1
|
Palacios-Pérez M, José MV. A Proposal for the RNAome at the Dawn of the Last Universal Common Ancestor. Genes (Basel) 2024; 15:1195. [PMID: 39336786 PMCID: PMC11431127 DOI: 10.3390/genes15091195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
From the most ancient RNAs, which followed an RNY pattern and folded into small hairpins, modern RNA molecules evolved by two different pathways, dubbed Extended Genetic Code 1 and 2, finally conforming to the current standard genetic code. Herein, we describe the evolutionary path of the RNAome based on these evolutionary routes. In general, all the RNA molecules analysed contain portions encoded by both genetic codes, but crucial features seem to be better recovered by Extended 2 triplets. In particular, the whole Peptidyl Transferase Centre, anti-Shine-Dalgarno motif, and a characteristic quadruplet of the RNA moiety of RNAse-P are clearly unveiled. Differences between bacteria and archaea are also detected; in most cases, the biological sequences are more stable than their controls. We then describe an evolutionary trajectory of the RNAome formation, based on two complementary evolutionary routes: one leading to the formation of essentials, while the other complemented the molecules, with the cooperative assembly of their constituents giving rise to modern RNAs.
Collapse
Affiliation(s)
- Miryam Palacios-Pérez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
- Network of Researchers on the Chemical Emergence of Life (NoRCEL), Leeds LS7 3RB, UK
| | - Marco V. José
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
2
|
Huang T, Chamberlain A, Zhu J, Harris ME. A minimal RNA substrate with dual fluorescent probes enables rapid kinetics and provides insight into bacterial RNase P active site interactions. RSC Chem Biol 2024; 5:652-668. [PMID: 38966670 PMCID: PMC11221534 DOI: 10.1039/d4cb00049h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/17/2024] [Indexed: 07/06/2024] Open
Abstract
Bacterial ribonuclease P (RNase P) is a tRNA processing endonuclease that occurs primarily as a ribonucleoprotein with a catalytic RNA subunit (P RNA). As one of the first ribozymes discovered, P RNA is a well-studied model system for understanding RNA catalysis and substrate recognition. Extensive structural and biochemical studies have revealed the structure of RNase P bound to precursor tRNA (ptRNA) and product tRNA. These studies also helped to define active site residues and propose the molecular interactions that are involved in substrate binding and catalysis. However, a detailed quantitative model of the reaction cycle that includes the structures of intermediates and the process of positioning active site metal ions for catalysis is lacking. To further this goal, we used a chemically modified minimal RNA duplex substrate (MD1) to establish a kinetic framework for measuring the functional effects of P RNA active site mutations. Substitution of U69, a critical nucleotide involved in active site Mg2+ binding, was found to reduce catalysis >500-fold as expected, but had no measurable effect on ptRNA binding kinetics. In contrast, the same U69 mutations had little effect on catalysis in Ca2+ compared to reactions containing native Mg2+ ions. CryoEM structures and SHAPE mapping suggested increased flexibility of U69 and adjacent nucleotides in Ca2+ compared to Mg2+. These results support a model in which slow catalysis in Ca2+ is due to inability to engage U69. These studies establish a set of experimental tools to analyze RNase P kinetics and mechanism and can be expanded to gain new insights into the assembly of the active RNase P-ptRNA complex.
Collapse
Affiliation(s)
- Tong Huang
- Department of Chemistry, University of Florida Gainesville FL 32608 USA
| | | | - Jiaqiang Zhu
- Department of Chemistry, University of Florida Gainesville FL 32608 USA
| | - Michael E Harris
- Department of Chemistry, University of Florida Gainesville FL 32608 USA
| |
Collapse
|
3
|
Kirsebom LA, Liu F, McClain WH. The discovery of a catalytic RNA within RNase P and its legacy. J Biol Chem 2024; 300:107318. [PMID: 38677513 PMCID: PMC11143913 DOI: 10.1016/j.jbc.2024.107318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 04/29/2024] Open
Abstract
Sidney Altman's discovery of the processing of one RNA by another RNA that acts like an enzyme was revolutionary in biology and the basis for his sharing the 1989 Nobel Prize in Chemistry with Thomas Cech. These breakthrough findings support the key role of RNA in molecular evolution, where replicating RNAs (and similar chemical derivatives) either with or without peptides functioned in protocells during the early stages of life on Earth, an era referred to as the RNA world. Here, we cover the historical background highlighting the work of Altman and his colleagues and the subsequent efforts of other researchers to understand the biological function of RNase P and its catalytic RNA subunit and to employ it as a tool to downregulate gene expression. We primarily discuss bacterial RNase P-related studies but acknowledge that many groups have significantly contributed to our understanding of archaeal and eukaryotic RNase P, as reviewed in this special issue and elsewhere.
Collapse
Affiliation(s)
- Leif A Kirsebom
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
| | - Fenyong Liu
- School of Public Health, University of California, Berkeley, California, USA.
| | - William H McClain
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
4
|
Mohanty BK, Agrawal A, Kushner SR. Generation of pre-tRNAs from polycistronic operons is the essential function of RNase P in Escherichia coli. Nucleic Acids Res 2020; 48:2564-2578. [PMID: 31993626 PMCID: PMC7049720 DOI: 10.1093/nar/gkz1188] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 12/05/2019] [Accepted: 01/27/2020] [Indexed: 11/14/2022] Open
Abstract
Ribonuclease P (RNase P) is essential for the 5′-end maturation of tRNAs in all kingdoms of life. In Escherichia coli, temperature sensitive mutations in either its protein (rnpA49) and or RNA (rnpB709) subunits lead to inviability at nonpermissive temperatures. Using the rnpA49 temperature sensitive allele, which encodes a partially defective RNase P at the permissive temperature, we show here for the first time that the processing of RNase P-dependent polycistronic tRNA operons to release pre-tRNAs is the essential function of the enzyme, since the majority of 5′-immature tRNAs can be aminoacylated unless their 5′-extensions ≥8 nt. Surprisingly, the failure of 5′-end maturation elicits increased polyadenylation of some pre-tRNAs by poly(A) polymerase I (PAP I), which exacerbates inviability. The absence of PAP I led to improved aminoacylation of 5′-immature tRNAs. Our data suggest a more dynamic role for PAP I in maintaining functional tRNA levels in the cell.
Collapse
Affiliation(s)
- Bijoy K Mohanty
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Ankit Agrawal
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Sidney R Kushner
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
- To whom correspondence should be addressed. Tel: +706 542 1440; Fax: +706 542 1439;
| |
Collapse
|
5
|
Selvakumar T, Gjidoda A, Hovde SL, Henry RW. Regulation of human RNA polymerase III transcription by DNMT1 and DNMT3a DNA methyltransferases. J Biol Chem 2012; 287:7039-50. [PMID: 22219193 DOI: 10.1074/jbc.m111.285601] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human small nuclear RNA (snRNA) and small cytoplasmic RNA (scRNA) gene families encode diverse non-coding RNAs that influence cellular growth and division. Many snRNA and scRNA genes are related via their compact and yet powerful promoters that support RNA polymerase III transcription. We have utilized the human U6 snRNA gene family to examine the mechanism for regulated transcription of these potent transcription units. Analysis of nine U6 family members showed enriched CpG density within the promoters of actively transcribed loci relative to inert genes, implying a relationship between gene potency and DNA methylation. Indeed, both pharmacological inhibition of DNA methyltransferase (DNMT) activity and the forced diminution of DNMT-1, DNMT-3a, and DNMT-3b by siRNA targeting resulted in increased U6 levels in asynchronously growing MCF7 adenocarcinoma cells. In vitro transcription assays further showed that template methylation impedes U6 transcription by RNA polymerase III. Both DNMT-1 and DNMT-3a were detected at the U6-1 locus by chromatin immunoprecipitation directly linking these factors to RNA polymerase III regulation. Despite this association, the endogenous U6-1 locus was not substantially methylated in actively growing cells. However, both DNMT occupancy and low frequency methylation were correlated with increased Retinoblastoma tumor suppressor (RB) expression, suggesting that the RB status can influence specific epigenetic marks.
Collapse
Affiliation(s)
- Tharakeswari Selvakumar
- Cell and Molecular Biology Program, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | |
Collapse
|
6
|
Lönnberg T. Understanding Catalysis of Phosphate‐Transfer Reactions by the Large Ribozymes. Chemistry 2011; 17:7140-53. [DOI: 10.1002/chem.201100009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Tuomas Lönnberg
- Department of Chemistry, University of Turku, Vatselankatu 2, 20140 Turku (Finland), Fax: (+358) 2‐333‐6700
| |
Collapse
|
7
|
Lee TJ, Schwartz C, Guo P. Construction of bacteriophage phi29 DNA packaging motor and its applications in nanotechnology and therapy. Ann Biomed Eng 2009; 37:2064-81. [PMID: 19495981 PMCID: PMC2855900 DOI: 10.1007/s10439-009-9723-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Accepted: 05/20/2009] [Indexed: 01/16/2023]
Abstract
Nanobiotechnology involves the creation, characterization, and modification of organized nanomaterials to serve as building blocks for constructing nanoscale devices in technology and medicine. Living systems contain a wide variety of nanomachines and highly ordered structures of macromolecules. The novelty and ingenious design of the bacterial virus phi29 DNA packaging motor and its parts inspired the synthesis of this motor and its components as biomimetics. This 30-nm nanomotor uses six copies of an ATP-binding pRNA to gear the motor. The structural versatility of pRNA has been utilized to construct dimers, trimers, hexamers, and patterned superstructures via the interaction of two interlocking loops. The approach, based on bottom-up assembly, has also been applied to nanomachine fabrication, pathogen detection and the delivery of drugs, siRNA, ribozymes, and genes to specific cells in vitro and in vivo. Another essential component of the motor is the connector, which contains 12 copies of a protein gp10 to form a 3.6-nm central channel as a path for DNA. This article will review current studies of the structure and function of the phi29 DNA packaging motor, as well as the mechanism of motion, the principle of in vitro construction, and its potential nanotechnological and medical applications.
Collapse
Affiliation(s)
- Tae Jin Lee
- Department of Biomedical Engineering, The Vontz Center for Molecular Studies, College of Engineering and College of Medicine, University of Cincinnati, Room 1301, Cincinnati, OH 45267, USA
| | | | | |
Collapse
|
8
|
Suwa S, Nagai Y, Fujimoto A, Kikuchi Y, Tanaka T. Analysis on substrate specificity of Escherichia coli ribonuclease P using shape variants of pre-tRNA: proposal of subsites model for substrate shape recognition. J Biochem 2008; 145:151-60. [PMID: 19008262 DOI: 10.1093/jb/mvn150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We prepared a series of shape variants of a pre-tRNA and examined substrate shape recognition by bacterial RNase P ribozyme and holoenzyme. Cleavage site analysis revealed two new subsites for accepting the T-arm and the bottom half of pre-tRNA in the substrate-binding site of the enzyme. These two subsites take part in cleavage site selection of substrate by the enzyme: the cleavage site is not always selected according to the relative position of the 3'-CCA sequence of the substrate. Kinetic studies indicated that the substrate shape is recognized mainly in the transition state of the reaction, and neither the shape nor position of either the T-arm or the bottom half of the substrate affected the Michaelis complex formation. These results strongly suggest that the 5' and 3' termini of a substrate are trapped by the enzyme first, then the position and the shape of the T-arm and the bottom half are examined by the cognate subsites. From these facts, we propose a new substrate recognition model that can explain many experimental facts that have been seen as enigmatic.
Collapse
Affiliation(s)
- Satoshi Suwa
- Division of Bioscience and Biotechnology, Department of Ecological Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan
| | | | | | | | | |
Collapse
|
9
|
Altman S. Ribonuclease P: an enzyme with a catalytic RNA subunit. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 62:1-36. [PMID: 2471397 DOI: 10.1002/9780470123089.ch1] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- S Altman
- Department of Biology, Yale University, New Haven, Connecticut 06520
| |
Collapse
|
10
|
Worthey EA, Myler PJ. Protozoan genomes: gene identification and annotation. Int J Parasitol 2005; 35:495-512. [PMID: 15826642 DOI: 10.1016/j.ijpara.2005.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Revised: 01/25/2005] [Accepted: 02/06/2005] [Indexed: 12/01/2022]
Abstract
The draft sequence of several complete protozoan genomes is now available and genome projects are ongoing for a number of other species. Different strategies are being implemented to identify and annotate protein coding and RNA genes in these genomes, as well as study their genomic architecture. Since the genomes vary greatly in size, GC-content, nucleotide composition, and degree of repetitiveness, genome structure is often a factor in choosing the methodology utilised for annotation. In addition, the approach taken is dictated, to a greater or lesser extent, by the particular reasons for carrying out genome-wide analyses and the level of funding available for projects. Nevertheless, these projects have provided a plethora of material that will aid in understanding the biology and evolution of these parasites, as well as identifying new targets that can be used to design urgently required drug treatments for the diseases they cause.
Collapse
Affiliation(s)
- E A Worthey
- Seattle Biomedical Research Institute, 307 Westlake Ave N., Seattle, WA 98109-2591, USA
| | | |
Collapse
|
11
|
Guo P. Structure and function of phi29 hexameric RNA that drives the viral DNA packaging motor: review. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2002; 72:415-72. [PMID: 12206459 DOI: 10.1016/s0079-6603(02)72076-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
One notable feature of linear dsDNA viruses is that, during replication, their lengthy genome is squeezed with remarkable velocity into a preformed procapsid and packed into near crystalline density. A molecular motor using ATP as energy accomplishes this energetically unfavorable motion tack. In bacterial virus phi29, an RNA (pRNA) molecule is a vital component of this motor. This 120-base RNA has many novel and distinctive features. It contains strong secondary structure, is tightly folded, and unusually stable. Upon interaction with ion and proteins, it has a knack to adapt numerous conformations to perform versatile function. It can be easily manipulated to form stable homologous monomers, dimers, trimers and hexamers. As a result, many unknown properties of RNA have been and will be unfolded by the study of this extraordinary molecule. This article reviews the structure and function of this pRNA and focuses on novel methods and unique approaches that lead to the illumination of its structure and function.
Collapse
Affiliation(s)
- Peixuan Guo
- Department of Pathobiology and Purdue Cancer Center, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
12
|
Mat-Arip Y, Garver K, Chen C, Sheng S, Shao Z, Guo P. Three-dimensional interaction of Phi29 pRNA dimer probed by chemical modification interference, cryo-AFM, and cross-linking. J Biol Chem 2001; 276:32575-84. [PMID: 11371551 DOI: 10.1074/jbc.m100045200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Six pRNAs (p for packaging) of bacterial virus phi29 form a hexamer complex that is an essential component of the viral DNA translocating motor. Dimers, the building block of pRNA hexamer, assemble in the order of dimer --> tetramer --> hexamer. The two-dimensional structure of the pRNA monomer has been investigated extensively; however, the three-dimensional structure concerning the distance constraints of the three stems and loops are unknown. In this report, we probed the three-dimensional structure of pRNA monomer and dimer by photo affinity cross-linking with azidophenacyl. Bases 75-81 of the left stem were found to be oriented toward the head loop and proximate to bases 26-31 in a parallel orientation. Chemical modification interference indicates the involvement of bases 45-71 and 82-91 in dimer formation. Dimer was formed via hand-in-hand contact, a novel RNA dimerization that in some aspects is similar to the kissing loops of the human immunodeficiency virus. The covalently linked dimers were found to be biologically active. Both the native dimer and the covalently linked dimer were found by cryo-atomic force microscopy to be similar in global conformation and size.
Collapse
Affiliation(s)
- Y Mat-Arip
- Department of Pathobiology, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | | | |
Collapse
|
13
|
Chen C, Sheng S, Shao Z, Guo P. A dimer as a building block in assembling RNA. A hexamer that gears bacterial virus phi29 DNA-translocating machinery. J Biol Chem 2000; 275:17510-6. [PMID: 10748150 DOI: 10.1074/jbc.m909662199] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Six RNA (pRNA) molecules form a hexamer, via hand-in-hand interaction, to gear bacterial virus phi29 DNA translocation machinery. Here we report the pathway and the conditions for the hexamer formation. Stable pRNA dimers and trimers were assembled in solution, isolated from native gels, and separated by sedimentation, providing a model system for the study of RNA dimers and trimers in a protein-free environment. Cryo-atomic force microscopy revealed that monomers displayed a check mark outline, dimers exhibited an elongated shape, and trimers formed a triangle. Dimerization of pRNA was promoted by a variety of cations including spermidine, whereas procapsid binding and DNA packaging required specific divalent cations, including Mg(2+), Ca(2+), and Mn(2+). Both the tandem and fused pRNA dimers with complementary loops designed to form even-numbered rings were active in DNA packaging, whereas those without complementary loops were inactive. We conclude that dimers are the building blocks of the hexamer, and the pathway of building a hexamer is: dimer --> tetramer --> hexamer. The Hill coefficient of 2.5 suggests that there are three binding sites with cooperative binding on the surface of the procapsid. The two interacting loops played a key role in recruiting the incoming dimer, whereas the procapsid served as the foundation for hexamer assembly.
Collapse
Affiliation(s)
- C Chen
- Department of Pathobiology, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | |
Collapse
|
14
|
Abstract
The ubiquitous occurrence of ribonuclease P (RNase P) as a ribonucleoprotein and the catalytic properties of bacterial RNase P RNAs indicate that RNA fulfills an ancient and important role in the function of this enzyme. This review focuses on efforts to determine the structure of the bacterial RNase P RNA ribozyme. Phylogenetic comparative analysis of a library of bacterial RNase P RNA sequences has resulted in a well-developed secondary structure model and allowed identification of some elements of tertiary structure. The native structure has been redesigned by circular permutation to facilitate intra- and inter-molecular crosslinking experiments in order to gain further structural information. The crosslinking constraints, together with the constraints provided by comparative analyses, have been incorporated into a first-order model of the structure of of the ribozyme-substrate complex. The developing structural perspective allows the design of self-cleaving pre-tRNA-RNase P RNA conjugates which are useful tools for additional structure-probing experiments.
Collapse
Affiliation(s)
- M E Harris
- Department of Biology, Indiana University, Bloomington 47402, USA
| | | |
Collapse
|
15
|
Chamberlain JR, Tranguch AJ, Pagán-Ramos E, Engelke DR. Eukaryotic nuclear RNase P: structures and functions. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1996; 55:87-119. [PMID: 8787607 DOI: 10.1016/s0079-6603(08)60190-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- J R Chamberlain
- Program in Cellular and Molecular Biology, The University of Michigan Medical School, Ann Arbor 48109, USA
| | | | | | | |
Collapse
|
16
|
Surratt CK, Carter BJ, Payne RC, Hecht SM. Metal ion and substrate structure dependence of the processing of tRNA precursors by RNase P and M1 RNA. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)45735-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
17
|
Surratt CK, Lesnikowski Z, Schifman AL, Schmidt FJ, Hecht SM. Construction and processing of transfer RNA precursor models. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)45734-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
18
|
Abstract
The discovery and characterization of the catalytic RNA subunit of the enzyme ribonuclease P of Escherichia coli is described.
Collapse
Affiliation(s)
- S Altman
- Dept. of Biology, Yale University, New Haven, CT 06520
| |
Collapse
|
19
|
|
20
|
Baer MF, Wesolowski D, Altman S. Characterization in vitro of the defect in a temperature-sensitive mutant of the protein subunit of RNase P from Escherichia coli. J Bacteriol 1989; 171:6862-6. [PMID: 2480345 PMCID: PMC210589 DOI: 10.1128/jb.171.12.6862-6866.1989] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We have studied the assembly of Escherichia coli RNase P from its catalytic RNA subunit (M1 RNA) and its protein subunit (C5 protein). A mutant form of the protein subunit, C5A49, has been purified to apparent homogeneity from a strain of E. coli carrying a thermosensitive mutation in the rnpA gene. The heat inactivation kinetics of both wild-type and mutant holoenzymes are similar, an indication of equivalent thermal stability. However, when the catalytic efficiencies of the holoenzymes were compared, we found that the holoenzyme containing the mutant protein had a lower efficiency of cleavage than the wild-type holoenzyme at 33, 37, and 44 degrees C. We then explored the interaction of M1 RNA and C5 protein during the assembly of the holoenzyme. The yield of active holoenzyme obtained by reconstitution with wild-type M1 RNA and C5A49 protein in vitro can be considerably enhanced by the addition of excess M1 RNA, just as it can be in vivo. We concluded that the Arg-46----His-46 mutation in the C5A49 protein affects the ability of the protein to participate with M1 RNA in the normal assembly process of RNase P.
Collapse
Affiliation(s)
- M F Baer
- Department of Biology, Yale University, New Haven, Connecticut 06520
| | | | | |
Collapse
|
21
|
Baer M, Lumelsky N, Guerrier-Takada C, Altman S. Structure and Function of Bacterial RNase P. NUCLEIC ACIDS AND MOLECULAR BIOLOGY 1989. [DOI: 10.1007/978-3-642-83709-8_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
22
|
Kirsebom LA, Baer MF, Altman S. Differential effects of mutations in the protein and RNA moieties of RNase P on the efficiency of suppression by various tRNA suppressors. J Mol Biol 1988; 204:879-88. [PMID: 2464697 DOI: 10.1016/0022-2836(88)90048-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have studied the efficiency of suppression by tRNA suppressors in vivo in strains of Escherichia coli that harbor a mutation in the rnpA gene, the gene for the protein component (C5) of RNase P, and in strains that carry several different alleles of the rnpB gene, the gene for the RNA component (M1) of RNase P. Depending on the genetic background, different efficiencies of suppression by the various tRNA suppressors were observed. Thus, mutations in rnpA have separable and distinct effects from mutations in rnpB on the processing of tRNA precursors by RNase P. In addition, the efficiency of suppression by several derivatives of E. coli tRNA(Tyr) Su3 changed as the genetic background was altered.
Collapse
Affiliation(s)
- L A Kirsebom
- Department of Biology, Yale University, New Haven, CT 06520
| | | | | |
Collapse
|