1
|
Brischigliaro M, Cabrera-Orefice A, Arnold S, Viscomi C, Zeviani M, Fernández-Vizarra E. Structural rather than catalytic role for mitochondrial respiratory chain supercomplexes. eLife 2023; 12:RP88084. [PMID: 37823874 PMCID: PMC10569793 DOI: 10.7554/elife.88084] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
Mammalian mitochondrial respiratory chain (MRC) complexes are able to associate into quaternary structures named supercomplexes (SCs), which normally coexist with non-bound individual complexes. The functional significance of SCs has not been fully clarified and the debate has been centered on whether or not they confer catalytic advantages compared with the non-bound individual complexes. Mitochondrial respiratory chain organization does not seem to be conserved in all organisms. In fact, and differently from mammalian species, mitochondria from Drosophila melanogaster tissues are characterized by low amounts of SCs, despite the high metabolic demands and MRC activity shown by these mitochondria. Here, we show that attenuating the biogenesis of individual respiratory chain complexes was accompanied by increased formation of stable SCs, which are missing in Drosophila melanogaster in physiological conditions. This phenomenon was not accompanied by an increase in mitochondrial respiratory activity. Therefore, we conclude that SC formation is necessary to stabilize the complexes in suboptimal biogenesis conditions, but not for the enhancement of respiratory chain catalysis.
Collapse
Affiliation(s)
- Michele Brischigliaro
- Department of Biomedical Sciences, University of PadovaPadovaItaly
- Veneto Institute of Molecular MedicinePaduaItaly
| | - Alfredo Cabrera-Orefice
- Radboud Institute for Molecular Life Sciences, Radboud University Medical CenterNijmegenNetherlands
| | - Susanne Arnold
- Radboud Institute for Molecular Life Sciences, Radboud University Medical CenterNijmegenNetherlands
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of CologneCologneGermany
| | - Carlo Viscomi
- Department of Biomedical Sciences, University of PadovaPadovaItaly
- Veneto Institute of Molecular MedicinePaduaItaly
| | - Massimo Zeviani
- Department of Neurosciences, University of PadovaPadovaItaly
| | - Erika Fernández-Vizarra
- Department of Biomedical Sciences, University of PadovaPadovaItaly
- Veneto Institute of Molecular MedicinePaduaItaly
| |
Collapse
|
2
|
Sato W, Ishimori K. Regulation of electron transfer in the terminal step of the respiratory chain. Biochem Soc Trans 2023; 51:1611-1619. [PMID: 37409479 DOI: 10.1042/bst20221449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/07/2023]
Abstract
In mitochondria, electrons are transferred along a series of enzymes and electron carriers that are referred to as the respiratory chain, leading to the synthesis of cellular ATP. The series of the interprotein electron transfer (ET) reactions is terminated by the reduction in molecular oxygen at Complex IV, cytochrome c oxidase (CcO) that is coupled with the proton pumping from the matrix to the inner membrane space. Unlike the ET reactions from Complex I to Complex III, the ET reaction to CcO, mediated by cytochrome c (Cyt c), is quite specific in that it is irreversible with suppressed electron leakage, which characterizes the ET reactions in the respiratory chain and is thought to play a key role in the regulation of mitochondrial respiration. In this review, we summarize the recent findings regarding the molecular mechanism of the ET reaction from Cyt c to CcO in terms of specific interaction between two proteins, a molecular breakwater, and the effects of the conformational fluctuation on the ET reaction, conformational gating. Both of these are essential factors, not only in the ET reaction from Cyt c to CcO, but also in the interprotein ET reactions in general. We also discuss the significance of a supercomplex in the terminal ET reaction, which provides information on the regulatory factors of the ET reactions that are specific to the mitochondrial respiratory chain.
Collapse
Affiliation(s)
- Wataru Sato
- Department of Life Science, Graduate School of Life Science, University of Hyogo, Ako, Hyogo 678-1297, Japan
| | - Koichiro Ishimori
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
3
|
Bulthuis EP, Dieteren CEJ, Bergmans J, Berkhout J, Wagenaars JA, van de Westerlo EMA, Podhumljak E, Hink MA, Hesp LFB, Rosa HS, Malik AN, Lindert MKT, Willems PHGM, Gardeniers HJGE, den Otter WK, Adjobo-Hermans MJW, Koopman WJH. Stress-dependent macromolecular crowding in the mitochondrial matrix. EMBO J 2023; 42:e108533. [PMID: 36825437 PMCID: PMC10068333 DOI: 10.15252/embj.2021108533] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 02/25/2023] Open
Abstract
Macromolecules of various sizes induce crowding of the cellular environment. This crowding impacts on biochemical reactions by increasing solvent viscosity, decreasing the water-accessible volume and altering protein shape, function, and interactions. Although mitochondria represent highly protein-rich organelles, most of these proteins are somehow immobilized. Therefore, whether the mitochondrial matrix solvent exhibits macromolecular crowding is still unclear. Here, we demonstrate that fluorescent protein fusion peptides (AcGFP1 concatemers) in the mitochondrial matrix of HeLa cells display an elongated molecular structure and that their diffusion constant decreases with increasing molecular weight in a manner typical of macromolecular crowding. Chloramphenicol (CAP) treatment impaired mitochondrial function and reduced the number of cristae without triggering mitochondrial orthodox-to-condensed transition or a mitochondrial unfolded protein response. CAP-treated cells displayed progressive concatemer immobilization with increasing molecular weight and an eightfold matrix viscosity increase, compatible with increased macromolecular crowding. These results establish that the matrix solvent exhibits macromolecular crowding in functional and dysfunctional mitochondria. Therefore, changes in matrix crowding likely affect matrix biochemical reactions in a manner depending on the molecular weight of the involved crowders and reactants.
Collapse
Affiliation(s)
- Elianne P Bulthuis
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Centre (Radboudumc), Nijmegen, The Netherlands
| | - Cindy E J Dieteren
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Centre (Radboudumc), Nijmegen, The Netherlands.,Department of Cell Biology and Electron Microscopy Center, Radboudumc, Nijmegen, The Netherlands
| | - Jesper Bergmans
- Department of Pediatrics, Amalia Children's Hospital, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands
| | - Job Berkhout
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Centre (Radboudumc), Nijmegen, The Netherlands
| | - Jori A Wagenaars
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Centre (Radboudumc), Nijmegen, The Netherlands
| | - Els M A van de Westerlo
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Centre (Radboudumc), Nijmegen, The Netherlands
| | - Emina Podhumljak
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Centre (Radboudumc), Nijmegen, The Netherlands
| | - Mark A Hink
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Laura F B Hesp
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Centre (Radboudumc), Nijmegen, The Netherlands
| | - Hannah S Rosa
- Department of Diabetes, King's College London, London, UK
| | - Afshan N Malik
- Department of Diabetes, King's College London, London, UK
| | - Mariska Kea-Te Lindert
- Department of Cell Biology and Electron Microscopy Center, Radboudumc, Nijmegen, The Netherlands
| | - Peter H G M Willems
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Centre (Radboudumc), Nijmegen, The Netherlands
| | - Han J G E Gardeniers
- Mesoscale Chemical Systems, University of Twente, Enschede, The Netherlands.,MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
| | - Wouter K den Otter
- MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands.,Thermal and Fluid Engineering, Faculty of Engineering Technology, University of Twente, Enschede, The Netherlands
| | - Merel J W Adjobo-Hermans
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Centre (Radboudumc), Nijmegen, The Netherlands
| | - Werner J H Koopman
- Department of Pediatrics, Amalia Children's Hospital, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands.,Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
4
|
Prola A, Vandestienne A, Baroudi N, Joubert F, Tiret L, Pilot-Storck F. Isolation and Phospholipid Enrichment of Muscle Mitochondria and Mitoplasts. Bio Protoc 2021; 11:e4201. [PMID: 34761073 PMCID: PMC8554811 DOI: 10.21769/bioprotoc.4201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/28/2021] [Accepted: 08/06/2021] [Indexed: 11/02/2022] Open
Abstract
The efficient ATP production in mitochondria relies on the highly specific organization of its double membrane. Notably, the inner mitochondrial membrane (IMM) displays a massive surface extension through its folding into cristae, along which concentrate respiratory complexes and oligomers of the ATP synthase. Evidence has accumulated to highlight the importance of a specific phospholipid composition of the IMM to support mitochondrial oxidative phosphorylation. Contribution of specific phospholipids to mitochondrial ATP production is classically studied by modulating the activity of enzymes involved in their synthesis, but the interconnection of phospholipid synthesis pathways often impedes the determination of the precise role of each phospholipid. Here, we describe a protocol to specifically enrich mitochondrial membranes with cardiolipin or phosphatidylcholine, as well as a fluorescence-based method to quantify phospholipid enrichment. This method, based on the fusion of lipid vesicles with isolated mitochondria, may further allow a precise evaluation of phospholipid contribution to mitochondrial functions.
Collapse
Affiliation(s)
- Alexandre Prola
- Univ Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France
- École nationale vétérinaire d’Alfort, IMRB, F-94700 Maisons-Alfort, France
- EFS, IMRB, F-94010 Créteil, France
| | - Aymeline Vandestienne
- Univ Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France
- École nationale vétérinaire d’Alfort, IMRB, F-94700 Maisons-Alfort, France
- EFS, IMRB, F-94010 Créteil, France
| | - Nabil Baroudi
- Univ Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France
- École nationale vétérinaire d’Alfort, IMRB, F-94700 Maisons-Alfort, France
- EFS, IMRB, F-94010 Créteil, France
- Laboratoire Jean Perrin, CNRS, Sorbonne Université, UMR 8237, F-75005 Paris, France
| | - Frederic Joubert
- Laboratoire Jean Perrin, CNRS, Sorbonne Université, UMR 8237, F-75005 Paris, France
| | - Laurent Tiret
- Univ Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France
- École nationale vétérinaire d’Alfort, IMRB, F-94700 Maisons-Alfort, France
- EFS, IMRB, F-94010 Créteil, France
| | - Fanny Pilot-Storck
- Univ Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France
- École nationale vétérinaire d’Alfort, IMRB, F-94700 Maisons-Alfort, France
- EFS, IMRB, F-94010 Créteil, France
| |
Collapse
|
5
|
Kinetic advantage of forming respiratory supercomplexes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148193. [PMID: 32201307 DOI: 10.1016/j.bbabio.2020.148193] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/11/2020] [Accepted: 03/16/2020] [Indexed: 11/22/2022]
Abstract
Components of respiratory chains in mitochondria and some aerobic bacteria assemble into larger, multiprotein membrane-bound supercomplexes. Here, we address the functional significance of supercomplexes composed of respiratory-chain complexes III and IV. Complex III catalyzes oxidation of quinol and reduction of water-soluble cytochrome c (cyt c), while complex IV catalyzes oxidation of the reduced cyt c and reduction of dioxygen to water. We focus on two questions: (i) under which conditions does diffusion of cyt c become rate limiting for electron transfer between these two complexes? (ii) is there a kinetic advantage of forming a supercomplex composed of complexes III and IV? To answer these questions, we use a theoretical approach and assume that cyt c diffuses in the water phase while complexes III and IV either diffuse independently in the two dimensions of the membrane or form supercomplexes. The analysis shows that the electron flux between complexes III and IV is determined by the equilibration time of cyt c within the volume of the intermembrane space, rather than the cyt c diffusion time constant. Assuming realistic relative concentrations of membrane-bound components and cyt c and that all components diffuse independently, the data indicate that electron transfer between complexes III and IV can become rate limiting. Hence, there is a kinetic advantage of bringing complexes III and IV together in the membrane to form supercomplexes.
Collapse
|
6
|
Letts JA, Fiedorczuk K, Degliesposti G, Skehel M, Sazanov LA. Structures of Respiratory Supercomplex I+III 2 Reveal Functional and Conformational Crosstalk. Mol Cell 2019; 75:1131-1146.e6. [PMID: 31492636 PMCID: PMC6926478 DOI: 10.1016/j.molcel.2019.07.022] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 06/10/2019] [Accepted: 07/15/2019] [Indexed: 11/02/2022]
Abstract
The mitochondrial electron transport chain complexes are organized into supercomplexes (SCs) of defined stoichiometry, which have been proposed to regulate electron flux via substrate channeling. We demonstrate that CoQ trapping in the isolated SC I+III2 limits complex (C)I turnover, arguing against channeling. The SC structure, resolved at up to 3.8 Å in four distinct states, suggests that CoQ oxidation may be rate limiting because of unequal access of CoQ to the active sites of CIII2. CI shows a transition between "closed" and "open" conformations, accompanied by the striking rotation of a key transmembrane helix. Furthermore, the state of CI affects the conformational flexibility within CIII2, demonstrating crosstalk between the enzymes. CoQ was identified at only three of the four binding sites in CIII2, suggesting that interaction with CI disrupts CIII2 symmetry in a functionally relevant manner. Together, these observations indicate a more nuanced functional role for the SCs.
Collapse
Affiliation(s)
- James A Letts
- Institute of Science and Technology Austria, Klosterneuberg 3400, Austria; Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Karol Fiedorczuk
- Institute of Science and Technology Austria, Klosterneuberg 3400, Austria; Laboratory of Membrane Biophysics and Biology, The Rockefeller University, New York, NY 10065, USA
| | | | - Mark Skehel
- MRC Laboratory of Molecular Biology, Cambridge CB2 OQH, UK
| | - Leonid A Sazanov
- Institute of Science and Technology Austria, Klosterneuberg 3400, Austria.
| |
Collapse
|
7
|
Ramírez-Camacho I, Correa F, El Hafidi M, Silva-Palacios A, Ostolga-Chavarría M, Esparza-Perusquía M, Olvera-Sánchez S, Flores-Herrera O, Zazueta C. Cardioprotective strategies preserve the stability of respiratory chain supercomplexes and reduce oxidative stress in reperfused ischemic hearts. Free Radic Biol Med 2018; 129:407-417. [PMID: 30316780 DOI: 10.1016/j.freeradbiomed.2018.09.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 09/20/2018] [Accepted: 09/30/2018] [Indexed: 12/25/2022]
Abstract
Electron leakage from dysfunctional respiratory chain and consequent superoxide formation leads to mitochondrial and cell injury during ischemia and reperfusion (IR). In this work we evaluate if the supramolecular assembly of the respiratory complexes into supercomplexes (SCs) is associated with preserved energy efficiency and diminished oxidative stress in post-ischemic hearts treated with the antioxidant N-acetylcysteine (NAC) and the cardioprotective maneuver of Postconditioning (PostC). Hemodynamic variables, infarct size, oxidative stress markers, oxygen consumption and the activity/stability of SCs were compared between groups. We found that mitochondrial oxygen consumption and the activity of respiratory complexes are preserved in mitochondria from reperfused hearts treated with both NAC and PostC. Both treatments contribute to recover the activity of individual complexes. NAC reduced oxidative stress and maintained SCs assemblies containing Complex I, Complex III, Complex IV and the adapter protein SCAFI more effectively than PostC. On the other hand, the activities of CI, CIII and CIV associated to SCs assemblies were preserved by this maneuver, suggesting that the activation of other cardioprotective mechanisms besides oxidative stress contention might participate in maintaining the activity of the mitochondrial respiratory complexes in such superstructures. We conclude that both the monomeric and the SCs assembly of the respiratory chain contribute to the in vivo functionality of the mitochondria. However, although the ROS-induced damage and the consequent increased production of ROS affect the assembly of SCs, other levels of regulation as those induced by PostC, might participate in maintaining the activity of the respiratory complexes in such superstructures.
Collapse
Affiliation(s)
- I Ramírez-Camacho
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología. I. Ch., 14080 Mexico, D.F., Mexico
| | - F Correa
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología. I. Ch., 14080 Mexico, D.F., Mexico
| | - M El Hafidi
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología. I. Ch., 14080 Mexico, D.F., Mexico
| | - A Silva-Palacios
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología. I. Ch., 14080 Mexico, D.F., Mexico
| | - M Ostolga-Chavarría
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología. I. Ch., 14080 Mexico, D.F., Mexico
| | - M Esparza-Perusquía
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Mexico, D.F., Mexico
| | - S Olvera-Sánchez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Mexico, D.F., Mexico
| | - O Flores-Herrera
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Mexico, D.F., Mexico
| | - C Zazueta
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología. I. Ch., 14080 Mexico, D.F., Mexico.
| |
Collapse
|
8
|
Uno S, Kimura H, Murai M, Miyoshi H. Exploring the quinone/inhibitor-binding pocket in mitochondrial respiratory complex I by chemical biology approaches. J Biol Chem 2018; 294:679-696. [PMID: 30425100 DOI: 10.1074/jbc.ra118.006056] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/10/2018] [Indexed: 11/06/2022] Open
Abstract
NADH-quinone oxidoreductase (respiratory complex I) couples NADH-to-quinone electron transfer to the translocation of protons across the membrane. Even though the architecture of the quinone-access channel in the enzyme has been modeled by X-ray crystallography and cryo-EM, conflicting findings raise the question whether the models fully reflect physiologically relevant states present throughout the catalytic cycle. To gain further insights into the structural features of the binding pocket for quinone/inhibitor, we performed chemical biology experiments using bovine heart sub-mitochondrial particles. We synthesized ubiquinones that are oversized (SF-UQs) or lipid-like (PC-UQs) and are highly unlikely to enter and transit the predicted narrow channel. We found that SF-UQs and PC-UQs can be catalytically reduced by complex I, albeit only at moderate or low rates. Moreover, quinone-site inhibitors completely blocked the catalytic reduction and the membrane potential formation coupled to this reduction. Photoaffinity-labeling experiments revealed that amiloride-type inhibitors bind to the interfacial domain of multiple core subunits (49 kDa, ND1, and PSST) and the 39-kDa supernumerary subunit, although the latter does not make up the channel cavity in the current models. The binding of amilorides to the multiple target subunits was remarkably suppressed by other quinone-site inhibitors and SF-UQs. Taken together, the present results are difficult to reconcile with the current channel models. On the basis of comprehensive interpretations of the present results and of previous findings, we discuss the physiological relevance of these models.
Collapse
Affiliation(s)
- Shinpei Uno
- From the Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hironori Kimura
- From the Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Masatoshi Murai
- From the Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hideto Miyoshi
- From the Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
9
|
Solution NMR structure of yeast Rcf1, a protein involved in respiratory supercomplex formation. Proc Natl Acad Sci U S A 2018; 115:3048-3053. [PMID: 29507228 DOI: 10.1073/pnas.1712061115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Saccharomyces cerevisiae respiratory supercomplex factor 1 (Rcf1) protein is located in the mitochondrial inner membrane where it is involved in formation of supercomplexes composed of respiratory complexes III and IV. We report the solution structure of Rcf1, which forms a dimer in dodecylphosphocholine (DPC) micelles, where each monomer consists of a bundle of five transmembrane (TM) helices and a short flexible soluble helix (SH). Three TM helices are unusually charged and provide the dimerization interface consisting of 10 putative salt bridges, defining a "charge zipper" motif. The dimer structure is supported by molecular dynamics (MD) simulations in DPC, although the simulations show a more dynamic dimer interface than the NMR data. Furthermore, CD and NMR data indicate that Rcf1 undergoes a structural change when reconstituted in liposomes, which is supported by MD data, suggesting that the dimer structure is unstable in a planar membrane environment. Collectively, these data indicate a dynamic monomer-dimer equilibrium. Furthermore, the Rcf1 dimer interacts with cytochrome c, suggesting a role as an electron-transfer bridge between complexes III and IV. The Rcf1 structure will help in understanding its functional roles at a molecular level.
Collapse
|
10
|
Letts JA, Sazanov LA. Clarifying the supercomplex: the higher-order organization of the mitochondrial electron transport chain. Nat Struct Mol Biol 2017; 24:800-808. [PMID: 28981073 DOI: 10.1038/nsmb.3460] [Citation(s) in RCA: 249] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/03/2017] [Indexed: 12/27/2022]
Abstract
The oxidative phosphorylation electron transport chain (OXPHOS-ETC) of the inner mitochondrial membrane is composed of five large protein complexes, named CI-CV. These complexes convert energy from the food we eat into ATP, a small molecule used to power a multitude of essential reactions throughout the cell. OXPHOS-ETC complexes are organized into supercomplexes (SCs) of defined stoichiometry: CI forms a supercomplex with CIII2 and CIV (SC I+III2+IV, known as the respirasome), as well as with CIII2 alone (SC I+III2). CIII2 forms a supercomplex with CIV (SC III2+IV) and CV forms dimers (CV2). Recent cryo-EM studies have revealed the structures of SC I+III2+IV and SC I+III2. Furthermore, recent work has shed light on the assembly and function of the SCs. Here we review and compare these recent studies and discuss how they have advanced our understanding of mitochondrial electron transport.
Collapse
Affiliation(s)
- James A Letts
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Leonid A Sazanov
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
11
|
Bernardino de la Serna J, Schütz GJ, Eggeling C, Cebecauer M. There Is No Simple Model of the Plasma Membrane Organization. Front Cell Dev Biol 2016; 4:106. [PMID: 27747212 PMCID: PMC5040727 DOI: 10.3389/fcell.2016.00106] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/14/2016] [Indexed: 12/29/2022] Open
Abstract
Ever since technologies enabled the characterization of eukaryotic plasma membranes, heterogeneities in the distributions of its constituents were observed. Over the years this led to the proposal of various models describing the plasma membrane organization such as lipid shells, picket-and-fences, lipid rafts, or protein islands, as addressed in numerous publications and reviews. Instead of emphasizing on one model we in this review give a brief overview over current models and highlight how current experimental work in one or the other way do not support the existence of a single overarching model. Instead, we highlight the vast variety of membrane properties and components, their influences and impacts. We believe that highlighting such controversial discoveries will stimulate unbiased research on plasma membrane organization and functionality, leading to a better understanding of this essential cellular structure.
Collapse
Affiliation(s)
- Jorge Bernardino de la Serna
- Science and Technology Facilities Council, Rutherford Appleton Laboratory, Central Laser Facility, Research Complex at Harwell Harwell, UK
| | - Gerhard J Schütz
- Institute of Applied Physics, Technische Universität Wien Wien, Austria
| | - Christian Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford Headley Way, UK
| | - Marek Cebecauer
- Department of Biophysical Chemistry, J.Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences Prague, Czech Republic
| |
Collapse
|
12
|
Letts JA, Fiedorczuk K, Sazanov LA. The architecture of respiratory supercomplexes. Nature 2016; 537:644-648. [PMID: 27654913 DOI: 10.1038/nature19774] [Citation(s) in RCA: 387] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 08/18/2016] [Indexed: 02/06/2023]
Abstract
Mitochondrial electron transport chain complexes are organized into supercomplexes responsible for carrying out cellular respiration. Here we present three architectures of mammalian (ovine) supercomplexes determined by cryo-electron microscopy. We identify two distinct arrangements of supercomplex CICIII2CIV (the respirasome)-a major 'tight' form and a minor 'loose' form (resolved at the resolution of 5.8 Å and 6.7 Å, respectively), which may represent different stages in supercomplex assembly or disassembly. We have also determined an architecture of supercomplex CICIII2 at 7.8 Å resolution. All observed density can be attributed to the known 80 subunits of the individual complexes, including 132 transmembrane helices. The individual complexes form tight interactions that vary between the architectures, with complex IV subunit COX7a switching contact from complex III to complex I. The arrangement of active sites within the supercomplex may help control reactive oxygen species production. To our knowledge, these are the first complete architectures of the dominant, physiologically relevant state of the electron transport chain.
Collapse
Affiliation(s)
- James A Letts
- Institute of Science and Technology Austria, Klosterneuburg 3400, Austria
| | - Karol Fiedorczuk
- Institute of Science and Technology Austria, Klosterneuburg 3400, Austria.,MRC Mitochondrial Biology Unit, Cambridge CB2 0XY, UK
| | - Leonid A Sazanov
- Institute of Science and Technology Austria, Klosterneuburg 3400, Austria
| |
Collapse
|
13
|
Kinetic evidence against partitioning of the ubiquinone pool and the catalytic relevance of respiratory-chain supercomplexes. Proc Natl Acad Sci U S A 2014; 111:15735-40. [PMID: 25331896 DOI: 10.1073/pnas.1413855111] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In mitochondria, four respiratory-chain complexes drive oxidative phosphorylation by sustaining a proton-motive force across the inner membrane that is used to synthesize ATP. The question of how the densely packed proteins of the inner membrane are organized to optimize structure and function has returned to prominence with the characterization of respiratory-chain supercomplexes. Supercomplexes are increasingly accepted structural entities, but their functional and catalytic advantages are disputed. Notably, substrate "channeling" between the enzymes in supercomplexes has been proposed to confer a kinetic advantage, relative to the rate provided by a freely accessible, common substrate pool. Here, we focus on the mitochondrial ubiquinone/ubiquinol pool. We formulate and test three conceptually simple predictions of the behavior of the mammalian respiratory chain that depend on whether channeling in supercomplexes is kinetically important, and on whether the ubiquinone pool is partitioned between pathways. Our spectroscopic and kinetic experiments demonstrate how the metabolic pathways for NADH and succinate oxidation communicate and catalyze via a single, universally accessible ubiquinone/ubiquinol pool that is not partitioned or channeled. We reevaluate the major piece of contrary evidence from flux control analysis and find that the conclusion of substrate channeling arises from the particular behavior of a single inhibitor; we explain why different inhibitors behave differently and show that a robust flux control analysis provides no evidence for channeling. Finally, we discuss how the formation of respiratory-chain supercomplexes may confer alternative advantages on energy-converting membranes.
Collapse
|
14
|
Lee CC, Petersen NO. The Triple Layer Model: A Different Perspective on Lipid Bilayers. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.200400174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Respiratory supercomplexes: structure, function and assembly. Protein Cell 2013; 4:582-90. [PMID: 23828195 DOI: 10.1007/s13238-013-3032-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 05/23/2013] [Indexed: 12/11/2022] Open
Abstract
The mitochondrial respiratory chain consists of 5 enzyme complexes that are responsible for ATP generation. The paradigm of the electron transport chain as discrete enzymes diffused in the inner mitochondrial membrane has been replaced by the solid state supercomplex model wherein the respiratory complexes associate with each other to form supramolecular complexes. Defects in these supercomplexes, which have been shown to be functionally active and required for forming stable respiratory complexes, have been associated with many genetic and neurodegenerative disorders demonstrating their biomedical significance. In this review, we will summarize the functional and structural significance of supercomplexes and provide a comprehensive review of their assembly and the assembly factors currently known to play a role in this process.
Collapse
|
16
|
Gómez LA, Hagen TM. Age-related decline in mitochondrial bioenergetics: does supercomplex destabilization determine lower oxidative capacity and higher superoxide production? Semin Cell Dev Biol 2012; 23:758-67. [PMID: 22521482 DOI: 10.1016/j.semcdb.2012.04.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 03/31/2012] [Accepted: 04/04/2012] [Indexed: 12/17/2022]
Abstract
Mitochondrial decay plays a central role in the aging process. Although certainly multifactorial in nature, defective operation of the electron transport chain (ETC) constitutes a key mechanism involved in the age-associated loss of mitochondrial energy metabolism. Primarily, mitochondrial dysfunction affects the aging animal by limiting bioenergetic reserve capacity and/or increasing oxidative stress via enhanced electron leakage from the ETC. Even though the important aging characteristics of mitochondrial decay are known, the molecular events underlying inefficient electron flux that ultimately leads to higher superoxide appearance and impaired respiration are not completely understood. This review focuses on the potential role(s) that age-associated destabilization of the macromolecular organization of the ETC (i.e. supercomplexes) may be important for development of the mitochondrial aging phenotype, particularly in post-mitotic tissues.
Collapse
Affiliation(s)
- Luis A Gómez
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | | |
Collapse
|
17
|
Dykens JA, Will Y. Biomarkers of in Vitro Drug‐Induced Mitochondrial Dysfunction. Biomarkers 2010. [DOI: 10.1002/9780470918562.ch16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
|
19
|
Lenaz G, Genova ML. Structural and functional organization of the mitochondrial respiratory chain: a dynamic super-assembly. Int J Biochem Cell Biol 2009; 41:1750-1772. [PMID: 19711505 DOI: 10.1016/j.biocel.2009.04.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The structural organization of the mitochondrial oxidative phosphorylation (OXPHOS) system has received large attention in the past and most investigations led to the conclusion that the respiratory enzymatic complexes are randomly dispersed in the lipid bilayer of the inner membrane and functionally connected by fast diffusion of smaller redox components, Coenzyme Q and cytochrome c. More recent investigations by native gel electrophoresis, however, have shown the existence of supramolecular associations of the respiratory complexes, confirmed by electron microscopy analysis and single particle image processing. Flux control analysis has demonstrated that Complexes I and III in mammalian mitochondria and Complexes I, III, and IV in plant mitochondria kinetically behave as single units with control coefficients approaching unity for each single component, suggesting the existence of substrate channelling within the supercomplexes. The reasons why the presence of substrate channelling for Coenzyme Q and cytochrome c was overlooked in the past are analytically discussed. The review also discusses the forces and the conditions responsible for the formation of the supramolecular units. The function of the supercomplexes appears not to be restricted to kinetic advantages in electron transfer: we discuss evidence on their role in the stability and assembly of the individual complexes and in preventing excess oxygen radical formation. Finally, there is increasing evidence that disruption of the supercomplex organization leads to functional derangements responsible for pathological changes.
Collapse
Affiliation(s)
- Giorgio Lenaz
- Dipartimento di Biochimica G. Moruzzi, Università di Bologna, Via Irnerio 48, 40126 Bologna, Italy.
| | | |
Collapse
|
20
|
Suthammarak W, Yang YY, Morgan PG, Sedensky MM. Complex I function is defective in complex IV-deficient Caenorhabditis elegans. J Biol Chem 2008; 284:6425-35. [PMID: 19074434 DOI: 10.1074/jbc.m805733200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Cytochrome c oxidase (COX) is hypothesized to be an important regulator of oxidative phosphorylation. However, no animal phenotypes have been described due to genetic defects in nuclear-encoded subunits of COX. We knocked down predicted homologues of COX IV and COX Va in the nematode Caenorhabditis elegans. Animals treated with W09C5.8 (COX IV) or Y37D8A.14 (COX Va) RNA interference had shortened lifespans and severe defects in mitochondrial respiratory chain function. Amount and activity of complex IV, as well as supercomplexes that included complex IV, were decreased in COX-deficient worms. The formation of supercomplex I:III was not dependent on COX. We found that COX deficiencies decreased intrinsic complex I enzymatic activity, as well as complex I-III enzymatic activity. However, overall amounts of complex I were not decreased in these animals. Surprisingly, intrinsic complex I enzymatic activity is dependent on the presence of complex IV, despite no overall decrease in the amount of complex I. Presumably the association of complex I with complex IV within the supercomplex I:III:IV enhances electron flow through complex I. Our results indicate that reduction of a single subunit within the electron transport chain can affect multiple enzymatic steps of electron transfer, including movement within a different protein complex. Patients presenting with multiple defects of electron transport may, in fact, harbor a single genetic defect.
Collapse
Affiliation(s)
- Wichit Suthammarak
- Department of Genetics, Case Western Reserve University, and Department of Anesthesiology, University Hospital, Cleveland, OH, USA
| | | | | | | |
Collapse
|
21
|
Lesnefsky EJ, Hoppel CL. Oxidative phosphorylation and aging. Ageing Res Rev 2006; 5:402-33. [PMID: 16831573 DOI: 10.1016/j.arr.2006.04.001] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Revised: 04/01/2006] [Accepted: 04/04/2006] [Indexed: 10/24/2022]
Abstract
This review addresses the data that support the presence and contribution of decreased mitochondrial oxidative phosphorylation during aging to impaired cellular metabolism. Aging impairs substrate oxidation, decreases cellular energy production and increases the production of reactive intermediates that are toxic to the cell. First, the basic principles of mitochondrial oxidative physiology are briefly reviewed. Second, the focus on the relationship of altered mitochondrial respiration to the increased production of reactive oxygen species that are employed by the "rate of living" and the "uncoupling to survive" theories of aging are discussed. Third, the impairment of function of respiration in aging is reviewed using an organ-based approach in mammalian systems. Fourth, the current state of knowledge regarding aging-induced alterations in the composition and function of key mitochondrial constituents is addressed. Model organisms, including C. elegans and D. melanogaster are included where pertinent. Fifth, these defects are related to knowledge regarding the production of reactive oxygen species from specific sites of the electron transport chain.
Collapse
Affiliation(s)
- Edward J Lesnefsky
- Department of Medicine, Division of Cardiology, Case Western Reserve University, Cleveland, OH, USA
| | | |
Collapse
|
22
|
Melo E, Martins J. Kinetics of bimolecular reactions in model bilayers and biological membranes. A critical review. Biophys Chem 2006; 123:77-94. [PMID: 16730881 DOI: 10.1016/j.bpc.2006.05.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Revised: 05/08/2006] [Accepted: 05/09/2006] [Indexed: 10/24/2022]
Abstract
The quantitative study of the probability of molecular encounters giving rise to a reaction in membranes is a challenging discipline. Model systems, model in the sense that they use model bilayers and model reactants, have been widely used for this purpose, but the methodologies employed for the analysis of the results obtained in experiments, and for experimental design, are so disparate that a concerned experimentalist has difficulty in deciding about the value of each approach. This review intends to examine the several approaches that can be found in the literature showing, when feasible, the weakness, strengths and limits of application of each of them. There is not, so far, a full experimental validation of the most promising theories for the analysis of reactions in two dimensions, what leaves open a large field for new research. The major challenge resides in the time range in which the processes take place, but the possibilities of the existing techniques for these studies are far from exhausted. We review also the attempts of several authors to quantitatively analyze the kinetics of reactions in biological membranes. Especially in this field, the recently developed microspectroscopies enclose a still unexplored potential.
Collapse
Affiliation(s)
- Eurico Melo
- Instituto de Tecnologia Química e Biológica, Oeiras, Portugal.
| | | |
Collapse
|
23
|
Schägger H, de Coo R, Bauer MF, Hofmann S, Godinot C, Brandt U. Significance of Respirasomes for the Assembly/Stability of Human Respiratory Chain Complex I. J Biol Chem 2004; 279:36349-53. [PMID: 15208329 DOI: 10.1074/jbc.m404033200] [Citation(s) in RCA: 240] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We showed that the human respiratory chain is organized in supramolecular assemblies of respiratory chain complexes, the respirasomes. The mitochondrial complexes I (NADH dehydrogenase) and III (cytochrome c reductase) form a stable core respirasome to which complex IV (cytochrome c oxidase) can also bind. An analysis of the state of respirasomes in patients with an isolated deficiency of single complexes provided evidence that the formation of respirasomes is essential for the assembly/stability of complex I, the major entry point of respiratory chain substrates. Genetic alterations leading to a loss of complex III prevented respirasome formation and led to the secondary loss of complex I. Therefore, primary complex III assembly deficiencies presented as combined complex III/I defects. This dependence of complex I assembly/stability on respirasome formation has important implications for the diagnosis of mitochondrial respiratory chain disorders.
Collapse
Affiliation(s)
- Hermann Schägger
- Institut für Biochemie I, Zentrum der Biologischen Chemie, Fachbereich Medizin, Universität Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | | | | | | | | | | |
Collapse
|
24
|
Marchal D, Pantigny J, Laval JM, Moiroux J, Bourdillon C. Rate constants in two dimensions of electron transfer between pyruvate oxidase, a membrane enzyme, and ubiquinone (coenzyme Q8), its water-insoluble electron carrier. Biochemistry 2001; 40:1248-56. [PMID: 11170450 DOI: 10.1021/bi002325y] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The functionality of the membrane-bound, ubiquinone-dependent pyruvate oxidase from the respiratory chain of Escherichia coli was reconstituted with a supported lipidic structure. The artificial structure was especially designed to allow the electrochemical control of the quinone pool through the lateral mobility of the ubiquinone (Q(8)) molecules. The kinetic coupling of the enzyme bound to the lipid structure with the quinone pool was ensured by the regeneration of the oxidized form of ubiquinone at the electrochemical interface. Such an experimental approach enabled us to carry out an unprecedented determination of the kinetic parameters controlling the reaction between the enzyme bound and the electron carrier under conditions taking rigorously into account the fact that the freedom of motion is restricted to two dimensions. The kinetic constants we found show that the activated enzyme can be efficiently regulated by the oxidation level of the quinone pool in natural membranes.
Collapse
Affiliation(s)
- D Marchal
- Laboratoire de Technologie Enzymatique, Unité associée au CNRS No. 6022, Université de Technologie de Compiègne, B.P. 20529, 60205 Compiègne Cedex, France
| | | | | | | | | |
Collapse
|
25
|
Di Bernardo S, Fato R, Casadio R, Fariselli P, Lenaz G. A high diffusion coefficient for coenzyme Q10 might be related to a folded structure. FEBS Lett 1998; 426:77-80. [PMID: 9598982 DOI: 10.1016/s0014-5793(98)00313-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We measured the lateral diffusion of different coenzyme Q homologues and analogues in model lipid vesicles using the fluorescence collisional quenching technique with pyrene derivatives and found diffusion coefficients in the range of 10(-6) cm2/s. Theoretical diffusion coefficients for these highly hydrophobic components were calculated according to the free volume theory. An important parameter in the free volume theory is the relative dimension between diffusant and solvent: a molecular dynamics computer simulation of the coenzymes yielded their most probable geometries and volumes and revealed surprisingly similar sizes of the short and long homologues, due to a folded structure of the isoprenoid chain in the latter, with a length for coenzyme Q10 of 21 A. Using this information we were able to calculate diffusion coefficients in the range of 10(-6) cm2/s, in good agreement with those found experimentally.
Collapse
Affiliation(s)
- S Di Bernardo
- Department of Biochemistry G. Moruzzi, University of Bologna, Italy
| | | | | | | | | |
Collapse
|
26
|
Marchal D, Boireau W, Laval JM, Moiroux J, Bourdillon C. Electrochemical measurement of lateral diffusion coefficients of ubiquinones and plastoquinones of various isoprenoid chain lengths incorporated in model bilayers. Biophys J 1998; 74:1937-48. [PMID: 9545054 PMCID: PMC1299536 DOI: 10.1016/s0006-3495(98)77902-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The long-range diffusion coefficients of isoprenoid quinones in a model of lipid bilayer were determined by a method avoiding fluorescent probe labeling of the molecules. The quinone electron carriers were incorporated in supported dimyristoylphosphatidylcholine layers at physiological molar fractions (<3 mol%). The elaborate bilayer template contained a built-in gold electrode at which the redox molecules solubilized in the bilayer were reduced or oxidized. The lateral diffusion coefficient of a natural quinone like UQ10 or PQ9 was 2.0 +/- 0.4 x 10(-8) cm2 s(-1) at 30 degrees C, two to three times smaller than the diffusion coefficient of a lipid analog in the same artificial bilayer. The lateral mobilities of the oxidized or reduced forms could be determined separately and were found to be identical in the 4-13 pH range. For a series of isoprenoid quinones, UQ2 or PQ2 to UQ10, the diffusion coefficient exhibited a marked dependence on the length of the isoprenoid chain. The data fit very well the quantitative behavior predicted by a continuum fluid model in which the isoprenoid chains are taken as rigid particles moving in the less viscous part of the bilayer and rubbing against the more viscous layers of lipid heads. The present study supports the concept of a homogeneous pool of quinone located in the less viscous region of the bilayer.
Collapse
Affiliation(s)
- D Marchal
- Laboratoire de Technologie Enzymatique, Unité associée au CNRS No 6022, Université de Technologie de Compiègne, France
| | | | | | | | | |
Collapse
|
27
|
Coleman PS, Chen LC, Sepp-Lorenzino L. Cholesterol metabolism and tumor cell proliferation. Subcell Biochem 1997; 28:363-435. [PMID: 9090301 DOI: 10.1007/978-1-4615-5901-6_13] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- P S Coleman
- Boston Biomedical Research Institute, Laboratory of Metabolic Regulation, MA 02114, USA
| | | | | |
Collapse
|
28
|
Fato R, Estornell E, Di Bernardo S, Pallotti F, Parenti Castelli G, Lenaz G. Steady-state kinetics of the reduction of coenzyme Q analogs by complex I (NADH:ubiquinone oxidoreductase) in bovine heart mitochondria and submitochondrial particles. Biochemistry 1996; 35:2705-16. [PMID: 8611577 DOI: 10.1021/bi9516034] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The reduction kinetics of coenzyme Q (CoQ, ubiquinone) by NADH:ubiquinone oxidoreductase (complex I, EC 1.6.99.3) was investigated in bovine heart mitochondrial membranes using water-soluble homologs and analogs of the endogenous ubiquinone acceptor CoQ10 [the lower homologs from CoQ0 to CoQ3, the 6-pentyl (PB) and 6-decyl (DB) analogs, and duroquinone]. By far the best substrates in bovine heart submitochondrial particles are CoQ1 and PB. The kinetics of NADH-CoQ reductase was investigated in detail using CoQ1 and PB as acceptors. The kinetic pattern follows a ping-pong mechanism; the Km for CoQ1 is in the range of 20 microM but is reversibly increased to 60 microM by extraction of the endogenous CoQ10. The increased Km in CoQ10-depleted membranes indicates that endogenous ubiquinone not only does not exert significant product inhibition but rather is required for the appropriate structure of the acceptor site. The much lower Vmax with CoQ2 but not with DB as acceptor, associated with an almost identical Km, suggests that the sites for endogenous ubiquinone bind 6-isoprenyl- and 6-alkylubiquinones with similar affinity, but the mode of electron transfer is less efficient with CoQ2. The Kmin (kcat/Km) for CoQ1 is 4 orders of magnitude lower than the bimolecular collisional constant calculated from fluorescence quenching of membrane probes; moreover, the activation energy calculated from Arrhenius plots of kmin is much higher than that of the collisional quenching constants. These observations strongly suggest that the interaction of the exogenous quinones with the enzyme is not diffusion-controlled. Contrary to other systems, in bovine submitochondrial particles, CoQ1 usually appears to be able to support a rate approaching that of endogenous CoQ10, as shown by application of the "pool equation" [Kröger, A., & Klingenberg, M. (1973) Eur. J. Biochem. 39, 313-323] relating the rate of ubiquinone reduction to the rate of ubiquinol oxidation and the overall rate through the ubiquinone pool.
Collapse
Affiliation(s)
- R Fato
- Dipartimento di Biochimica, Universita' di Bologna, Bologna, Italy
| | | | | | | | | | | |
Collapse
|
29
|
Jankielewicz A, Klimmek O, Kröger A. The electron transfer from hydrogenase and formate dehydrogenase to polysulfide reductase in the membrane of Wolinella succinogenes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1995. [DOI: 10.1016/0005-2728(95)00072-q] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
30
|
Anderson WM, Trgovcich-Zacok D. Carbocyanine dyes with long alkyl side-chains: broad spectrum inhibitors of mitochondrial electron transport chain activity. Biochem Pharmacol 1995; 49:1303-11. [PMID: 7763312 DOI: 10.1016/0006-2952(95)00060-d] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Certain indocarbocyanine, thiacarbocyanine, and oxacarbocyanine dyes possessing short alkyl side-chains (one to five carbons) are potent inhibitors of mammalian mitochondrial NADH-ubiquinone reductase (EC 1.6.99.3) activity (Anderson et al., Biochem Pharmacol 41: 677-684, 1991; Anderson et al., Biochem Pharmacol 45: 691-696, 1993; Anderson et al., Biochem Pharmacol 45: 2115-2122, 1993), and act similarly to rotenone. This study examines the inhibitory capacities of twelve other carbocyanine dyes (six indocarbocyanines, four oxacarbocyanines, and two thiacarbocyanines) possessing long alkyl side-chains (seven to eighteen carbons with both saturated and unsaturated side-chains) on mitochondrial NADH, succinate and cytochrome c oxidase activities. Three of the indocarbocyanines inhibited electron transport chain activity, while three were non-inhibitory. Two of the oxacarbocyanines also inhibited electron transport chain activity, while the other two were without effect. Both the thiacarbocyanines were non-inhibitory. In contrast to previous studies, the long alkyl side-chain carbocyanines exhibited a broad spectrum of inhibition of respiratory chain activity, affecting either oxidation of all three substrates or of NADH and cytochrome c, rather than specific inhibition of mitochondrial NADH-ubiquinone reductase activity, indicating that there could be multiple binding sites for these compounds. The five inhibitory long side-chain carbocyanines also inhibited reduction of ferricyanide and coenzyme Q1 by NADH, using submitochondrial particles, but not when tested with purified complex I, indicating that the mitochondrial inner membrane was an integral component in their inhibitory capacity. No general correlation of side-chain length or degree of unsaturation and inhibitory capacity was discernible.
Collapse
Affiliation(s)
- W M Anderson
- Indiana University School of Medicine, Northwest Center for Medical Education, Gary 46408, USA
| | | |
Collapse
|
31
|
|
32
|
Chazotte B. Comparisons of the relative effects of polyhydroxyl compounds on local versus long-range motions in the mitochondrial inner membrane. Fluorescence recovery after photobleaching, fluorescence lifetime, and fluorescence anisotropy studies. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1194:315-28. [PMID: 7918544 DOI: 10.1016/0005-2736(94)90314-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This laboratory has been interested in understanding the relationship between molecular motion and electron transport rates in the mitochondrial inner membrane. We have previously noted a sucrose-induced decrease in both multicomponent electron transport rates and lateral diffusion of redox components. The decreases in lateral diffusion and the related mobile fraction of redox components were greater than expected from hydrodynamic theory. In this report we sought to understand how the presence of increasing aqueous concentrations of polyhydroxyl agents affect short-range motions in different regions of the inner membrane bilayer, frequently expressed in terms of 'viscosity' and order, compared to lateral diffusion. Fluorescence recovery after photobleaching was used to monitor long-range phospholipid and integral protein diffusion. Multifrequency fluorescence lifetime and steady-state fluorescence anisotropy techniques were used to monitor local dynamics of diphenylhexatriene (DPH) and trimethylaminodiphenylhexatriene (TMA-DPH). Light scattering corrections were found to be essential for inner membrane measurements by the latter two techniques. DPH and TMA-DPH each exhibited two-lifetime components. Generally, increasing the aqueous concentration of polyhydroxyl agents decreased the average DPH lifetime and increased the average TMA-DPH lifetime. In general, under the same conditions fluorescence anisotropies increased. Our results indicated that changes in the rotational diffusion coefficient, microviscosity and order were being induced at both the phospholipid headgroup and in the acyl chain regions of the membrane bilayer. Our results suggest that these changes may be due in part to induced changes in the interaction and distribution of water with membranes. Long-range lateral diffusion was found to be significantly retarded by increasing concentrations of polyhydroxyl agents. We conclude that the discrepancies between bulk viscosity predicted decreases in long-range diffusion may result, in part, from the aforementioned membrane/water interactions. We also note an apparent qualitative relationship between long-range lateral diffusion reported diffusion coefficient with local TMA-DPH reported rotational diffusion coefficient and apparent microviscosities.
Collapse
Affiliation(s)
- B Chazotte
- Department of Cell Biology and Anatomy, School of Medicine, University of North Carolina, Chapel Hill 27599-7090
| |
Collapse
|
33
|
Taylor R, Birch-Machin M, Bartlett K, Lowerson S, Turnbull D. The control of mitochondrial oxidations by complex III in rat muscle and liver mitochondria. Implications for our understanding of mitochondrial cytopathies in man. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)41894-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
34
|
|
35
|
Gupte SS, Chazotte B, Leesnitzer MA, Hackenbrock CR. Two-dimensional diffusion of F1F0-ATP synthase and ADP/ATP translocator. Testing a hypothesis for ATP synthesis in the mitochondrial inner membrane. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1069:131-8. [PMID: 1718429 DOI: 10.1016/0005-2736(91)90114-n] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We report here the first experimentally determined lateral diffusion coefficients of the F1F0-ATP synthase and the ADP/ATP translocator in isolated inner membranes of rat liver mitochondria. Rabbit IgG developed against the F1F0-ATP synthase isolated from rat liver mitochondria was determined to be immunospecific for the synthase subunits, notably the alpha-beta doublet, gamma and delta subunits of F1 and subunits two, three and four of F0. This IgG, conjugated with lissamine-rhodamine, was used as a fluorescent probe to monitor the diffusion of the synthase in the membrane. IgG to cytochrome bc1 complex, prepared and labeled similarly, was used as a fluorescent probe for diffusion of this redox component. Eosin maleimide was determined to specifically label the ADP/ATP translocator in the isolated inner membrane and was used as a specific probe for the diffusion of the translocator. Using fluorescence recovery after photobleaching, the experimental average lateral diffusion coefficient of the F1F0-ATP synthase was determined to be 8.4 x 10(-10) cm2/s or twice that of cytochrome bc1 complex while the diffusion coefficient of the ADP/ATP translocator was 1.7 x 10(-9) cm2/s or four times that of cytochrome bc1 complex suggesting that all three components are independent two-dimensional diffusants. Using these diffusion coefficients and applying a number of basic assumptions, we calculated the theoretical two-dimensional diffusion-controlled collision frequencies and derived collision efficiencies (protons transferred per collision) between each of the three proton-transferring redox complexes and both the F1F0-ATP synthase and ADP/ATP translocator by treating the redox components as proton donors and the synthase and translocator as proton acceptors. These collision efficiencies support the physical possibility of a diffusion-based, random collision process of proton transfer and ATP synthesis in the mitochondrial inner membrane.
Collapse
Affiliation(s)
- S S Gupte
- Department of Cell Biology and Anatomy, University of North Carolina School of Medicine, Chapel Hill 27599-7090
| | | | | | | |
Collapse
|
36
|
Chazotte B, Wu ES, Hackenbrock CR. The mobility of a fluorescent ubiquinone in model lipid membranes. Relevance to mitochondrial electron transport. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1058:400-9. [PMID: 2065063 DOI: 10.1016/s0005-2728(05)80136-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The diffusion and location of a functional, fluorescent ubiquinone molecule, NBDHA-Q, were determined as a function of temperature using microscopic observation, fluorescence recovery after photobleaching and fluorescence spectroscopy in protein-free, pure-lipid dimyristoylphosphatidylcholine and dimyristoylphosphatidylcholine/cholesterol multibilayers. The data reveal that in a liquid-crystalline membrane (1) ubiquinone is highly mobile, (2) ubiquinone uniformly diffuses laterally with the same diffusion coefficient (3.10(-8) cm2/s at 25 degrees C) as the phospholipids in which it resides, (3) the diffusion coefficients of ubiquinone and phospholipid both decrease at the exothermic phase transition of the phospholipid, (4) cholesterol affects the diffusion coefficients of ubiquinone and phospholipids to the same degree, (5) cholesterol induces a lateral phase separation progressively excluding ubiquinone from cholesterol-containing domains. These data suggest that ubiquinone does not reside at the membrane surface or in the mid-plane for any appreciable length of time. Rather, the data indicate that ubiquinone is highly mobile laterally and transversely, spending the majority of its time in the acyl chain region of the membrane, where its lateral and transverse diffusion is limited by the lateral diffusion and the transverse microviscosity gradient of the phospholipids and where its lateral location can be affected by the presence of cholesterol. In addition, based upon a comparison of the diffusion coefficients for ubiquinone, phospholipids and mitochondrial redox complexes, we hypothesize that no significant portion of the ubiquinone pool remains bound to redox complexes for any significant length of time relative to that for electron transport as resolvable by fluorescence recovery after photobleaching.
Collapse
Affiliation(s)
- B Chazotte
- Department of Cell Biology and Anatomy, University of North Carolina, School of Medicine, Chapel Hill 27599
| | | | | |
Collapse
|
37
|
Chazotte B, Hackenbrock CR. Lateral diffusion of redox components in the mitochondrial inner membrane is unaffected by inner membrane folding and matrix density. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(19)67693-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
38
|
Venturoli G, Gabellini N, Oesterhelt D, Melandri BA. Kinetics of photosynthetic electron transfer in artificial vesicles reconstituted with purified complexes from Rhodobacter capsulatus. II. Direct electron transfer between the reaction center and the bc1 complex and role of cytochrome c2. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 189:95-103. [PMID: 2158893 DOI: 10.1111/j.1432-1033.1990.tb15464.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
1. The cyclic photosynthetic chain of Rhodobacter capsulatus has been reconstituted incorporating into phospholipid liposomes containing ubiquinone-10 two multiprotein complexes: the reaction center and the ubiquinol-cytochrome-c2 reductase (or bc1 complex). 2. In the presence of cytochrome c2 added externally, at concentrations in the range 10-10(4) nM, a flash-induced cyclic electron transfer can be observed. In the presence of antimycin, an inhibitor of the quinone-reducing site of the bc1 complex, the reduction of cytochrome b561 is a consequence of the donation of electrons to the photo-oxidized reaction center. At low ionic strength (10 mM KCl) and at concentrations of cytochrome c2 lower than 1 microM, the rate of this reaction is limited by the concentration of cytochrome c2. At higher concentrations the reduction rate of cytochrome b561 is controlled by the concentration of quinol in the membrane, and, therefore, is increased when the ubiquinone pool is progressively reduced. At saturating concentrations of cytochrome c2 and optimal redox poise, the half-time for cytochrome b561 reduction is about 3 ms. 3. At high ionic stength (200 mM KCl), tenfold higher concentrations of cytochrome c2 are required for promoting equivalent rates of cytochrome-b561 reduction. If the absolute values of these rates are compared with those of the cytochrome-c2-reaction-center electron transfer, it can be concluded that the reaction of oxidized cytochrome c2 with the bc1 complex is rate-limiting and involves electrstatic interactions. 4. A significant rate of intercomplex electron transfer can be observed also in the absence of cytochrome c2; in this case the electron donor to the recation center is the cytochrome c1 of the oxidoreductase complex. The oxidation of cytochrome c1 triggers a normal electron transfer within the bc1 complex. The intercomplex reaction follows second-order kinetics and is slowed at high ionic strength, suggesting a collisional interaction facilitated by electrostatic attraction. From the second-order rate constant of this process, a minimal bidimensional diffusion coefficient for the complexes in the membrane equal to 3 X 10(-11) cm2 s-1 can be evaluated.
Collapse
Affiliation(s)
- G Venturoli
- Dipartimento di Biologia, Università di Bologna, Italy
| | | | | | | |
Collapse
|
39
|
Affiliation(s)
- A Watts
- Department of Biochemistry, Oxford University, UK
| |
Collapse
|
40
|
Chazotte B, Hackenbrock CR. Lateral Diffusion as a Rate-limiting Step in Ubiquinone-mediated Mitochondrial Electron Transport. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)83687-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|