1
|
Margotta C, Fabbrizio P, Ceccanti M, Cambieri C, Ruffolo G, D'Agostino J, Trolese MC, Cifelli P, Alfano V, Laurini C, Scaricamazza S, Ferri A, Sorarù G, Palma E, Inghilleri M, Bendotti C, Nardo G. Immune-mediated myogenesis and acetylcholine receptor clustering promote a slow disease progression in ALS mouse models. Inflamm Regen 2023; 43:19. [PMID: 36895050 PMCID: PMC9996869 DOI: 10.1186/s41232-023-00270-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/25/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a heterogeneous disease in terms of onset and progression rate. This may account for therapeutic clinical trial failure. Transgenic SOD1G93A mice on C57 or 129Sv background have a slow and fast disease progression rate, mimicking the variability observed in patients. Based on evidence inferring the active influence of skeletal muscle on ALS pathogenesis, we explored whether dysregulation in hindlimb skeletal muscle reflects the phenotypic difference between the two mouse models. METHODS Ex vivo immunohistochemical, biochemical, and biomolecular methodologies, together with in vivo electrophysiology and in vitro approaches on primary cells, were used to afford a comparative and longitudinal analysis of gastrocnemius medialis between fast- and slow-progressing ALS mice. RESULTS We reported that slow-progressing mice counteracted muscle denervation atrophy by increasing acetylcholine receptor clustering, enhancing evoked currents, and preserving compound muscle action potential. This matched with prompt and sustained myogenesis, likely triggered by an early inflammatory response switching the infiltrated macrophages towards a M2 pro-regenerative phenotype. Conversely, upon denervation, fast-progressing mice failed to promptly activate a compensatory muscle response, exhibiting a rapidly progressive deterioration of muscle force. CONCLUSIONS Our findings further pinpoint the pivotal role of skeletal muscle in ALS, providing new insights into underestimated disease mechanisms occurring at the periphery and providing useful (diagnostic, prognostic, and mechanistic) information to facilitate the translation of cost-effective therapeutic strategies from the laboratory to the clinic.
Collapse
Affiliation(s)
- Cassandra Margotta
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Paola Fabbrizio
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Marco Ceccanti
- Department of Human Neurosciences, Rare Neuromuscular Diseases Centre, Sapienza University of Rome, 00185, Rome, Italy
| | - Chiara Cambieri
- Department of Human Neurosciences, Rare Neuromuscular Diseases Centre, Sapienza University of Rome, 00185, Rome, Italy
| | - Gabriele Ruffolo
- Laboratory Affiliated to Istituto Pasteur Italia, Department of Physiology and Pharmacology, Sapienza University of Rome, 00185, Rome, Italy.,IRCCS San Raffaele Roma, 00163, Rome, Italy
| | - Jessica D'Agostino
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Maria Chiara Trolese
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Pierangelo Cifelli
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | | | - Christian Laurini
- Department of Human Neurosciences, Rare Neuromuscular Diseases Centre, Sapienza University of Rome, 00185, Rome, Italy
| | | | - Alberto Ferri
- IRCCS Fondazione Santa Lucia, Rome, Italy.,Institute of Translational Pharmacology (IFT-CNR), Rome, Italy
| | - Gianni Sorarù
- Department of Neuroscience, Azienda Ospedaliera di Padova, Via Giustiniani 2, 35128, Padua, Italy
| | - Eleonora Palma
- Laboratory Affiliated to Istituto Pasteur Italia, Department of Physiology and Pharmacology, Sapienza University of Rome, 00185, Rome, Italy.,IRCCS San Raffaele Roma, 00163, Rome, Italy
| | - Maurizio Inghilleri
- Department of Human Neurosciences, Rare Neuromuscular Diseases Centre, Sapienza University of Rome, 00185, Rome, Italy
| | - Caterina Bendotti
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy.
| | - Giovanni Nardo
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| |
Collapse
|
2
|
Bao Z, Cui C, Chow SKH, Qin L, Wong RMY, Cheung WH. AChRs Degeneration at NMJ in Aging-Associated Sarcopenia-A Systematic Review. Front Aging Neurosci 2020; 12:597811. [PMID: 33362532 PMCID: PMC7759742 DOI: 10.3389/fnagi.2020.597811] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/19/2020] [Indexed: 12/16/2022] Open
Abstract
Sarcopenia is an aging process with a decline of skeletal muscle mass and function, which is a challenging public health problem with reduced quality of life in patients. The endplate, the post-synaptic part of the neuromuscular junction (NMJ), occupies 0.1% of the myofiber surface area only, but is composed of millions of acetylcholine receptors (AChRs) that are efficient in binding to acetylcholine (ACh) and triggering skeletal muscle contraction. This systematic review aims to examine aging-associated alterations of post-synaptic AChRs, including morphology, function and related gene expression. A systematic literature search was conducted in PubMed, Embase and Web of Science with relevant keywords by two independent reviewers. Original pre-clinical and clinical studies regarding AChRs changes during aging with available full text and written in English were included. Information was extracted from the included studies for further review. In total, 30 articles were included. Various parameters assessing AChRs alterations by radioassay, immunofluorescence, electrophysiology and mechanical test were reported. Endplate fragmentation and denervation were common in old skeletal muscles during aging. To ensure efficient NMJ transmission and force generation, type I or IIb muscle fibers tended to have increased ACh quanta releasing after electrical stimulations, while type IIa muscle fibers tended to have stronger binding between ACh and AChRs, but the overall function of AChRs was reduced during aging. Alterations of AChRs area depended on muscle type, species and the progress of muscle atrophy and type I muscles fibers tended to demonstrate enlarging AChRs areas. Myogenic regulator factors (MRFs) can regulate the expression of AChRs subunits, while decreased MRF4 may lead to expression changes of AChRs subunits during aging. Sarcoglycan-α can delay low-density lipoprotein receptor-related protein 4 (LRP4) degradation. This protein was increased in old muscles but still cannot suppress the degradation of LRP4. Investigating the role of these AChRs-related genes in the process of aging may provide a potential target to treat sarcopenia.
Collapse
Affiliation(s)
- Zhengyuan Bao
- Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Can Cui
- Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Simon Kwoon-Ho Chow
- Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.,The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Ling Qin
- Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Ronald Man Yeung Wong
- Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Wing-Hoi Cheung
- Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.,The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
3
|
Postnatal muscle modification by myogenic factors modulates neuropathology and survival in an ALS mouse model. Nat Commun 2014; 4:2906. [PMID: 24346342 PMCID: PMC4965267 DOI: 10.1038/ncomms3906] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 11/08/2013] [Indexed: 01/24/2023] Open
Abstract
MyoD and myogenin are myogenic transcription factors preferentially expressed in adult fast and slow muscles, respectively. Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder in which motor neuron loss is accompanied by muscle denervation and paralysis. Studies suggest that muscle phenotype may influence ALS disease progression. Here we demonstrate that myogenin gene transfer into muscle supports spinal cord motor neuron survival and muscle endplate innervation in the G93A SOD1 fALS mice. On the other hand, MyoD gene transfer decreases survival and enhances motor neuron degeneration and muscle denervation. Although an increase in motor neuron count is associated with increased succinic dehydrogenase staining in the muscle, muscle overexpression of PGC-1α does not improve survival or motor function. Our study suggests that postnatal muscle modification influences disease progression and demonstrates that the muscle expression of myogenic and metabolic regulators differentially impact neuropathology associated with disease progression in the G93A SOD1 fALS mouse model.
Collapse
|
4
|
Simon-Keller K, Barth S, Vincent A, Marx A. Targeting the fetal acetylcholine receptor in rhabdomyosarcoma. Expert Opin Ther Targets 2012; 17:127-38. [PMID: 23231343 DOI: 10.1517/14728222.2013.734500] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma of childhood and adolescence. Recent efforts to enhance overall survival of patients with clinically advanced RMS have failed and there is a demand for conceptually novel treatments. Immune therapeutic options targeting the fetal nicotinic acetylcholine receptor (fnAChR), which is broadly expressed on RMS, are novel approaches to overcome the therapeutic resistance of RMS. Expression of the fnAChR is restricted to developing fetal muscles, some apparently dispensable ocular muscle fibers and thymic myoid cells. Therefore, after-birth fnAChR is a tumor-associated and almost tumor-specific antigen on RMS cells. AREAS COVERED This review gives an overview on nAChR function and expression pattern in RMS tumor cells, and deals with the immunological significance of fnAChR-expressing cells, including the risk of anti-nAChR autoimmunity as a potential side effect of fnAChR-directed immunotherapies. The article also addresses the advantages and disadvantages of vaccination strategies, immunotoxins and chimeric T cells targeting the fnAChR. EXPERT OPINION Finally, we suggest technical and biological strategies to improve the available immunotherapeutic tools including increasing the in vivo expression of the target fnAChR on RMS cells.
Collapse
Affiliation(s)
- Katja Simon-Keller
- University Medical Centre Mannheim, University of Heidelberg, Institute of Pathology, Theodor-Kutzer-Ufer 1-3, D-68135 Mannheim, Germany.
| | | | | | | |
Collapse
|
5
|
Macquarrie KL, Yao Z, Young JM, Cao Y, Tapscott SJ. miR-206 integrates multiple components of differentiation pathways to control the transition from growth to differentiation in rhabdomyosarcoma cells. Skelet Muscle 2012; 2:7. [PMID: 22541669 PMCID: PMC3417070 DOI: 10.1186/2044-5040-2-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 04/29/2012] [Indexed: 01/02/2023] Open
Abstract
Background Similar to replicating myoblasts, many rhabdomyosarcoma cells express the myogenic determination gene MyoD. In contrast to myoblasts, rhabdomyosarcoma cells do not make the transition from a regulative growth phase to terminal differentiation. Previously we demonstrated that the forced expression of MyoD with its E-protein dimerization partner was sufficient to induce differentiation and suppress multiple growth-promoting genes, suggesting that the dimer was targeting a switch that regulated the transition from growth to differentiation. Our data also suggested that a balance between various inhibitory transcription factors and MyoD activity kept rhabdomyosarcomas trapped in a proliferative state. Methods Potential myogenic co-factors were tested for their ability to drive differentiation in rhabdomyosarcoma cell culture models, and their relation to MyoD activity determined through molecular biological experiments. Results Modulation of the transcription factors RUNX1 and ZNF238 can induce differentiation in rhabdomyosarcoma cells and their activity is integrated, at least in part, through the activation of miR-206, which acts as a genetic switch to transition the cell from a proliferative growth phase to differentiation. The inhibitory transcription factor MSC also plays a role in controlling miR-206, appearing to function by occluding a binding site for MyoD in the miR-206 promoter. Conclusions These findings support a network model composed of coupled regulatory circuits with miR-206 functioning as a switch regulating the transition from one stable state (growth) to another (differentiation).
Collapse
Affiliation(s)
- Kyle L Macquarrie
- Human Biology Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, C3-168, Seattle, WA, 98109, USA.
| | | | | | | | | |
Collapse
|
6
|
Kim JA, Laney C, Curry J, Unguez GA. Expression of myogenic regulatory factors in the muscle-derived electric organ of Sternopygus macrurus. J Exp Biol 2008; 211:2172-84. [PMID: 18552307 PMCID: PMC2650510 DOI: 10.1242/jeb.016592] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In most groups of electric fish, the current-producing cells of electric organs (EOs) derive from striated muscle fibers but retain some phenotypic characteristics of their precursor muscle cells. Given the role of the MyoD family of myogenic regulatory factors (MRFs) in the transcriptional activation of the muscle program in vertebrates, we examined their expression in the electrocytes of the gymnotiform Sternopygus macrurus. We estimated the number of MRF genes in the S. macrurus genome and our Southern blot analyses revealed a single MyoD, myogenin, myf5 and MRF4 gene. Quantitative RT-PCR showed that muscle and EO transcribe all MRF genes. With the exception of MyoD, the endogenous levels of myogenin, myf5 and MRF4 transcripts in electrocytes were greater than those detected in muscle fibers. These data indicate that MRF expression levels are not sufficient to predict the level to which the muscle program is manifested. Qualitative expression analysis of MRF co-regulators MEF2C, Id1 and Id2 also revealed these genes not to be unique to either muscle or EO, and detected similar expression patterns in the two tissues. Therefore, the partial muscle program of the EO is not associated with a partial expression of MRFs or with apparent distinct levels of some MRF co-factors. In addition, electrical inactivation by spinal cord transection (ST) resulted in the up-regulation of some muscle proteins in electrocytes without an accompanying increase in MRF transcript levels or notable changes in the co-factors MEF2C, Id1 and Id2. These findings suggest that the neural regulation of the skeletal muscle program via MRFs in S. macrurus might differ from that of their mammalian counterparts. Together, these data further our understanding of the molecular processes involved in the plasticity of the vertebrate skeletal muscle program that brings about the muscle-like phenotype of the non-contractile electrogenic cells in S. macrurus.
Collapse
Affiliation(s)
- Jung A Kim
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| | | | | | | |
Collapse
|
7
|
Simonides WS, van Hardeveld C. Thyroid hormone as a determinant of metabolic and contractile phenotype of skeletal muscle. Thyroid 2008; 18:205-16. [PMID: 18279021 DOI: 10.1089/thy.2007.0256] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Skeletal muscles are composed of several types of fibers with different contractile and metabolic properties. Genetic background and type of innervation of the fibers primarily determine these properties, but thyroid hormone (TH) is a powerful modulator of the fiber phenotype. The rates of contraction and relaxation are stimulated by TH, as are the energy consumption and heat production associated with activity. Quantitative and qualitative changes in substrate metabolism accommodate the increase in ATP turnover. Because of the total mass of skeletal muscle, these changes affect whole-body physiology. Although apparently straightforward, the phenotypic shifts induced by TH are highly complex and fiber specific. This review addresses the mechanisms by which TH may modulate fiber gene expression and discusses some of the implications of the TH-regulated changes in metabolic and contractile phenotype of skeletal muscle.
Collapse
Affiliation(s)
- Warner S Simonides
- Laboratory for Physiology, Institute for Cardiovascular Research VU University Medical Center, Amsterdam, The Netherlands.
| | | |
Collapse
|
8
|
Ma J, Shen J, Garrett JP, Lee CA, Li Z, Elsaidi GA, Ritting A, Hick J, Tan KH, Smith TL, Smith BP, Koman LA. Gene expression of myogenic regulatory factors, nicotinic acetylcholine receptor subunits, and GAP-43 in skeletal muscle following denervation in a rat model. J Orthop Res 2007; 25:1498-505. [PMID: 17568415 DOI: 10.1002/jor.20414] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Neuromuscular junction destabilization following nerve injury contributes to irreversible functional impairment. Myogenic Regulatory Factors (MRF's) including myoblast determination factor (MyoD), MRF-4, Myogenin, and myogenic factors-5 (myf-5), and Growth-associated protein 43 KDa (GAP43) regulate gene expression of nicotinic acetylcholine receptor (nAChR) subunits (alpha, beta, delta, gamma, and epsilon). We hypothesized that nerve injury induces altered gene expression of MRF's, nAChRs, and GAP-43 in the skeletal muscle which destabilize neuromuscular junctions. The tibial nerve was transected in 42 juvenile male Sprague-Dawley rats. Denervated and contralateral control gastrocnemius m. mRNA for nAChR subunits, MRF's, and GAP-43 were determined by real time reverse transcription polymerase chain reaction (real time RT-PCR). After transection, muscle mass decreased for 1 year with a nadir of 75% at 3 months. Alpha, gamma, and epsilon subunit genes increased by 3 and peaked at 7 days before returning to control levels (P < 0.05). Beta subunits and GAP-43 tended to increase. Delta subunits peaked at 3 days returning to control levels by 30 days. By one month, most of the nAChR subunits had returned to control levels. Alpha, beta, gamma, and delta subunit expression remained significantly lower than control up to 1 year later (P < 0.05). MRF4, Myogenin, and MyoD expression paralleled that of alpha, gamma, and epsilon nAChR subunits (P < 0.05). Gene expression of nAChR alpha, gamma, delta and epsilon subunits was biphasic in the first month after nerve injury, similar to that of MRF's. nAChR subunits and MRF's may play a critical role in neuromuscular junction stability.
Collapse
Affiliation(s)
- Jianjun Ma
- Department of Orthopaedic Surgery, Wake Forest University Health Sciences, Medical Center Boulevard, Winston Salem, North Carolina 27157, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
McLellan AS, Kealey T, Langlands K. An E box in the exon 1 promoter regulates insulin-like growth factor-I expression in differentiating muscle cells. Am J Physiol Cell Physiol 2006; 291:C300-7. [PMID: 16554406 DOI: 10.1152/ajpcell.00345.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Insulin-like growth factor (IGF)-I expression is subject to complex temporal and spatial regulation. Endocrine synthesis occurs in the liver, where transcription is initiated from promoters located in either exon 1 (P1) or in exon 2 (P2), whereas local transcription is mainly initiated from P1. IGF-I is expressed in a range of tissues and, in particular, is an important regulator of skeletal muscle mass, although the mechanisms of tissue-specific regulation remain to be fully characterized. Gene regulation in skeletal muscle is associated with the E box DNA element (5′-CANNTG-3′) recognized by myogenic regulatory factors (MRFs), such as MyoD1. Transcription element profiling identified a hypothetical myogenic E box (sequence 5′-CAGCTG-3′) within P1, immediately upstream of the major muscle transcriptional start site, and we sought to test its activity in differentiating C2C12 myoblasts. We found P1-driven IGF-I mRNA expression to be associated with myogenic differentiation and, moreover, that a single base-pair mutation in the E box specifically reduced expression in myofibers. A synthetic enhancer construct containing a triplet repeat of the E box was active in muscle cells and strongly induced in myofibers. The capacity of a double-stranded IGF-I E box probe (but not one bearing a single-base pair alteration) to bind C2C12 nuclear lysates increased with myogenesis, and a transactivation assay demonstrated that the E box was recognized by E protein-MRF heterodimers. Mechanisms of tissue-specific gene activation are of increasing biological interest, and we have identified a cis-element able to direct muscle-specific IGF-I gene expression.
Collapse
Affiliation(s)
- A S McLellan
- Clore Laboratory, Univ. of Buckingham, Hunter St., Buckingham, MK18 1EG, UK
| | | | | |
Collapse
|
10
|
Mozaffar T, Haddad F, Zeng M, Zhang LY, Adams GR, Baldwin KM. Molecular and cellular defects of skeletal muscle in an animal model of acute quadriplegic myopathy. Muscle Nerve 2006; 35:55-65. [PMID: 16967495 DOI: 10.1002/mus.20647] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Muscle denervation and concomitant high-dose dexamethasone treatment in rodents produces characteristic pathologic features of severe muscle atrophy and selective myosin heavy filament (MyHC) depletion, identical to those seen in acute quadriplegic myopathy (AQM), also known as critical illness myopathy. We tested the hypothesis that defective pre-translational processes contribute to the atrophy and selective MyHC depletion in this model. We examined the effects of combined glucocorticoid-denervation treatment on MyHC and actin mRNA populations; we also studied mRNA expression of the myogenic regulatory factors (MRFs), primary transcription factors for MyHC. Adult female rats were subjected to proximal sciatic denervation followed by high-dose dexamethasone (DD) treatment (5 mg/kg body weight daily) for 7 days. Disease controls included rats treated with denervation alone (DN) or dexamethasone alone (DX). At 1 week the plantaris atrophied by approximately 42% in DD muscles. DD treatment resulted in selective MyHC protein depletion; actin protein concentration was not significantly changed. Despite an increase in total RNA concentration in DN and DD muscles, MyHC and actin mRNA concentrations were significantly decreased in these muscles. MyHC mRNA showed a significantly more extensive depletion relative to actin mRNA in DD muscles. Glucocorticoid treatment did not influence a denervation-induced increase in the mRNA expression of the MRFs. We conclude that a deleterious interaction between glucocorticoid and denervation treatments in skeletal muscle is responsible for pre-translational defects that reduce actin and MyHC mRNA substrates in a disproportionate fashion. The resultant selective MyHC depletion contributes to the severe muscle atrophy.
Collapse
Affiliation(s)
- Tahseen Mozaffar
- Department of Neurology, University of California, Irvine, 101 City Drive South, Building 22C, Route 13, Orange, California 92868, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Dedieu S, Mazères G, Dourdin N, Cottin P, Brustis JJ. Transactivation of capn2 by myogenic regulatory factors during myogenesis. J Mol Biol 2003; 326:453-65. [PMID: 12559913 DOI: 10.1016/s0022-2836(02)01310-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The calcium-activated cysteine protease m-calpain plays a pivotal role during the earlier stages of myogenesis, particularly during fusion. The enzyme is a heterodimer, encoded by the genes capn2, for the large subunit, and capn4, for the small subunit. To study the regulation of m-calpain, the DNA sequence upstream of capn2 was analyzed for promoter elements, revealing the existence of five consensus-binding sites (E-box) for several myogenic regulatory factors and one binding site for myocyte enhancer factor-2 (MEF-2). Transient transfections with reporter gene constructs containing the E-box revealed that MyoD presents a high level of transactivation of reporter constructs containing this region, in particular the sequences including the MEF-2/E4-box. In addition, over-expression of various myogenic factors demonstrated that MyoD and myogenin with much less efficiency, can up-regulate capn2, both singly and synergistically, while Myf5 has no effect on synthesis of the protease. Experiments with antisense oligonucleotides directed against each myogenic factor revealed that MyoD plays a specific and pivotal role during capn2 regulation, and cannot be replaced wholly by myogenin and Myf5.
Collapse
Affiliation(s)
- Stéphane Dedieu
- Laboratoire Biosciences de l'Aliment, ISTAB-USC-INRA 429, Université Bordeaux I, Avenue des Facultés, 33405 Talence Cedex, France
| | | | | | | | | |
Collapse
|
12
|
Spinner DS, Liu S, Wang SW, Schmidt J. Interaction of the myogenic determination factor myogenin with E12 and a DNA target: mechanism and kinetics. J Mol Biol 2002; 317:431-45. [PMID: 11922675 DOI: 10.1006/jmbi.2002.5440] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The myogenic determination factors MyoD, myogenin, myf5, and MRF4 are members of the basic helix-loop-helix (bHLH) family of transcription factors and crucial agents of myogenesis. The bHLH regions of these proteins enable them to dimerize with E proteins, another class of the bHLH family, and to bind a specific DNA element known as an E box (CANNTG consensus sequence), which results in the activation of muscle-specific gene expression. As a model for such assembly of the myogenic determination factor/E protein-DNA ternary complex, we have studied the physiologically relevant association of myogenin, E12, and the 3' E box of the acetylcholine receptor (AChR) alpha-subunit gene enhancer. Using the technique of electrophoretic mobility shift assay combined with order-of-addition and time-course experiments, we find that heterodimerization of myogenin with E12 occurs prior to DNA-binding. In addition, we deduce the dissociation (Kd) and rate (k) constants for each step in the formation of the myogenin/E12-DNA ternary complex. Kinetic simulations indicate that at 37 degrees C myogenin and E12 heterodimerize with a Kd of 36 microM (k(on) of 573 M(-1) x s(-1) and k(off )of 0.0205 x s(-1)), and that subsequently the heterodimer binds the AChR alpha-subunit gene enhancer 3' E box with a Kd of 8.8 nM (with possible k(on) and k(off) values ranging from 1.0x10(8) to 14.1x10(8) M(-1) x s(-1), and 0.875 to 12.3 s(-1), respectively).
Collapse
Affiliation(s)
- Daryl S Spinner
- Department of Biochemistry and Cell Biology, State University of New York at Stony Brook, Stony Brook 11794-5215, USA
| | | | | | | |
Collapse
|
13
|
Poëa S, Guyon T, Levasseur P, Berrih-Aknin S. Expression of ciliary neurotrophic factor receptor in myasthenia gravis. J Neuroimmunol 2001; 120:180-9. [PMID: 11694333 DOI: 10.1016/s0165-5728(01)00423-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In myasthenia gravis, high anti-nicotinic receptor (AChR) antibody titers are not always associated with severity of the disease, suggesting the involvement of other pathological effectors. We showed that ciliary neurotrophic factor receptor (CNTFR) gene expression was higher in muscle biopsy tissue from severely affected MG patients regardless of anti-nAChR antibody titer. This increase was also triggered in vitro by a seric factor from MG patients. CNTFR protein expression was decreased in muscles from seropositive MG patients only.Altogether, our data indicate that the alteration of CNTFR expression in some MG patients could contribute to the severity of the disease in a subgroup of patients.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Blood Proteins/pharmacology
- Cells, Cultured/drug effects
- Cells, Cultured/immunology
- Cells, Cultured/metabolism
- Female
- Gene Expression/drug effects
- Gene Expression/immunology
- Humans
- Male
- Middle Aged
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Myasthenia Gravis/immunology
- Myasthenia Gravis/metabolism
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Receptor, Ciliary Neurotrophic Factor/genetics
- Receptors, Cholinergic/genetics
- Receptors, Cholinergic/immunology
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- S Poëa
- Laboratoire de Physiologie Thymique, CNRS ESA 8078, Hôpital Marie Lannelongue, 133 Avenue de la Résistance, 92350, Le Plessis Robinson, France
| | | | | | | |
Collapse
|
14
|
Lee JJ, Moon YA, Ha JH, Yoon DJ, Ahn YH, Kim KS. Cloning of human acetyl-CoA carboxylase beta promoter and its regulation by muscle regulatory factors. J Biol Chem 2001; 276:2576-85. [PMID: 11076940 DOI: 10.1074/jbc.m007002200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 280-kDa beta-isoform of acetyl-CoA carboxylase (ACCbeta) is predominantly expressed in heart and skeletal muscle, whereas the 265-kDa alpha-isoform (ACCalpha) is the major ACC in lipogenic tissues. The ACCbeta promoter showed myoblast-specific promoter activity and was strongly induced by MyoD in NIH3T3 cells. Serial deletions of the promoter revealed that MyoD acts on the E-boxes located at positions -498 to -403 and on the proximal region including the 5'-untranslated region. Destruction of the E-boxes at positions -498 to -403 by site-directed mutagenesis resulted in a significant decrease of MyoD responsiveness. The "TGAAA" at -32 to -28 and the region around the transcription start site play important roles in basal transcription, probably as a TATA box and an Inr element, respectively. Mutations of another E-box at -14 to -9 and a "GCCTGTCA" sequence at +17 to +24 drastically decreased the MyoD responsiveness. The novel cis-element GCCTGTCA was preferentially bound by MyoD homodimer in EMSA and conferred MyoD responsiveness to a luciferase reporter, which was repressed by the overexpression of E12. This finding is unique since activation via E-boxes is mediated by heterodimers of MyoD and E-proteins. We screened a human skeletal muscle cDNA library to isolate clones expressing proteins that bind to the region around the GCCTGTCA (+8 to +27) sequence, and isolated Myf4 and Myf6 cDNAs. Electrophoretic mobility shift assay showed that recombinant Myf4 and Myf6 bind to this novel cis-element. Moreover, transient expression of Myf6 induced significant activation on the ACCbeta promoter or an artificial promoter harboring this novel cis-element. These findings suggest that muscle regulatory factors, such as MyoD, Myf4, and Myf6, contribute to the muscle-specific expression of ACCbeta via E-boxes and the novel cis-element GCCTGTCA.
Collapse
Affiliation(s)
- J J Lee
- Department of Biochemistry and Molecular Biology, the Institute of Genetic Science, Yonsei University College of Medicine, 134 Shinchon-dong Seodaemun-gu, Seoul, 120-752, Korea
| | | | | | | | | | | |
Collapse
|
15
|
Liu S, Spinner DS, Schmidt MM, Danielsson JA, Wang S, Schmidt J. Interaction of MyoD family proteins with enhancers of acetylcholine receptor subunit genes in vivo. J Biol Chem 2000; 275:41364-8. [PMID: 11024014 DOI: 10.1074/jbc.m004172200] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The myogenic determination factors (MDFs) are transcriptional activators that target E boxes in many muscle-specific promoters, including those of the genes coding for the subunits of the acetylcholine receptor. It is not known, however, if in vivo a given E box in a transcriptionally active gene is occupied, either uniquely by one MDF or randomly by all MDFs. We have analyzed expression of MDF and acetylcholine receptor subunits in cultured mouse muscle cells and, using chromatin immunoprecipitation, have determined which individual MDFs reside at promoters of several receptor subunit genes. We find that before fusion, C2C12 cells express myf-5, MyoD, and myogenin, all of which take up residence at promoters of all subunits except epsilon. At this stage, herculin is present in limited amounts and is detected mainly at the gamma and delta subunit genes. On myotube formation, herculin reaches high levels; concomitantly, the epsilon subunit gene becomes a common MDF target and begins to be expressed. In general, any MDF protein that is expressed also is present on transcriptionally active receptor genes; transcriptional activity of target genes correlates with occupancy by MDF, in particular, herculin.
Collapse
Affiliation(s)
- S Liu
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, New York 11794-5215, USA
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
The muscle-specific helix-loop-helix (HLH) transcription factors myoD, myogenin, MRF4, and myf-5 are called the muscle regulatory factor family (MRF). Levels of MRFs are strongly regulated by muscle electrical activity and are thought to control downstream genes that are important for muscle phenotype such as the acetylcholine receptor (AChR) and possibly genes connected to muscle metabolic properties. The MRFs interact with ubiquitously expressed HLH factors such as E-proteins and Id-proteins to form heterodimers. In the present paper, we report the effects of paralysis obtained by nerve impulse block with tetrodotoxin (TTX) and denervation on messenger ribonucleic acid (mRNA) levels for Id-1, E47, myogenin, AChR alpha-subunit and beta-actin. Both Id-1 and E47 showed twofold increases in absence of nerve evoked electrical activity. These changes in the ubiquitously expressed HLH factors might have important functional implications for downstream gene expression, but in comparison, myogenin mRNA was increased 10-fold. We conclude that myogenin and the other muscle-specific MRFs remain the transcription factors with the strongest activity dependence that has so far been described in muscle.
Collapse
Affiliation(s)
- H Carlsen
- Department of Neurophysiology, University of Oslo, Norway
| | | |
Collapse
|
17
|
Johnson AD, Owens GK. Differential activation of the SMalphaA promoter in smooth vs. skeletal muscle cells by bHLH factors. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:C1420-31. [PMID: 10362606 DOI: 10.1152/ajpcell.1999.276.6.c1420] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
E-box/basic helix-loop-helix (bHLH)-dependent regulation of promoters for skeletal muscle-specific genes is well established, but similar regulation of smooth muscle-selective promoters has not been reported. Using transient transfection assays of smooth muscle alpha-actin (SMalphaA) promoter-chloramphenicol acetyltransferase (CAT) reporter constructs in rat vascular smooth muscle cells (SMCs) and L6 skeletal myotubes, we identified two activator elements, smE1 and smE2, with sequences corresponding to E-box (5'-CAnnTG-3') motifs. In L6 myotubes, 4-bp mutations of smE1 or smE2 E-box motif alone completely abolished promoter activity. In contrast, mutation of smE1 and smE2 was required to reduce promoter activity in SMCs. Supershift analyses identified a myogenin-containing complex as the predominant smE1 and smE2 binding activity in skeletal muscle, and myogenin overexpression transactivated the promoter. Supershift analyses with SMC extracts demonstrated that the bHLH protein upstream stimulatory factor (USF) bound smE1, and USF overexpression transactivated the promoter in an smE1-dependent manner. In summary, our results provide novel evidence implicating E-box elements in directing expression of the SMalphaA promoter through distinct bHLH factor complexes in skeletal vs. smooth muscle.
Collapse
Affiliation(s)
- A D Johnson
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina 27109, USA
| | | |
Collapse
|
18
|
Hughes SM, Chi MM, Lowry OH, Gundersen K. Myogenin induces a shift of enzyme activity from glycolytic to oxidative metabolism in muscles of transgenic mice. J Cell Biol 1999; 145:633-42. [PMID: 10225962 PMCID: PMC2185087 DOI: 10.1083/jcb.145.3.633] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Physical training regulates muscle metabolic and contractile properties by altering gene expression. Electrical activity evoked in muscle fiber membrane during physical activity is crucial for such regulation, but the subsequent intracellular pathway is virtually unmapped. Here we investigate the ability of myogenin, a muscle-specific transcription factor strongly regulated by electrical activity, to alter muscle phenotype. Myogenin was overexpressed in transgenic mice using regulatory elements that confer strong expression confined to differentiated post-mitotic fast muscle fibers. In fast muscles from such mice, the activity levels of oxidative mitochondrial enzymes were elevated two- to threefold, whereas levels of glycolytic enzymes were reduced to levels 0.3-0.6 times those found in wild-type mice. Histochemical analysis shows widespread increases in mitochondrial components and glycogen accumulation. The changes in enzyme content were accompanied by a reduction in fiber size, such that many fibers acquired a size typical of oxidative fibers. No change in fiber type-specific myosin heavy chain isoform expression was observed. Changes in metabolic properties without changes in myosins are observed after moderate endurance training in mammals, including humans. Our data suggest that myogenin regulated by electrical activity may mediate effects of physical training on metabolic capacity in muscle.
Collapse
MESH Headings
- Animals
- Cell Respiration/physiology
- Cell Size/physiology
- Gene Expression Regulation, Enzymologic
- Glycolysis/physiology
- Mice
- Mice, Transgenic
- Mitochondria/enzymology
- Muscle Fibers, Fast-Twitch/chemistry
- Muscle Fibers, Fast-Twitch/cytology
- Muscle Fibers, Fast-Twitch/metabolism
- Muscle Fibers, Slow-Twitch/chemistry
- Muscle Fibers, Slow-Twitch/cytology
- Muscle Fibers, Slow-Twitch/metabolism
- Muscle, Skeletal/cytology
- Muscle, Skeletal/metabolism
- Myogenin/genetics
- Myogenin/metabolism
- Rats
- Transgenes/physiology
Collapse
Affiliation(s)
- S M Hughes
- The Randall Institute, King's College London, London WC2B 5RL, United Kingdom
| | | | | | | |
Collapse
|
19
|
Sapru MK, Florance SK, Kirk C, Goldman D. Identification of a neuregulin and protein-tyrosine phosphatase response element in the nicotinic acetylcholine receptor epsilon subunit gene: regulatory role of an Rts transcription factor. Proc Natl Acad Sci U S A 1998; 95:1289-94. [PMID: 9448324 PMCID: PMC18748 DOI: 10.1073/pnas.95.3.1289] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
At the neuromuscular synapse, innervation induces endplate-specific expression of adult-type nicotinic acetylcholine receptors by selective expression of their subunit-encoding genes (alpha2betaepsilondelta) in endplate-associated myonuclei. These genes are specifically regulated by protein-tyrosine phosphatase (PTPase) activity. In addition, neuregulin/acetylcholine-receptor-inducing activity, a nerve-derived factor that stimulates nicotinic acetylcholine receptor synthesis, induces adult-type specific epsilon subunit gene expression via activation of a Ras/mitogen-activated protein kinase pathway. However, the DNA regulatory elements and the binding proteins that mediate PTPase and neuregulin-dependent gene expression remain unknown. Herein we report that PTPase, neuregulin, and Ras-dependent regulation of the epsilon subunit gene map to a 15-bp promoter sequence. Interestingly, this same 15-bp sequence appears to be necessary for low epsilon subunit gene expression in extrajunctional regions of the muscle fiber. Site-directed mutagenesis of a putative Ets binding site located within this 15-bp sequence, reduced PTPase, neuregulin, and Ras-dependent regulation. Overexpression of the rat muscle Ets-2 transcription factor resulted in a sequence-specific induction of epsilon subunit promoter activity. Further, a dominant negative mutant of Ets-2 abolished neuregulin-dependent induction of epsilon subunit gene expression. Thus, these results indicate a crucial role for the 15-bp element in determining synapse-specific and neuregulin-mediated motor neuron control of epsilon subunit gene expression and suggest the participation of Ets transcription factor(s) in this control.
Collapse
Affiliation(s)
- M K Sapru
- Mental Health Research Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
20
|
Dennis P, Prody CA. Multiple nuclear proteins bind a novel cis-acting element that regulates the muscle-specific expression of the mouse nicotinic acetylcholine receptor alpha-subunit gene. DNA Cell Biol 1997; 16:1099-110. [PMID: 9324312 DOI: 10.1089/dna.1997.16.1099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Expression of the nicotinic acetylcholine receptor (AChR) is transcriptionally regulated during the development of vertebrate striated muscle. To better define regulatory elements involved in this process, site-directed mutations were made in the gene's 86 bp muscle specific enhancer. Transient expression assays in skeletal muscle C2C12 cells indicated that all three E-boxes, plus a novel sequence outside the E-boxes, are necessary for full activity of the AChR gene in myotubes. Gel mobility shift assays demonstrated that mutations in the non-E-box sequence disrupted the formation of two DNA/protein complexes while not affecting myoD binding. Methylation interference footprinting confirmed that the complexes form at nucleotides within the mutated region, and also include part of the central E-box. UV crosslinking of nuclear proteins to a DNA probe identified five proteins of 125, 81, 55, 42, and 35 kDa that bind to this region; with the 125 kDa protein being differentially bound in U.V. crosslink assays during the transition from myoblasts to myotubes. These data suggest that interactions between this DNA element and the five proteins contribute to the transcriptional control of the AChR alpha-subunit gene expression during the differentiation of skeletal muscle.
Collapse
Affiliation(s)
- P Dennis
- Division of Cardiovascular Research, Hospital for Sick Children, Toronto, Ontario, Canada
| | | |
Collapse
|
21
|
Sapru MK, Gao JP, Walke W, Burmeister M, Goldman D. Cloning and characterization of a novel transcriptional repressor of the nicotinic acetylcholine receptor delta-subunit gene. J Biol Chem 1996; 271:7203-11. [PMID: 8636158 DOI: 10.1074/jbc.271.12.7203] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have identified a negative cis-acting regulatory element in the nicotinic acetylcholine receptor delta-subunit gene's promoter. This element resides within a previously identified 47-base pair activity-dependent enhancer. Proteins that bind this region of DNA were cloned from a lambdagt11 innervated muscle expression library. Two cDNAs (MY1 and MY1a) were isolated that encode members of the Y-box family of transcription factors. MY1/1a RNAs are expressed at relatively high levels in heart, skeletal muscle, testis, glia, and specific regions of the central nervous system. MY1/1a are nuclear proteins that bind specifically to the coding strand of the 47-base pair enhancer and suppress delta-promoter activity in a sequence-specific manner. These results suggest a novel mechanism of repression by MY1/1a, which may contribute to the low level expression of the delta-subunit gene in innervated muscle. Finally, the gene encoding MY1/1a, Yb2, maps to the mid-distal region of mouse chromosome 6.
Collapse
Affiliation(s)
- M K Sapru
- Mental Health Research Institute, University of Michigan, Ann Arbor, 48109, USA
| | | | | | | | | |
Collapse
|
22
|
Malik S, Huang CF, Schmidt J. The Role of the CANNTG Promoter Element (E box) and the Myocyte-enhancer-binding-factor-2 (MEF-2) Site in the Transcriptional Regulation of the Chick Myogenin Gene. ACTA ACUST UNITED AC 1995. [DOI: 10.1111/j.1432-1033.1995.0088i.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
23
|
Koishi K, Zhang M, McLennan IS, Harris AJ. MyoD protein accumulates in satellite cells and is neurally regulated in regenerating myotubes and skeletal muscle fibers. Dev Dyn 1995; 202:244-54. [PMID: 7780174 DOI: 10.1002/aja.1002020304] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
MyoD belongs to a family of helix-loop-helix proteins that control myogenic differentiation. Transfection of various non-myogenic cell lines with MyoD transforms them into myogenic cells. In normal embryonic development MyoD is upregulated at the time when the hypaxial musculature begins to form, but its role in the function of adult muscle remains to be elucidated. In this study we examined the cellular locations of MyoD protein in normal and abnormal muscles to see whether the presence of MyoD protein is correlated with a particular cellular behaviour and to assess the usefulness of MyoD as a marker for satellite cells. Adult rats were anaesthetised and their tibialis anterior or soleus muscles either denervated, tenotomised, freeze lesioned, lesioned and denervated, or lesioned and tenotomised. At various intervals after the operations the rats were killed and their muscles removed, snap frozen, and sectioned with a cryostat along with muscles from unoperated neonatal and adult rats. The sections were processed for immunohistochemistry using a rabbit affinity-purified antibody to recombinant MyoD. MyoD proved to be an excellent marker for active satellite cells; satellite cells in neonatal and regenerating muscles contained high levels of MyoD protein. MyoD positive cells were not observed in the muscles of old adults, in which the satellite cells are fully quiescent. MyoD immunoreactivity was rapidly lost from satellite cell nuclei after they fused into myotubes and was not detected in either sub-synaptic or non-synaptic nuclei of mature fibers. Denervation, and to a lesser extent tenotomy, of lesioned muscles induced expression of MyoD in myotubal nuclei. Denervation of normal muscles also upregulated MyoD in muscle fiber nuclei, an effect which was maximal after 3 days. We conclude that MyoD protein is neurally regulated in both myotubes and muscle fibers.
Collapse
Affiliation(s)
- K Koishi
- Department of Anatomy and Structural Biology, University of Otago, Dunedin, New Zealand
| | | | | | | |
Collapse
|
24
|
|
25
|
Mutero A, Camp S, Taylor P. Promoter Elements of the Mouse Acetylcholinesterase Gene. J Biol Chem 1995. [DOI: 10.1074/jbc.270.4.1866] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
26
|
Sapru MK, Zhou G, Goldman D. Protein-tyrosine phosphatases specifically regulate muscle adult-type nicotinic acetylcholine receptor gene expression. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)46857-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
27
|
Dürr I, Numberger M, Berberich C, Witzemann V. Characterization of the functional role of E-box elements for the transcriptional activity of rat acetylcholine receptor epsilon-subunit and gamma-subunit gene promoters in primary muscle cell cultures. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 224:353-64. [PMID: 7925348 DOI: 10.1111/j.1432-1033.1994.00353.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The expression of gamma and epsilon subunits of the acetylcholine receptor from mammalian skeletal muscle is regulated independently during myogenic differentiation and innervation. Genomic DNA fragments containing 5'-flanking sequences of the epsilon-subunit and gamma-subunit genes were characterised by a series of 5' deletions fused to the chloramphenicol-acetyltransferase gene and transiently expressed by transfection of primary cultures of rat muscle cells and non-muscle cells. A 6.3-kb epsilon-subunit fragment can be reduced to yield a 270-bp fragment that confers 5-10-times higher expression levels in muscle cells compared to in non-muscle cells. The region composed of nucleotides -185 to -128 increases the transcriptional activity moderately while the 14-bp palindrome containing a single E box at nucleotides -88 to -83 may interact with the promoter but has no enhancer properties in muscle cells. From a 1.1-kb genomic fragment of the gamma-subunit gene, 167 bp were sufficient for muscle-specific expression. Two promoter-proximal E-box elements enhance promoter activity in muscle and mediate transactivation by myogenic factors. Myogenin and myf5 were much more efficient than MRF4 or MyoD1 which exerted only little transactivation. Cotransfection experiments show that increased expression of Id in primary muscle cells inhibits chloramphenicol-acetyltransferase expression mediated by the gamma-subunit gene promoter and support the view that myogenic factors play an important role in the transcriptional regulation of the gamma-subunit gene.
Collapse
Affiliation(s)
- I Dürr
- Max-Planck-Institut für medizinische Forschung, Abteilung Zellphysiologie, Heidelberg, Germany
| | | | | | | |
Collapse
|
28
|
Walke W, Staple J, Adams L, Gnegy M, Chahine K, Goldman D. Calcium-dependent regulation of rat and chick muscle nicotinic acetylcholine receptor (nAChR) gene expression. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32189-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
29
|
Hess N, Merz B, Gundelfinger ED. Acetylcholine receptors of the Drosophila brain: a 900 bp promoter fragment contains the essential information for specific expression of the ard gene in vivo. FEBS Lett 1994; 346:135-40. [PMID: 7516894 DOI: 10.1016/0014-5793(94)00443-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The ard gene encodes a beta-subunit of Drosophila nicotinic acetylcholine receptors specifically expressed in a subset of neurons. To identify the cis-regulatory region responsible for this cell-specific expression, various 5' fragments of the ard gene were fused to a lacZ reporter gene and introduced into the Drosophila genome. A DNA fragment spanning approximately 760 bp upstream and approximately 140 bp downstream of a cluster of putative transcription start sites produced a pattern of beta-galactosidase activity that resembles the distribution of ARD transcripts. Both in embryos and adults the levels of lacZ RNA were similar to those of endogenous ARD transcripts, suggesting that the 900 bp fragment harbors all essential elements for proper expression of the ard gene.
Collapse
Affiliation(s)
- N Hess
- Center for Molecular Neurobiology, University of Hamburg, Germany
| | | | | |
Collapse
|
30
|
Myogenin and acetylcholine receptor alpha gene promoters mediate transcriptional regulation in response to motor innervation. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)41968-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
31
|
van de Klundert F, Jansen H, Bloemendal H. A proximal promoter element in the hamster desmin upstream regulatory region is responsible for activation by myogenic determination factors. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)42337-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
32
|
Quik M, Odeh R, Philie J, Szyf M. Functional nicotinic receptor expression in mesodermal cells transfected with MyoD cDNA. Neuroscience 1993; 57:787-95. [PMID: 8309537 DOI: 10.1016/0306-4522(93)90024-a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Previous studies had shown that MyoD promoted nicotinic acetylcholine subunit gene expression; the present experiments were done to determine whether this subsequently led to the development of functional nicotinic acetylcholine receptors. Transfection of C3H 10T1/2 cells with MyoD cDNA resulted in the appearance of [125I]alpha-bungarotoxin binding sites; radiolabelled alpha-toxin binding was not observed in cells transfected with a plasmid that lacked MyoD cDNA. Receptor development plateaued over a time course of several days with maximal binding seven and 11 days after exposure to fusion medium. [125I]alpha-bungarotoxin binding was of high affinity (Kd = 1 nM), saturable and was inhibited by nicotinic but not muscarinic receptor ligands, with IC50s of 1-3 nM for alpha-bungarotoxin, 1-3 microM for d-tubocurarine and 3-10 microM for nicotine. Not only did the cells exhibit a cell surface nicotinic receptor but they also expressed a nicotinic receptor mediated functional response. Carbachol resulted in uptake of 22Na into the cells at concentrations similar to those required for receptor activation at a muscle type nicotinic receptor; furthermore, the functional response was effectively blocked by nicotinic receptor ligands, including alpha-bungarotoxin (IC50 = 2 to 6 nM) and d-tubocurarine (IC50 = 0.1 to 0.4 microM); muscarinic receptor ligands had no effect. A time course study showed that alpha-bungarotoxin binding and carbachol stimulated 22Na uptake developed in parallel, suggesting that the observed functional response was mediated through an interaction at the alpha-bungarotoxin recognition site.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M Quik
- Department of Pharmacology, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
33
|
Sunyer T, Merlie JP. Cell type- and differentiation-dependent expression from the mouse acetylcholine receptor epsilon-subunit promoter. J Neurosci Res 1993; 36:224-34. [PMID: 8263973 DOI: 10.1002/jnr.490360213] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The nicotinic acetylcholine receptor (AChR) in adult skeletal muscle is composed of alpha-, beta-, epsilon-, and delta-subunits and is localized at the neuromuscular junction; in contrast, the more diffusely distributed fetal form is composed of alpha-, beta-, gamma-, and delta-subunits. To define sequences necessary for the transcriptional regulation of the mouse epsilon-subunit gene, we sequenced and analyzed 1036 bp upstream of the transcription start site. Using deletion analysis of the 5'-flanking region linked to the bacterial chloramphenicol acetyltransferase (CAT) gene and transfection of the resulting constructs into established cell lines, we demonstrate that a 151 bp fragment exhibits cell type- and differentiation-specific promoter activity. This activity was independent of a myogenic factor putative binding site (E-box). However, transactivation experiments with recombinant myoD, myogenin, or MRF4 showed that the E-box was functional and that MRF4 preferentially transactivates the epsilon-promoter. Thus, like other AChR promoters, the proximal region of the epsilon-promoter contains information for cell type-specific and developmental regulation of CAT and can be transactivated by myogenic factors in cultured cell lines. Unlike the other AChR promoters characterized to date, epsilon-promoter function can be partially independent of myogenic factors of the helix-loop-helix class.
Collapse
Affiliation(s)
- T Sunyer
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri
| | | |
Collapse
|
34
|
Evans SM, Walsh BA, Newton CB, Thorburn JS, Gardner PD, van Bilsen M. Potential role of helix-loop-helix proteins in cardiac gene expression. Circ Res 1993; 73:569-78. [PMID: 8394227 DOI: 10.1161/01.res.73.3.569] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Because helix-loop-helix (HLH) transcription factors appear to play an important role in mesodermal development, we have investigated the potential role of these factors in cardiac gene expression. HLH proteins interact with DNA at consensus "E-box" sites and may be tissue specific or more widely expressed. We have examined cardiac cells for expression and regulation of widely expressed factors Pan1/Pan2 and the inhibitor of differentiation (Id) by RNase protection analysis. The effect of MyoD, Id, and Pan1/Pan2 expression on skeletal and cardiac promoters in cardiac cells was examined by transient cotransfection studies. Our results indicate that neonatal ventricular cells are a functional HLH environment, because MyoD can activate a skeletal muscle-specific promoter in these cells. MyoD, however, has no effect on the expression of several genes that are expressed in cardiac cells. In addition, Id may be an early response gene for signal transduction in cardiac cells, because increases in Id mRNA occurred within 30 minutes of stimulation with serum or phenylephrine. Activities of three cardiac promoter elements in primary ventricular myocytes were not downregulated by Id. Surprisingly, expression of Pan1 and Pan2 exhibited a strong negative effect on cardiac expression of the myosin light chain-2 promoter.
Collapse
Affiliation(s)
- S M Evans
- Department of Medicine, University of California, San Diego, La Jolla 92093-0613
| | | | | | | | | | | |
Collapse
|
35
|
Huang CF, Neville CM, Schmidt J. Control of myogenic factor genes by the membrane depolarization/protein kinase C cascade in chick skeletal muscle. FEBS Lett 1993; 319:21-5. [PMID: 8384125 DOI: 10.1016/0014-5793(93)80029-t] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Myogenic factor genes were found to respond differentially to electrical stimulation of denervated chick skeletal muscle. Myogenin gene activity declined rapidly (t1/2: approximately 2 min), comparable to the rate of acetylcholine receptor (AChR) gene inactivation, while other myogenic bHLH genes either lost activity more slowly (MyoD) or not at all (myf5, herculin). Protein kinase C (PKC) is known to couple membrane activity to AChR gene inactivation; myogenin gene transcription was also rapidly blocked by the PKC activator PMA, whereas electrostimulation remained without effect on myogenin gene activity in muscle that was either exposed to the kinase inhibitor staurosporine or chronically treated with PMA to deplete PKC. These results attest to a special role for myogenin in the activation of AChR genes in denervation supersensitivity.
Collapse
Affiliation(s)
- C F Huang
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook 11794
| | | | | |
Collapse
|
36
|
|
37
|
Myosin light chain-2 luciferase transgenic mice reveal distinct regulatory programs for cardiac and skeletal muscle-specific expression of a single contractile protein gene. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)49616-6] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
38
|
Neville CM, Schmidt J. Expression of myogenic factors in skeletal muscle and electric organ of Torpedo californica. FEBS Lett 1992; 305:23-6. [PMID: 1321728 DOI: 10.1016/0014-5793(92)80647-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Fish electric organ is a skeletal muscle homolog in which many muscle-specific genes are inhibited while acetylcholine receptor is expressed at high levels. The molecular mechanisms underlying this discoordinate regulation have not yet been explored. We have obtained partial sequences for MyoD, myogenin, and myf5 from Torpedo californica and have measured their mRNAs in several organs, using ribonuclease protection. We have found that MyoD and myf5 are expressed at comparable levels in muscle and electric organ, whereas myogenin transcripts could not be detected in either tissue. Acetylcholine receptor alpha subunit mRNA, on the other hand, is two orders of magnitude more abundant in electric tissue. We conclude that neither the loss of contractile proteins from, nor the enhanced expression of acetylcholine receptor genes in, the differentiating electrocyte is a simple consequence of the abundance of myogenic factor messages.
Collapse
Affiliation(s)
- C M Neville
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook 11794
| | | |
Collapse
|