1
|
Prieto L, Lazaridis T. Computational studies of colicin insertion into membranes: the closed state. Proteins 2010; 79:126-41. [PMID: 20941706 DOI: 10.1002/prot.22866] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 08/02/2010] [Accepted: 08/23/2010] [Indexed: 11/05/2022]
Abstract
Colicins are water-soluble toxins that, upon interaction with membranes, undergo a conformational change, insert, and form pores in them. Pore formation activity is localized in a bundle of 10 α-helices named the pore-forming domain (PFD). There is evidence that colicins attach to the membrane via a hydrophobic hairpin embedded in the core of the PFD. Two main models have been suggested for the membrane-bound state: penknife and umbrella, differing in regard to the orientation of the hydrophobic hairpin with respect to the membrane. The arrangement of the amphipathic helices has been described as either a compact three-dimensional structure or a two-dimensional array of loosely interacting helices on the membrane surface. Using molecular dynamics simulations with an implicit membrane model, we studied the structure and stability of the conformations proposed earlier for four colicins. We find that colicins are initially driven towards the membrane by electrostatic interactions between basic residues and the negatively charged membrane surface. They do not have a unique binding orientation, but in the predominant orientations the central hydrophobic hairpin is parallel to the membrane. In the inserted state, the estimated free energy tends to be lower for the compact arrangements of the amphipathic helix, but the more expanded ones are in better agreement with experimental distance distributions. The difference in energy between penknife and umbrella conformations is small enough for equilibrium to exist between them. Elongation of the hydrophobic hairpin helices and membrane thinning were found unable to produce stabilization of the transmembrane configuration of the hydrophobic hairpin.
Collapse
Affiliation(s)
- Lidia Prieto
- Department of Chemistry, The City College of CUNY, New York, New York 10031, USA
| | | |
Collapse
|
2
|
Kienker PK, Jakes KS, Finkelstein A. Identification of channel-lining amino acid residues in the hydrophobic segment of colicin Ia. ACTA ACUST UNITED AC 2009; 132:693-707. [PMID: 19029376 PMCID: PMC2585860 DOI: 10.1085/jgp.200810042] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Colicin Ia is a bactericidal protein of 626 amino acid residues that kills its target cell by forming a channel in the inner membrane; it can also form voltage-dependent channels in planar lipid bilayer membranes. The channel-forming activity resides in the carboxy-terminal domain of ∼177 residues. In the crystal structure of the water-soluble conformation, this domain consists of a bundle of 10 α-helices, with eight mostly amphipathic helices surrounding a hydrophobic helical hairpin (helices H8-H9). We wish to know how this structure changes to form a channel in a lipid bilayer. Although there is evidence that the open channel has four transmembrane segments (H8, H9, and parts of H1 and H6-H7), their arrangement relative to the pore is largely unknown. Given the lack of a detailed structural model, it is imperative to better characterize the channel-lining protein segments. Here, we focus on a segment of 44 residues (573–616), which in the crystal structure comprises the H8-H9 hairpin and flanking regions. We mutated each of these residues to a unique cysteine, added the mutant colicins to the cis side of planar bilayers to form channels, and determined whether sulfhydryl-specific methanethiosulfonate reagents could alter the conduction of ions through the open channel. We found a pattern of reactivity consistent with parts of H8 and H9 lining the channel as α-helices, albeit rather short ones for spanning a lipid bilayer (12 residues). The effects of the reactions on channel conductance and selectivity tend to be greater for residues near the amino terminus of H8 and the carboxy terminus of H9, with particularly large effects for G577C, T581C, and G609C, suggesting that these residues may occupy a relatively constricted region near the cis end of the channel.
Collapse
Affiliation(s)
- Paul K Kienker
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | |
Collapse
|
3
|
Sobko AA, Kotova EA, Antonenko YN, Zakharov SD, Cramer WA. Lipid Dependence of the Channel Properties of a Colicin E1-Lipid Toroidal Pore. J Biol Chem 2006; 281:14408-16. [PMID: 16556601 DOI: 10.1074/jbc.m513634200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Colicin E1 belongs to a group of bacteriocins whose cytotoxicity toward Escherichia coli is exerted through formation of ion channels that depolarize the cytoplasmic membrane. The lipid dependence of colicin single-channel conductance demonstrated intimate involvement of lipid in the structure of this channel. The colicin formed "small" conductance 60-picosiemens (pS) channels, with properties similar to those previously characterized, in 1,2-dieicosenoyl-sn-glycero-3-phosphocholine (C20) or thinner membranes, whereas it formed a novel "large" conductance 600-pS state in thicker 1,2-dierucoyl-sn-glycero-3-phosphocholine (C22) bilayers. Both channel states were anion-selective and voltage-gated and displayed a requirement for acidic pH. Lipids having negative spontaneous curvature inhibited the formation of both channels but increased the ratio of open 600 pS to 60 pS conductance states. Different diameters of small and large channels, 12 and 16 A, were determined from the dependence of single-channel conductance on the size of nonelectrolyte solute probes. Colicin-induced lipid "flip-flop" and the decrease in anion selectivity of the channel in the presence of negatively charged lipids implied a significant contribution of lipid to the structure of the channel, most readily described as toroidal organization of lipid and protein to form the channel pore.
Collapse
Affiliation(s)
- Alexander A Sobko
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | | | | | | | | |
Collapse
|
4
|
Zakharov SD, Rokitskaya TI, Shapovalov VL, Antonenko YN, Cramer WA. Tuning the membrane surface potential for efficient toxin import. Proc Natl Acad Sci U S A 2002; 99:8654-9. [PMID: 12060711 PMCID: PMC124348 DOI: 10.1073/pnas.122613099] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Membrane surface electrostatic interactions impose structural constraints on imported proteins. An unprecedented sensitive dependence on these constraints was seen in the voltage-gated import and channel formation by the C-terminal pore-forming domain of the bacteriocin, colicin E1. At physiological ionic strengths, significant channel current was observed only in a narrow interval of anionic lipid content ([L-]), with the maximum current (I(max)) at 25-30 mol% (dioleoyl)-phosphatidylglycerol ([L-]max) corresponding to a surface potential of the lipid bilayer in the absence of protein, psi(o)max = -60 +/- 5 mV. Higher ionic strength shifted [L-]max to larger values, but psi(o)max remained approximately constant. It is proposed that the channel current (i) increases and (ii) decreases at /psi(o)/ values <55 mV and >65 mV, because of (i) electrostatic interactions needed for effective insertion of the channel polypeptide and (ii) constraints due to electrostatic forces on the flexibility needed for cooperative insertion into the membrane. The loss of flexibility for /psi(o)/ 65 mV was demonstrated by the absence of thermally induced intraprotein distance changes of the bound polypeptide. The anionic lipid content, 25-30 mol%, corresponding to the channel current maxima, is similar to that of the target Escherichia coli cytoplasmic membrane and membranes of mesophilic microorganisms. This suggests that one reason the membrane surface potential is tuned in vivo is to facilitate protein import.
Collapse
Affiliation(s)
- Stanislav D Zakharov
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-1392, USA.
| | | | | | | | | |
Collapse
|
5
|
|
6
|
Elkins PA, Song HY, Cramer WA, Stauffacher CV. Crystallization and characterization of colicin E1 channel-forming polypeptides. Proteins 1994; 19:150-7. [PMID: 8090709 DOI: 10.1002/prot.340190208] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Crystals of the channel-forming domain of colicin E1 from E. coli were grown by vapor diffusion at pH 6.4 and higher pH values. Cleavage of the colicin molecule with trypsin or thermolysin produced two of the pore-forming polypeptides used in these experiments. The third polypeptide was purified from a constructed plasmid that overexpresses only the C-terminal domain of colicin E1. Polypeptide crystals are tetragonal with space group I4, have one monomer in the asymmetric unit, and diffract to 2.2-2.4 A. Unit cell parameters for the tryptic and thermolytic polypeptides are a = 102.9 A and c = 35.6 A. Crystals of the overexpressed polypeptide have unit cell parameters of a = 87.2 A and c = 59.1 A. The crystals were characterized by precession photography, and native data sets of each channel-forming fragment were collected on a Siemens-Nicolet area detector. The crystallization and characterization of these polypeptides are the first steps in the structure determination of the channel-forming domain of colicin E1.
Collapse
Affiliation(s)
- P A Elkins
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392
| | | | | | | |
Collapse
|
7
|
Cramer WA, Zhang YL, Schendel S, Merrill AR, Song HY, Stauffacher CV, Cohen FS. Dynamic properties of the colicin E1 ion channel. FEMS MICROBIOLOGY IMMUNOLOGY 1992; 5:71-81. [PMID: 1384599 DOI: 10.1111/j.1574-6968.1992.tb05889.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The mechanism of channel formation and action of channel-forming colicins is a paradigm for the study of dynamic aspects of membrane-protein interactions. The following experimental results concerning interaction of the colicin E1 channel domain with target membranes, in vitro and in vivo, are discussed: (1) the nature of the translocation-competent state of the channel-forming domain; (2) unfolding of the colicin channel peptide during in vitro binding and anchoring of the channel to liposome membranes at acidic pH; (3) reversal of channel peptide binding to liposomes by an alkaline-directed pH shift; (4) voltage-driven translocation and gating of the ion channel, discussed in the context of a four-helix model for a monomeric channel; (5) rescue of colicin-treated cells by high levels of external K+; (6) trypsin rescue of cells depolarized by the colicin ion channel; and (7) interaction of the channel domain with its immunity protein.
Collapse
Affiliation(s)
- W A Cramer
- Department of Biological Sciences, Lilly Hall of Life Sciences, Purdue University, West Lafayette, IN
| | | | | | | | | | | | | |
Collapse
|
8
|
Song HY, Cohen FS, Cramer WA. Membrane topography of ColE1 gene products: the hydrophobic anchor of the colicin E1 channel is a helical hairpin. J Bacteriol 1991; 173:2927-34. [PMID: 1708383 PMCID: PMC207875 DOI: 10.1128/jb.173.9.2927-2934.1991] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The paucity of crystallographic data on the structure of intrinsic membrane proteins necessitates the development of additional techniques to probe their structures. The colicin E1 ion channel domain contains one prominent hydrophobic region near its COOH terminus that has been proposed to be an anchor for the assembly of the channel. Saturation site-directed mutagenesis of the hydrophobic anchor region of the colicin E1 ion channel was used to probe whether it spanned the bilayer once or twice. A nonpolar amino acid was replaced by a charged residue in 29 mutations made at 26 positions in the channel domain. Substitution of the charged amino acid at all positions except those in the center of the hydrophobic region and the periphery of the hydrophobic region caused a large decrease in the cytotoxicity of the purified mutant colicin E1 protein. This result implies that the hydrophobic domain spans the membrane bilayer twice in a helical hairpin loop, with the center of this domain residing in an aqueous or polar phase. The lengths of the trans-membrane helices appear to be approximately 18 and 16 residues. The absence of significant changes in ion selectivity in five of nine mutants indicated that these mutations did not cause a large change in the channel structure. The ion selectivity changes in four mutants and those previously documented for the flanking Lys residues imply that the hydrophobic hairpin is part of the channel lumen. Water may "abhor" the hydrophobic side of the channel, explaining the small effects of residue charge changes on ion selectivity.
Collapse
Affiliation(s)
- H Y Song
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | | | | |
Collapse
|
9
|
Abstract
The toxin-like and bactericidal colicin E1 molecule is of interest for problems of toxin action, polypeptide translocation across membranes, voltage-gated channels, and receptor function. Colicin E1 binds to a receptor in the outer membrane and is translocated across the cell envelope to the inner membrane. Import of the colicin channel-forming domain into the inner membrane involves a translocation-competent intermediate state and a membrane potential-dependent movement of one third to one half of the channel peptide into the membrane bilayer. The voltage-gated channel has a conductance sufficiently large to depolarize the Escherichia coli cytoplasmic membrane. Amino acid residues that affect the channel ion selectivity have been identified by site-directed mutagenesis. The colicin E1 channel is one of a few membrane proteins whose secondary structures in the membrane, predominantly alpha-helix, have been determined by physico-chemical techniques. Hypothesis for the identity of the trans-membrane helices, and the mechanism of binding to the membrane, are influenced by the solved crystal structure of the soluble colicin A channel peptide. The protective action of immunity protein is a unique aspect of the colicin problem, and information has been obtained, by genetic techniques, about the probable membrane topography of the imm gene product.
Collapse
Affiliation(s)
- W A Cramer
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | | | | | | |
Collapse
|
10
|
Bullock JO, Armstrong SK, Shear JL, Lies DP, McIntosh MA. Formation of ion channels by colicin B in planar lipid bilayers. J Membr Biol 1990; 114:79-95. [PMID: 1690810 DOI: 10.1007/bf01869387] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The gene for the antibacterial peptide colicin B was cloned and transformed into a host background where it was constitutively overexpressed. The purified gene product was biologically active and formed voltage-dependent, ion-conducting channels in planar phospholipid bilayers composed of asolectin. Colicin B channels exhibited two distinct unitary conductance levels, and a slight preference for Na+ over Cl-. Kinetic analysis of the voltage-driven opening and closing of colicin channels revealed the existence of at least two conducting states and two nonconducting states of the protein. Both the ion selectivity and the kinetics of colicin B channels were highly dependent on pH. Excess colicin protein was readily removed from the system by perfusing the bilayer, but open channels could be washed out only after they were allowed to close. A monospecific polyclonal antiserum generated against electrophoretically purified colicin B eliminated both the biological and in vitro activity of the protein. Membrane-associated channels, whether open or closed, remained functionally unaffected by the presence of the antiserum. Taken together, our results suggest that the voltage-independent binding of colicin B to the membrane is the rate-limiting step for the formation of ion channels, and that this process is accompanied by a major conformational rearrangement of the protein.
Collapse
Affiliation(s)
- J O Bullock
- Department of Physiology, University of Missouri-Columbia 65212
| | | | | | | | | |
Collapse
|
11
|
Abstract
Intracellular phosphorylation is an important step in active uptake and utilization of carbohydrates. For example glucose and glycerol enter the liver cell along the extra intracellular gradient by facilitated diffusion through specific carriers and are concentrated inside the cell by phosphorylation via hexokinase or glycerol kinase. Depending on the function of the respective tissue the uptake of carbohydrates serves different metabolic purposes. In brain and kidney medulla cells which depend on carbohydrates, glucose and glycerol are taken up according to the energy demand. However, in tissues such as muscle which synthesize glycogen or like liver which additionally produce fat from glucose, the uptake of carbohydrates has to be regulated according to the availability of glucose and glycerol. How the reversible coupling of the kinases to the outer membrane pore and the mitochondrial ATP serves to fulfil these specific requirements will be explained as well as how this regulates the carbohydrate uptake in brain according to the activity of the oxidative phosphorylation and how this allows glucose uptake in liver and muscle to persist in the presence of high glucose 6-phosphate without activating the rate of glycolysis.
Collapse
Affiliation(s)
- D Brdiczka
- Fakultät für Biologie, Universität Konstanz, Federal Republic of Germany
| |
Collapse
|