) and double mutants in both of the c-type respiratory pathways were characterized. Spectral and heme staining experiments on membranes from the mutants were consistent with the anticipated characteristics of all the gene-directed mutants. Membranes of the individual cytochrome c4 or c5 mutants had normal respiratory rates with physiological substrates but respiration significantly lower than the wild-type rate with ascorbate-N,N,N',N',-tetramethyl-p-phenylenediamine (TMPD) as a reductant. The growth rates of the individual cytochrome c4 or c5 mutants were not markedly different from that of the wild-type strain, but the cycA cycB double-mutant strain was noticeably growth retarded at and below 7.5% O2 on both N-containing and N-free media. The double-mutant strain was unable to grow on agar plates at O2 tensions of 2.5% or less on N-free medium. As the wild-type growth was unaffected by varying the O2 tension, the results indicate that the role of the cytochrome c-dependent pathways is to provide respiration at intermediate (5 to 10%) and low (below 5%) O2 tensions. The two c-type cytochrome genes are transcriptionally up-regulated with N2 fixation; N starvation caused 2.8-fold and 7- to 10-fold increases in the promoter activities of cycA and cycB, respectively, but these activities were affected little by the O2 level supplied to the cultures.
Collapse
Affiliation(s)
- L Rey
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | |
Collapse
|
12
|
Flory JE, Donohue TJ. Transcriptional control of several aerobically induced cytochrome structural genes in Rhodobacter sphaeroides. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 10):3101-3110. [PMID: 9353915 DOI: 10.1099/00221287-143-10-3101] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To decipher how the synthesis of energy-transducing enzymes responds to environmental cues, the response of three Rhodobacter sphaeroides aerobic cytochrome gene promoters was analysed under different conditions. Two of these promoters are upstream of structural genes (ctaD and coxII) for individual subunits of the cytochrome aa3 respiratory complex. The third promoter is that for the cycFG operon, which encodes two c-type cytochromes of unknown function, cytochrome c554 and CycG. Primer extension analysis identified a single oxygen-responsive transcription start site for each gene. Utilizing operon fusions to Escherichia coli lacZ as a measure of promoter activity, transcription from the ctaD, coxII and cycFG promoters was approximately twofold higher when cells were grown at high (30%) oxygen tensions than under low (2%) oxygen or anaerobic (photosynthetic) conditions. Analysis of promoter function using specific host mutations indicated that loss of the R. sphaeroides FNR homologue, FnrL, causes a small, but reproducible, increase in cycFG and coxII transcription when cells are grown at 2% oxygen. However, neither the delta FnrL mutation nor alterations in sequences related to a consensus target site for the E. coli FNR protein increased function of any of these three promoters to that seen under aerobic conditions in wild-type cells. From this we conclude that FnrL is not solely responsible for reduced transcription of these three aerobic cytochrome genes under low oxygen or anaerobic conditions. When activity of these three promoters was monitored after cells were shifted from anaerobic (photosynthetic) conditions to a 30% oxygen atmosphere, it took several cell doublings for LacZ levels to increase to those found in steady-state 30% oxygen cultures. From these results, it appears that activity of these promoters is also regulated by a stable molecule whose synthesis or function responds slowly to the presence of high oxygen tensions.
Collapse
Affiliation(s)
- Janice E Flory
- Graduate Program in Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Timothy J Donohue
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
- Graduate Program in Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
13
|
Bertsova YV, Bogachev AV, Skulachev VP. Generation of protonic potential by the bd-type quinol oxidase of Azotobacter vinelandii. FEBS Lett 1997; 414:369-72. [PMID: 9315721 DOI: 10.1016/s0014-5793(97)01047-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Inside-out subcellular vesicles of Azotobacter vinelandii are found to produce delta pH and delta psi (interior acidic and positive) when oxidising malate or menadiol. These effects are inherent in both Cyd+ Cyo- (lacking the o-type oxidase) and Cyd- Cyo+ (lacking the bd-type oxidase) strains. They appear to be myxothiazol-sensitive in the Cyd- Cyo+ strain but not in the Cyd+ Cyo- strain. The H+/e- ratio for the terminal part of respiratory chain of a bd-type oxidase overproducing strain is established as being close to 1. It is also shown that NADH oxidation by the vesicles from the Cyd- Cyo+ strain is sensitive to low concentrations of myxothiazol and antimycin A whereas that of the Cyd+ Cyo- strain is resistant to these Q-cycle inhibitors. It is concluded that (i) the bd-type oxidase of A. vinelandii is competent in generating a protonic potential but its efficiency is lower than that of the o-type oxidase and (ii) Q-cycle does operate in the o-type cytochrome oxidase terminated branch of the A. vinelandii respiratory chain and does not in the bd-type quinol oxidase terminated branch. These relationships are discussed in the context of the respiratory protection function of the bd-type oxidase in A. vinelandii.
Collapse
Affiliation(s)
- Y V Bertsova
- Department of Bioenergetics, A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Russia
| | | | | |
Collapse
|
14
|
Affiliation(s)
- S Jünemann
- Glynn Laboratory of Bioenergetics, Department of Biology, University College London, UK.
| |
Collapse
|
15
|
Juty NS, Moshiri F, Merrick M, Anthony C, Hill S. The Klebsiella pneumoniae cytochrome bd' terminal oxidase complex and its role in microaerobic nitrogen fixation. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 8):2673-2683. [PMID: 9274021 DOI: 10.1099/00221287-143-8-2673] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cytochrome bd' has been implicated in having an important role in microaerobic nitrogen fixation in the enteric bacterium Klebsiella pneumoniae, where it is expressed under all conditions that permit diazotrophy. In this paper the sequence of the genes encoding this terminal oxidase (cydAB) of Klebsiella pneumoniae and the characterization of a cyd mutant are reported. The deduced amino acid sequences support the proposal that His 19, His 186 and Met 393 provide three of the four axial ligands to the Fe of the three haems in the oxidase complex. The nitrogen-fixing ability of the mutant was severely impaired in the presence of low concentrations of oxygen compared with the wild-type bacterium. Only the wild-type organism was capable of microaerobic nitrogenase activity supported by fermentation products. It is proposed that formate dehydrogenase-O may be involved in supplying electrons to a respiratory chain terminated by the bd-type oxidase, which would remove inhibitory oxygen and supply ATP for nitrogenase activity.
Collapse
Affiliation(s)
- Navtej S Juty
- Nitrogen Fixation Laboratory, John Innes Centre, Norwich NR4 7UH, UK
- Department of Biochemistry, University of Southampton, Southampton SO16 7PX, UK
| | - Farhad Moshiri
- Department of Biology, The Johns Hopkinas University, Baltimore, MD 21218, USA
| | - Mike Merrick
- Nitrogen Fixation Laboratory, John Innes Centre, Norwich NR4 7UH, UK
| | - Christopher Anthony
- Department of Biochemistry, University of Southampton, Southampton SO16 7PX, UK
| | - Susan Hill
- Nitrogen Fixation Laboratory, John Innes Centre, Norwich NR4 7UH, UK
| |
Collapse
|
16
|
Wu G, Hill S, Kelly MJS, Sawers G, Poole RK. The cydR gene product, required for regulation of cytochrome bd expression in the obligate aerobe Azotobacter vinelandii, is an Fnr-like protein. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 7):2197-2207. [PMID: 9245809 DOI: 10.1099/00221287-143-7-2197] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The cytochrome bd complex in the obligately aerobic diazotroph Azotobacter vinelandii is an oxidase, which, in vivo, has a low affinity for oxygen and is required for respiratory protection of nitrogenase. Mutations caused by insertion of Tn5-B20 upstream of the structural genes (cydAB) for cytochrome bd result in over-expression of this oxidase and, for unexplained reasons, inability of the organism to grow microaerobically. Cloning and sequencing of this upstream region revealed a gene, cydR. The deduced amino acid sequence of CydR indicates that it is a new member of the Fnr Class of regulators and that it represses cydAB expression. Refined mapping data for three insertions in cydR are presented. The cloned cydR gene complemented anaerobic growth of Escherichia coli fnr mutants and strongly enhanced expression of a narG-lacZ fusion in an E. coli fnr mutant.
Collapse
Affiliation(s)
- Guanghui Wu
- The Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Susan Hill
- Nitrogen Fixation Laboratory, John Innes Centre, Colney, Norwich NR4 7UH, UK
| | - Mark J S Kelly
- The Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Gary Sawers
- Nitrogen Fixation Laboratory, John Innes Centre, Colney, Norwich NR4 7UH, UK
| | - Robert K Poole
- The Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
17
|
Expression and Content of Terminal Oxidases in Azotobacter Vinelandii Grown with Excess NH4+ are Modulated by O2 Supply. Microbiology (Reading) 1997; 143:231-237. [DOI: 10.1099/00221287-143-1-231] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The influence of the rate of O2 supply to batch cultures on the contents of cytochromes bd and ‘o’ in NH4
+-grown Azotobacter vinelandii has been investigated. Difference spectra at room temperature (reduced + CO minus reduced) were recorded for whole cells of a wild-type strain and mutants which either lacked or over-produced the cytochrome bd-type terminal oxidase encoded by cydAB. A Tn5-B20 insertion in cydB in the former mutant also provided a means of monitoring cydAB gene expression from measurements of β-galactosidase activity. The content of cytochrome d in the wild-type, and the expression of cydAB-lacZ, in the mutant, increased as the O2 supply was raised, suggesting that O2 regulates cydAB expression even in the absence of diazotrophy. In a strain carrying a mutation in cydR, a regulatory gene upstream of cydAB, and which over-produces cytochrome bd, the responses to O2 supply during growth at different O2 supply rates were reversed. Changes in the content of a haemoprotein detectable in low temperature photodissociation spectra, and attributed to cytochrome b
595 -the high-spin cytochrome b component of the cytochrome bd complex - followed the changes in cytochrome d levels. CO difference spectra of both the wild-type strain and the cytochrome bd-deficient mutant revealed a haemoprotein with spectral characteristics similar to cytochrome o, the levels of which increased as the O2 supply was raised. These results are discussed with reference to previous reports of cytochrome changes in cells grown under N2-fixing conditions.
Collapse
|
18
|
Isas JM, Yannone SM, Burgess BK. Azotobacter vinelandii NADPH:ferredoxin reductase cloning, sequencing, and overexpression. J Biol Chem 1995; 270:21258-63. [PMID: 7673160 DOI: 10.1074/jbc.270.36.21258] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Azotobacter vinelandii ferredoxin I (AvFdI) controls the expression of another protein that was originally designated Protein X. Recently we reported that Protein X is a NADPH-specific flavoprotein that binds specifically to FdI (Isas, J.M., and Burgess, B.K. (1994) J. Biol. Chem. 269, 19404-19409). The gene encoding this protein has now been cloned and sequenced. Protein X is 33% identical and has an overall 53% similarity with the fpr gene product from Escherichia coli that encodes NADPH:ferredoxin reductase. On the basis of this similarity and the similarity of the physical properties of the two proteins, we now designate Protein X as A. vinelandii NADPH:ferredoxin reductase and its gene as the fpr gene. The protein has been overexpressed in its native background in A. vinelandii by using the broad host range multicopy plasmid, pKT230. In addition to being regulated by FdI, the fpr gene product is overexpressed when A. vinelandii is grown under N2-fixing conditions even though the fpr gene is not preceded by a nif specific promoter. By analogy to what is known about fpr expression in E. coli, we propose that FdI may exert its regulatory effect on fpr by interacting with the SoxRS regulon.
Collapse
Affiliation(s)
- J M Isas
- Department of Molecular Biology and Biochemistry, University of California, Irvine 92717, USA
| | | | | |
Collapse
|
19
|
|
20
|
Ng TC, Laheri AN, Maier RJ. Cloning, sequencing, and mutagenesis of the cytochrome c4 gene from Azotobacter vinelandii: characterization of the mutant strain and a proposed new branch in the respiratory chain. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1230:119-29. [PMID: 7619830 DOI: 10.1016/0005-2728(95)00043-i] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Azotobacter vinelandii is a free-living, nitrogen-fixing bacterium with a branched electron transport chain terminating with two terminal oxidases, cytochromes d and o. Cytochrome o is thought to receive its electrons from cytochromes c. The gene encoding cytochrome c4 has been cloned and sequenced (termed the cycA locus). The deduced amino acid sequence contains a 20 residue signaling peptide sequence on the N-terminal end. Mutagenesis was performed by inserting a Kmr cassette into the structural gene. The subsequent mutant strains showed reduced amounts of cytochromes c (approximately 60% of wild-type levels) based on difference absorption spectra measurements. Heme staining confirmed the complete loss of cytochrome c4 protein in the mutant strains. These mutants could grow and respire normally, like the wild type, under both diazotrophic or non-diazotrophic conditions. Surprisingly, the cytochrome o terminal oxidase was still turning over in membranes from the cycA mutants as evidenced by substrate-reduced CO difference spectra and inhibition experiments with the use of the cytochrome o inhibitor, chlorpromazine. Still, the levels of oxidation by ascorbate-TMPD were greatly reduced in the cycA mutants. Therefore, it is proposed that cytochrome c4 does not exist in complex with cytochrome o as a multi-component terminal oxidase complex, yet still passes electrons to it in parallel like cytochrome c5, as opposed to in an obligate sequential manner with cytochrome c5. In this pathway the proposed new branch is at the ubiquinone to cytochromes c level.
Collapse
Affiliation(s)
- T C Ng
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | |
Collapse
|
21
|
Moshiri F, Kim JW, Fu C, Maier RJ. The FeSII protein of Azotobacter vinelandii is not essential for aerobic nitrogen fixation, but confers significant protection to oxygen-mediated inactivation of nitrogenase in vitro and in vivo. Mol Microbiol 1994; 14:101-14. [PMID: 7830548 DOI: 10.1111/j.1365-2958.1994.tb01270.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The FeSII protein of Azotobacter vinelandii has been proposed to mediate the 'conformational protection' of the molybdenum-dependent nitrogenase components against oxygen inactivation. We have cloned and characterized the structural gene for the FeSII protein (the fesII locus). Hybridization studies did not reveal the presence of fesII-like genes in a number of diverse species of well-studied nitrogen-fixing bacteria, with the exception of Azotobacter chroococcum. The fesII locus is transcriptionally expressed during both nitrogen fixing and non-nitrogen fixing conditions, although the level of its message is upregulated by approximately 2.5-fold during nitrogen fixation. The promoter region was identified by primer extension analysis, and is similar to other sigma 70-type promoters. Mutants devoid of the FeSII protein were constructed. These mutants possessed growth characteristics on a variety of carbon substrates during non-diazotrophic as well as diazotrophic growth that were essentially indistinguishable from the wild-type strain. Nevertheless, the nitrogenase activity in cell-free extracts is significantly more sensitive to irreversible oxygen inactivation in the mutants as compared with the wild type. When treated with 250 mM NaCl (a condition known to dissociate FeSII from nitrogenase components), the wild-type and mutant extracts were equally hypersensitive to oxygen inactivation. Upon energy starvation, conditions in which 'respiratory protection' is inoperable, the MoFe and Fe proteins of nitrogenase are degraded much more rapidly in vivo in the deletion mutants, compared to the wild type. Strains relying on either the vanadium or the 'iron-only' alternative nitrogenases exhibited similar growth rates irrespective of the presence or absence of the FeSII protein, and the in vitro inactivation of the vanadium nitrogenase components was not affected by the lack of the FeSII protein. All in all, these results are consistent with a model whereby 'respiratory protection' is the major physiological mechanism responsible for the protection of all three nitrogenases during energy-supplemented growth. Upon energy starvation, however, 'conformational protection', mediated by the FeSII protein is capable of temporarily protecting the conventional molybdenum nitrogenase components from inactivation and subsequent degradation.
Collapse
Affiliation(s)
- F Moshiri
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218
| | | | | | | |
Collapse
|
22
|
|