1
|
Sun C. Removal of the H subunit results in enhanced exposure of the semiquinone sites in the LM dimer from Rhodobacter sphaeroides to oxidation by ferricyanide and by O 2. PHOTOSYNTHESIS RESEARCH 2017; 133:371-377. [PMID: 28540587 DOI: 10.1007/s11120-017-0404-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 05/17/2017] [Indexed: 06/07/2023]
Abstract
Bacterial reaction centers (RC) from Rhodobacter sphaeroides have been widely used to functionalize electrodes and to generate photocurrent. However, in most studies, direct electron transfer from the semiquinone to the electrode was not observed because the H subunit of the RC shields the semiquinone. It is demonstrated in the current work that removal of the H subunit effectively exposes the semiquinone sites in the LM dimer. This is demonstrated by measuring the second-order rate constant for the reaction between ferricyanide and the anionic semiquinone Q A- formed by an actinic flash. The rate constant increases 1000-fold for Q A- oxidation by ferricyanide in the LM dimer compared to the intact RC. The second-order rate constant approaches the diffusion limit of 6 × 109 M-1·s-1 at low pH, but it decreases steadily when the pH is above 6.5. This pH dependence suggests that the protonation state of the LM dimer plays an important role in controlling the electron transfer kinetics. It is also shown that the addition of exogenous ubiquinone to replenish the QB site, which is mostly empty in the LM dimer, leads to oxidation of Q A- by O2 following an actinic flash. It is concluded that removal of the H subunit results in exposure of the semiquinone sites of the LM dimer to externally added oxidants and may provide a strategy for enhancing direct electron transfer from the RC to an electrode.
Collapse
Affiliation(s)
- Chang Sun
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
2
|
|
3
|
|
4
|
Johnson ET, Schmidt-Dannert C. Light-energy conversion in engineered microorganisms. Trends Biotechnol 2008; 26:682-9. [PMID: 18951642 DOI: 10.1016/j.tibtech.2008.09.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 09/05/2008] [Accepted: 09/11/2008] [Indexed: 11/19/2022]
Abstract
Increasing interest in renewable resources by the energy and chemical industries has spurred new technologies both to capture solar energy and to develop biologically derived chemical feedstocks and fuels. Advances in molecular biology and metabolic engineering have provided new insights and techniques for increasing biomass and biohydrogen production, and recent efforts in synthetic biology have demonstrated that complex regulatory and metabolic networks can be designed and engineered in microorganisms. Here, we explore how light-driven processes may be incorporated into nonphotosynthetic microbes to boost metabolic capacity for the production of industrial and fine chemicals. Progress towards the introduction of light-driven proton pumping or anoxygenic photosynthesis into Escherichia coli to increase the efficiency of metabolically-engineered biosynthetic pathways is highlighted.
Collapse
Affiliation(s)
- Ethan T Johnson
- Department of Biochemistry, Molecular Biology and Biophysics, 1479 Gortner Avenue, 140 Gortner Laboratory, University of Minnesota, St. Paul, MN 55108, USA
| | | |
Collapse
|
5
|
Jaschke PR, Beatty JT. The Photosystem of Rhodobacter sphaeroides Assembles with Zinc Bacteriochlorophyll in a bchD (Magnesium Chelatase) Mutant. Biochemistry 2007; 46:12491-500. [PMID: 17910480 DOI: 10.1021/bi701407k] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A Rhodobacter sphaeroides bchD (magnesium chelatase) mutant was studied to determine the properties of its photosystem in the absence of bacteriochlorophyll (BChl). Western blots of reaction center H, M, and L (RC H/M/L) proteins from mutant membranes showed levels of 12% RC H, 32% RC L, and 46% RC M relative to those of the wild type. Tricine-SDS-PAGE revealed 52% light-harvesting complex alpha chain and 14% beta chain proteins compared to those of the wild type. Pigment analysis of bchD cells showed the absence of BChl and bacteriopheophytin (BPhe), but zinc bacteriochlorophyll (Zn-BChl) was discovered. Zn-BChl binds to light-harvesting 1 (LH1) and 2 (LH2) complexes in place of BChl in bchD membranes, with a LH2:LH1 ratio resembling that of wild-type cells under BChl-limiting conditions. Furthermore, the RC from the bchD mutant contained Zn-BChl in the special pair and accessory BChl binding sites, as well as carotenoid and quinone, but BPhe was absent. Comparison of the bchD mutant RC absorption spectrum to that of Acidiphilium rubrum, which contains Zn-BChl in the RC, suggests the RC protein environment at L168 contributes to A. rubrum special pair absorption characteristics rather than solely Zn-BChl. We speculate that Zn-BChl is synthesized via the normal BChl biosynthetic pathway, but with ferrochelatase supplying zinc protoporphyrin IX for enzymatic steps following the nonfunctional magnesium chelatase. The absence of BPhe in bchD cells is likely related to Zn2+ stability in the chlorin macrocycle and consequently high resistance of Zn-BChl to pheophytinization (dechelation). Possible agents prevented from dechelating Zn-BChl include the RC itself, a hypothetical dechelatase enzyme, and spontaneous processes.
Collapse
Affiliation(s)
- Paul R Jaschke
- Department of Microbiology and Immunology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | | |
Collapse
|
6
|
Callister SJ, Nicora CD, Zeng X, Roh JH, Dominguez MA, Tavano CL, Monroe ME, Kaplan S, Donohue TJ, Smith RD, Lipton MS. Comparison of aerobic and photosynthetic Rhodobacter sphaeroides 2.4.1 proteomes. J Microbiol Methods 2006; 67:424-36. [PMID: 16828186 PMCID: PMC2794424 DOI: 10.1016/j.mimet.2006.04.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2006] [Revised: 04/13/2006] [Accepted: 04/13/2006] [Indexed: 11/21/2022]
Abstract
The analysis of proteomes from aerobic and photosynthetic Rhodobacter sphaeroides 2.4.1 cell cultures by liquid chromatography-mass spectrometry yielded approximately 6,500 high confidence peptides representing 1,675 gene products (39% of the predicted proteins). The identified proteins corresponded primarily to open reading frames (ORFs) contained within the two chromosomal elements of this bacterium, but a significant number were also observed from ORFs associated with 5 naturally occurring plasmids. Using the accurate mass and time (AMT) tag approach, comparative studies showed that a number of proteins were uniquely detected within the photosynthetic cell culture. The estimated abundances of proteins observed in both aerobic respiratory and photosynthetic grown cultures were compared to provide insights into bioenergetic models for both modes of growth. Additional emphasis was placed on gene products annotated as hypothetical to gain information as to their potential roles within these two growth conditions. Where possible, transcriptome and proteome data for R. sphaeroides obtained under the same culture conditions were also compared.
Collapse
Affiliation(s)
- Stephen J. Callister
- Biological Separations and Mass Spectrometry, Mail Stop: K8-98, Pacific Northwest National Laboratory, Richland WA, 99352, USA
| | - Carrie D. Nicora
- Biological Separations and Mass Spectrometry, Mail Stop: K8-98, Pacific Northwest National Laboratory, Richland WA, 99352, USA
| | - Xiaohua Zeng
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston TX, 77030, USA
| | - Jung Hyeob Roh
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston TX, 77030, USA
| | - Miguel A. Dominguez
- Department of Genetics, University of Wisconsin-Madison, Madison WI, 53706, USA
| | - Christine L. Tavano
- Department of Bacteriology, University of Wisconsin-Madison, Madison WI, 53706, USA
| | - Matthew E. Monroe
- Biological Separations and Mass Spectrometry, Mail Stop: K8-98, Pacific Northwest National Laboratory, Richland WA, 99352, USA
| | - Samuel Kaplan
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston TX, 77030, USA
| | - Timothy J. Donohue
- Department of Bacteriology, University of Wisconsin-Madison, Madison WI, 53706, USA
| | - Richard D. Smith
- Biological Separations and Mass Spectrometry, Mail Stop: K8-98, Pacific Northwest National Laboratory, Richland WA, 99352, USA
| | - Mary S. Lipton
- Biological Separations and Mass Spectrometry, Mail Stop: K8-98, Pacific Northwest National Laboratory, Richland WA, 99352, USA
| |
Collapse
|
7
|
Koblízek M, Shih JD, Breitbart SI, Ratcliffe EC, Kolber ZS, Hunter CN, Niederman RA. Sequential assembly of photosynthetic units in Rhodobacter sphaeroides as revealed by fast repetition rate analysis of variable bacteriochlorophyll a fluorescence. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1706:220-31. [PMID: 15694350 DOI: 10.1016/j.bbabio.2004.11.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Revised: 10/27/2004] [Accepted: 11/10/2004] [Indexed: 11/25/2022]
Abstract
The development of functional photosynthetic units in Rhodobacter sphaeroides was followed by near infra-red fast repetition rate (IRFRR) fluorescence measurements that were correlated to absorption spectroscopy, electron microscopy and pigment analyses. To induce the formation of intracytoplasmic membranes (ICM) (greening), cells grown aerobically both in batch culture and in a carbon-limited chemostat were transferred to semiaerobic conditions. In both aerobic cultures, a low level of photosynthetic complexes was observed, which were composed of the reaction center and the LH1 core antenna. Interestingly, in the batch cultures the reaction centers were essentially inactive in forward electron transfer and exhibited low photochemical yields F(V)/F(M), whereas the chemostat culture displayed functional reaction centers with a rather rapid (1-2 ms) electron transfer turnover, as well as a high F(V)/F(M) of approximately 0.8. In both cases, the transfer to semiaerobiosis resulted in rapid induction of bacteriochlorophyll a synthesis that was reflected by both an increase in the number of LH1-reaction center and peripheral LH2 antenna complexes. These studies establish that photosynthetic units are assembled in a sequential manner, where the appearance of the LH1-reaction center cores is followed by the activation of functional electron transfer, and finally by the accumulation of the LH2 complexes.
Collapse
Affiliation(s)
- Michal Koblízek
- Environmental Biophysics and Molecular Ecology Program, Rutgers University, 71 Dudley Road, Institute of Coastal and Marine Sciences, New Brunswick, NJ 08901-8521, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Kho DH, Yoo SB, Kim JS, Kim EJ, Lee JK. Characterization of Cu- and Zn-containing superoxide dismutase ofRhodobacter sphaeroides. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09542.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
9
|
Tehrani A, Prince RC, Beatty JT. Effects of photosynthetic reaction center H protein domain mutations on photosynthetic properties and reaction center assembly in Rhodobacter sphaeroides. Biochemistry 2003; 42:8919-28. [PMID: 12885224 DOI: 10.1021/bi0346650] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Purple bacterial photosynthetic reaction center (RC) H proteins comprise three cellular domains: an 11 amino acid N-terminal sequence on the periplasmic side of the inner membrane; a single transmembrane alpha-helix; and a large C-terminal, globular cytoplasmic domain. We studied the roles of these domains in Rhodobacter sphaeroides RC function and assembly, using a mutagenesis approach that included domain swapping with Blastochloris viridis RC H segments and a periplasmic domain deletion. All mutations that affected photosynthesis reduced the amount of the RC complex. The RC H periplasmic domain is shown to be involved in the accumulation of the RC H protein in the cell membrane, while the transmembrane domain has an additional role in RC complex assembly, perhaps through interactions with RC M. The RC H cytoplasmic domain also functions in RC complex assembly. There is a correlation between the amounts of membrane-associated RC H and RC L, whereas RC M is found in the cell membrane independently of RC H and RC L. Furthermore, substantial amounts of RC M and RC L are found in the soluble fraction of cells only when RC H is present in the membrane. We suggest that RC M provides a nucleus for RC complex assembly, and that a RC H/M/L assemblage results in a cytoplasmic pool of soluble RC M and RC L proteins to provide precursors for maximal production of the RC complex.
Collapse
Affiliation(s)
- Ali Tehrani
- Department of Microbiology and Immunology, University of British Columbia, 300-6174 University Boulevard, Vancouver, BC, Canada, V6T 1Z3
| | | | | |
Collapse
|
10
|
Cheng YS, Brantner CA, Tsapin A, Collins ML. Role of the H protein in assembly of the photochemical reaction center and intracytoplasmic membrane in Rhodospirillum rubrum. J Bacteriol 2000; 182:1200-7. [PMID: 10671438 PMCID: PMC94403 DOI: 10.1128/jb.182.5.1200-1207.2000] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/1999] [Accepted: 12/06/1999] [Indexed: 11/20/2022] Open
Abstract
Rhodospirillum rubrum is a model for the study of membrane formation. Under conditions of oxygen limitation, this facultatively phototrophic bacterium forms an intracytoplasmic membrane that houses the photochemical apparatus. This apparatus consists of two pigment-protein complexes, the light-harvesting antenna (LH) and photochemical reaction center (RC). The proteins of the photochemical components are encoded by the puf operon (LHalpha, LHbeta, RC-L, and RC-M) and by puhA (RC-H). R. rubrum puf interposon mutants do not form intracytoplasmic membranes and are phototrophically incompetent. The puh region was cloned, and DNA sequence determination identified open reading frames bchL and bchM and part of bchH; bchHLM encode enzymes of bacteriochlorophyll biosynthesis. A puhA/G115 interposon mutant was constructed and found to be incapable of phototrophic growth and impaired in intracytoplasmic membrane formation. Comparison of properties of the wild-type and the mutated and complemented strains suggests a model for membrane protein assembly. This model proposes that RC-H is required as a foundation protein for assembly of the RC and highly developed intracytoplasmic membrane. In complemented strains, expression of puh occurred under semiaerobic conditions, thus providing the basis for the development of an expression vector. The puhA gene alone was sufficient to restore phototrophic growth provided that recombination occurred.
Collapse
Affiliation(s)
- Y S Cheng
- Department of Biological Sciences, and Great Lakes WATER Institute, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, USA
| | | | | | | |
Collapse
|
11
|
Yeliseev AA, Kaplan S. TspO of rhodobacter sphaeroides. A structural and functional model for the mammalian peripheral benzodiazepine receptor. J Biol Chem 2000; 275:5657-67. [PMID: 10681549 DOI: 10.1074/jbc.275.8.5657] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The function and specific structural aspects of the tryptophan-rich sensory protein (TspO) of Rhodobacter sphaeroides 2.4.1 were studied using site-directed mutagenesis involving some 17 different amino acids. The choice of these amino acids changes was dictated from an analysis of the TspO family of proteins derived from the data bases. These studies demonstrated the importance of several highly conserved tryptophan residues in the sensory transduction pathway involving TspO through the proposed binding of an intermediate(s) in the tetrapyrrole biosynthesis pathway. These studies also revealed that the substitution of one or several of the amino acid residues dramatically affected, either directly or indirectly, the levels of TspO in the membranes of R. sphaeroides. Mounting evidence is presented suggesting that TspO normally forms a dimer within the bacterial outer membrane, and the dimer form of TspO may be the active form for TspO function. Because our earlier studies provided us with a functional framework within which to view these amino acid substitutions, we are able to suggest a preliminary model for TspO structure-function. Not only do these studies tell us more about TspO, but they also shed light on the TspO homologue, the drug-binding component of the mitochondrial peripheral benzodiazepine receptor. Mounting evidence draws numerous parallelism between these proteins and supports the significance of using TspO as a model for the structure and function of the mitochondrial protein.
Collapse
Affiliation(s)
- A A Yeliseev
- Department of Microbiology, The University of Texas Health Science Center at Houston, Medical School, Houston, Texas 77225, USA
| | | |
Collapse
|
12
|
Zeilstra-Ryalls JH, Gomelsky M, Yeliseev AA, Eraso JM, Kaplan S. Transcriptional regulation of photosynthesis operons in Rhodobacter sphaeroides 2.4.1. Methods Enzymol 1998; 297:151-66. [PMID: 9750207 DOI: 10.1016/s0076-6879(98)97012-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- J H Zeilstra-Ryalls
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston 77030, USA
| | | | | | | | | |
Collapse
|
13
|
Zeilstra-Ryalls J, Gomelsky M, Eraso JM, Yeliseev A, O'Gara J, Kaplan S. Control of photosystem formation in Rhodobacter sphaeroides. J Bacteriol 1998; 180:2801-9. [PMID: 9603864 PMCID: PMC107241 DOI: 10.1128/jb.180.11.2801-2809.1998] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- J Zeilstra-Ryalls
- Department of Microbiology and Molecular Genetics, University of Texas Health Sciences Center-Houston, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
14
|
Eraso JM, Kaplan S. Complex regulatory activities associated with the histidine kinase PrrB in expression of photosynthesis genes in Rhodobacter sphaeroides 2.4.1. J Bacteriol 1996; 178:7037-46. [PMID: 8955382 PMCID: PMC178613 DOI: 10.1128/jb.178.24.7037-7046.1996] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Rhodobacter sphaeroides 2.4.1 synthesizes a specialized photosynthetic membrane upon reduction of the O2 tension below threshold levels. The genes prrB and prrA encode a sensor kinase and a response regulator, respectively, of a two-component regulatory system that presumably is involved in transduction of the signal(s) that monitors alterations in oxygen levels. A third gene, prrC, is also involved in this cascade of events. Previously, we described a mutant form of PrrB, namely, PrrB78 (J. M. Eraso and S. Kaplan, J. Bacteriol. 177:2695-2706, 1995), which results in aerobic expression of the photosynthetic apparatus. Here we examine three mutated forms of the prrB gene that have the potential to encode truncated polypeptides containing the N-terminal 6, 63, or 163 amino acids, respectively. The resulting mutant strains showed residual levels of the light-harvesting spectral complexes and had diminished photosynthetic growth rates at high light intensities with no discernible growth under intermediate or low light conditions. When either lacZ transcriptional fusions or direct mRNA determinations were used to monitor specific photosynthesis gene expression, all the mutant strains showed unexpectedly high levels of gene expression when compared to mutant strains affected in prrA. Conversely, when translational fusions were used to monitor photosynthesis gene expression in these mutant strains, expression of both puc and puf operons was reduced, especially puf expression. In light of these studies and those of the PrrB78 mutant, the data suggest that PrrA can be activated in situ by something other than PrrB, and it also appears that PrrB can function as a negative regulator acting through PrrA. Finally, we consider the role of the Prr regulatory system in the posttranscriptional control of photosynthesis gene expression.
Collapse
Affiliation(s)
- J M Eraso
- Department of Microbiology and Molecular Genetics, The University of Texas Medical School, Houston 77030, USA
| | | |
Collapse
|
15
|
Yeliseev AA, Eraso JM, Kaplan S. Differential carotenoid composition of the B875 and B800-850 photosynthetic antenna complexes in Rhodobacter sphaeroides 2.4.1: involvement of spheroidene and spheroidenone in adaptation to changes in light intensity and oxygen availability. J Bacteriol 1996; 178:5877-83. [PMID: 8830681 PMCID: PMC178441 DOI: 10.1128/jb.178.20.5877-5883.1996] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Rhodobacter sphaeroides 2.4.1 is a member of the nonsulfur purple facultative photosynthetic proteobacteria, capable of growth under a variety of cultivation conditions. In addition to the structural polypeptides and bacteriochlorophyll, the two major antenna complexes, B875 and B800-850, contain a variety of carotenoids which are an important structural and functional component of the membrane-bound photosynthetic complexes of this bacterium. Two major carotenoids, spheroidene and its keto derivative, spheroidenone, are differentially synthesized by R. sphaeroides, depending on the growth conditions. Spheroidene prevails during growth under anaerobic conditions and low light intensities, whereas spheroidenone is predominant in semiaerobically grown cells or during anaerobic growth at high light intensities. In this study, we demonstrate that in wild-type cells, spheroidene is predominantly associated with the B800-850 photosynthetic antenna complex and spheroidenone is more abundant in the B875 complex. Exploiting mutants defective in the biosynthesis of either the B875 or B800-850 light-harvesting complex, we demonstrate an association between the formation of either the B875 or B800-850 complex, on the one hand, and the accumulation of spheroidenone or spheroidene, on the other. The possible involvement of the conversion of spheroidene to spheroidenone as a significant control mechanism involved in the adaptation of R. sphaeroides to changes in light intensity and oxygen tension is discussed.
Collapse
Affiliation(s)
- A A Yeliseev
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center, Medical School, Houston 77030, USA
| | | | | |
Collapse
|
16
|
Wong DK, Collins WJ, Harmer A, Lilburn TG, Beatty JT. Directed mutagenesis of the Rhodobacter capsulatus puhA gene and orf 214: pleiotropic effects on photosynthetic reaction center and light-harvesting 1 complexes. J Bacteriol 1996; 178:2334-42. [PMID: 8636035 PMCID: PMC177942 DOI: 10.1128/jb.178.8.2334-2342.1996] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Rhodobacter capsulatus puhA mutant strains containing either a nonpolar, translationally in-frame deletion or a polar insertion of an antibiotic resistance cartridge were constructed and evaluated for their photosynthetic growth properties, absorption spectroscopy profiles, and chromatophore protein compositions. Both types of mutants were found to be incapable of photosynthetic growth and deficient in the reaction center (RC) and light-harvesting 1 (LH1) complexes. The translationally in-frame puhA deletion strains were restored to the parental strain phenotypes by complementation with a plasmid containing the puhA gene, whereas the polar puhA mutants were not. Analogous nonpolar and polar disruptions of orf 214 (located immediately 3' of the puhA gene) were made, and the resultant mutant strains were evaluated as described above. The strain containing the nonpolar deletion of orf 214 exhibited severely impaired photosynthetic growth properties and had greatly reduced levels of the RC and LH1 complexes. Complementation of this strain with a plasmid that expressed orf 214 from the nifHDK promoter restored photosynthetic growth capability, as well as the RC and LH1 complexes. The polar disruption of orf 214 yielded cells that were incapable of photosynthetic growth and had even lower levels of the RC and LH1 complexes, and complementation in trans with orf 214 only marginally improved these deficiencies. These results indicate that orf 214 and at least one additional gene located 3' of orf 214 are required to obtain the RC and LH1 complexes, and transcription read-through from the puhA superoperon is necessary for optimal expression of these new photosynthesis genes.
Collapse
Affiliation(s)
- D K Wong
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, Canada
| | | | | | | | | |
Collapse
|
17
|
Zeilstra-Ryalls JH, Kaplan S. Control of hemA expression in Rhodobacter sphaeroides 2.4.1: regulation through alterations in the cellular redox state. J Bacteriol 1996; 178:985-93. [PMID: 8576072 PMCID: PMC177757 DOI: 10.1128/jb.178.4.985-993.1996] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Rhodobacter sphaeroides 2.4.1 has the ability to synthesize a variety of tetrapyrroles, reflecting the metabolic versatility of this organism and making it capable of aerobic, anaerobic, photosynthetic, and diazotrophic growth. The hemA and hemT genes encode isozymes that catalyze the formation of 5-aminolevulinic acid, the first step in the biosynthesis of all tetrapyrroles present in R. sphaeroides 2.4.1. As part of our studies of the regulation and expression of these genes, we developed a genetic selection that uses transposon mutagenesis to identify loci affecting the aerobic expression of the hemA gene. In developing this selection, we found that sequences constituting an open reading frame immediately upstream of hemA positively affect hemA transcription. Using a transposon-based selection for increased hemA expression in the absence of the upstream open reading frame, we isolated three independent mutants. We have determined that the transposon insertions in these strains map to three different loci located on chromosome 1. One of the transposition sites mapped in the vicinity of the recently identified R. sphaeroides 2.4.1 homolog of the anaerobic regulatory gene fnr. By marker rescue and DNA sequence analysis, we found that the transposition site was located between the first two genes of the cco operon in R. sphaeroides 2.4.1, which encodes a cytochrome c terminal oxidase. Examination of the phenotype of the mutant strain revealed that, in addition to increased aerobic expression of hemA, the transposition event also conferred an oxygen-insensitive development of the photosynthetic membranes. We propose that the insertion of the transposon in cells grown in the presence of high oxygen levels has led to the generation of a cellular redox state resembling either reduced oxygen or anaerobiosis, thereby resulting in increased expression of hemA, as well as the accumulation of spectral complex formation. Several models are presented to explain these findings.
Collapse
Affiliation(s)
- J H Zeilstra-Ryalls
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston 77225, USA
| | | |
Collapse
|
18
|
Eraso JM, Kaplan S. Oxygen-insensitive synthesis of the photosynthetic membranes of Rhodobacter sphaeroides: a mutant histidine kinase. J Bacteriol 1995; 177:2695-706. [PMID: 7751278 PMCID: PMC176939 DOI: 10.1128/jb.177.10.2695-2706.1995] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Two new loci, prrB and prrC, involved in the positive regulation of photosynthesis gene expression in response to anaerobiosis, have been identified in Rhodobacter sphaeroides. prrB encodes a sensor histidine kinase that is responsive to the removal of oxygen and functions through the response regulator PrrA. Inactivation of prrB results in a substantial reduction of photosynthetic spectral complexes as well as in the inability of cells to grow photosynthetically at low to medium light intensities. Together, prrB and prrA provide the major signal involved in synthesis of the specialized intracytoplasmic membrane (ICM), harboring components essential to the light reactions of photosynthesis. Previously, J. K. Lee and S. Kaplan (J. Bacteriol. 174:1158-1171, 1992) identified a mutant which resulted in high-level expression of the puc operon, encoding the apoproteins giving rise to the B800-850 spectral complex, in the presence of oxygen as well as in the synthesis of the ICM under conditions of high oxygenation. This mutation is shown to reside in prrB, resulting in a leucine-to-proline change at position 78 in mutant PrrB (PRRB78). Measurements of mRNA levels in cells containing the prrB78 mutation support the idea that prrB is a global regulator of photosynthesis gene expression. Two additional mutants, PRRB1 and PRRB2, which make two truncated forms of the PrrB protein, possess substantially reduced amounts of spectral complexes. Although the precise role of prrC remains to be determined, evidence suggests that it too is involved in the regulatory cascade involving prrB and prrA. The genetic organization of the photosynthesis response regulatory (PRR) region is discussed.
Collapse
Affiliation(s)
- J M Eraso
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston 77030, USA
| | | |
Collapse
|
19
|
Olivera LM, Westerhuis WH, Niederman RA. Spectral alterations in Rhodobacter capsulatus mutants with site-directed changes in the bacteriochlorophyll-binding site of the B880 light-harvesting complex. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1185:318-26. [PMID: 8180236 DOI: 10.1016/0005-2728(94)90247-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Site-directed mutagenesis has suggested that conserved histidine and alanine residues in the alpha-subunit of the B880 (LHI) antenna complex of Rhodobacter capsulatus (alpha His32 and alpha Ala28) form part of the bacteriochlorophyll binding site (Bylina, E.J., Robles, S.J. and Youvan, D.C. (1988) Isr. J. Chem. 28, 73-78). Spectroscopic characterization of chromatophores from alpha Ala28 mutants at 77 K revealed: (i) red shifts in B880 absorption and emission maxima of approximately 6 and 10 nm, respectively, with a serine exchange; (ii) red shifts of 3 nm with a glycine exchange; (iii) and no significant shifts with a cysteine exchange, despite a reduction of approximately 50% in B880 level. The strains with the serine and glycine exchanges showed characteristic fluorescence polarization increases over the red-edge of the B880 band, suggesting that the absorption red shifts arose from altered pigment-protein interactions rather than from increased oligomerization states that would be expected to show markedly diminished and red shifted rises in polarization (Westerhuis, W.H.J., Farchaus, J.W. and Niederman, R.A. (1993) Photochem. Photobiol. 58, 460-463). Excitation spectra of strains with alpha His32 to glutamine and alpha Ala28 to histidine exchanges, thought to be depleted in B880, revealed low levels of a 'pseudo-B880' complex with blue-shifted maxima and fluorescence polarization rises; when excited directly into this component, the former strain showed an emission spectrum similar to that of B880. An essentially wild-type electrochromic carotenoid response was observed only in the B880-containing mutants, since membranes isolated from the B880-depleted strains exhibited an increased permeability to ions.
Collapse
Affiliation(s)
- L M Olivera
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08855-1059
| | | | | |
Collapse
|
20
|
Gong L, Lee JK, Kaplan S. The Q gene of Rhodobacter sphaeroides: its role in puf operon expression and spectral complex assembly. J Bacteriol 1994; 176:2946-61. [PMID: 8188596 PMCID: PMC205451 DOI: 10.1128/jb.176.10.2946-2961.1994] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The Q gene of the facultative photoheterotroph Rhodobacter sphaeroides, localized immediately upstream of the oxygen- and light-regulated puf operon, encodes a 77-amino-acid polypeptide. The 5' and 3' ends of the 561-bp Q transcript were determined. To gain insight into the role of the Q gene product, a number of Q mutations were constructed by oligonucleotide-directed mutagenesis and subsequent substitution of the mutated form of the gene in single copy for the chromosomal copy via homologous recombination. The resulting mutants can grow photosynthetically, with the exception of QSTART, in which the initiation codon for the Q protein was altered. Spectral analysis of the intracytoplasmic membranes showed that one of the missense mutants (QdA) was deficient in the formation of detectable B875 light-harvesting complex (LHC), whereas deletion of the stem-loop structure (Qloop) failed to form B800-850 LHC when grown anaerobically either in the dark or under light intensity of 100 W/m2. Other missense mutants (QuA and QuB) contained either more B800-850 LHC or more B875 LHC, respectively, than the wild type. Although the levels of puf and puc transcripts isolated from QSTART grown anaerobically on succinate-dimethyl sulfoxide in the dark were comparable to wild-type levels, no B875 spectral complex was detected and there was a greater than 90% reduction in the level of the B800-850 pigment-protein complex. It has also been confirmed that the ultimate cellular levels of either the B875 or B800-850 spectral complexes can vary over wide limits without any change in the level(s) of complex specific transcripts. When the wild-type Q gene was reintroduced in trans into the Q mutations, QSTART was able to grow photosynthetically and both B800-850 and B875 spectral complexes were formed in either QdA or Qloop. Finally, we demonstrated that the level of each puf-specific mRNA behaves independently of one another as well as independently of the level(s) of Q gene-specific mRNA. These results are compatible with the existence of regulatory sequences affecting the puf mRNA level(s) being localized within the Q structural gene. These results suggest that Q-specific expression is uncoupled from puf-specific transcription and that the Q protein is not involved in the regulation of transcription of the puf operon but is directly involved in the assembly of both the B875 and B800-850 pigment-protein complexes.
Collapse
Affiliation(s)
- L Gong
- Department of Microbiology and Molecular Genetics, University of Texas, Houston Medical School 77225
| | | | | |
Collapse
|
21
|
Eraso JM, Kaplan S. prrA, a putative response regulator involved in oxygen regulation of photosynthesis gene expression in Rhodobacter sphaeroides. J Bacteriol 1994; 176:32-43. [PMID: 8282708 PMCID: PMC205011 DOI: 10.1128/jb.176.1.32-43.1994] [Citation(s) in RCA: 193] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A new locus, prrA, involved in the regulation of photosynthesis gene expression in response to oxygen, has been identified in Rhodobacter sphaeroides. Inactivation of prrA results in the absence of photosynthetic spectral complexes. The prrA gene product has strong homology to response regulators associated with signal transduction in other prokaryotes. When prrA is present in multiple copies, cells produce light-harvesting complexes under aerobic growth conditions, suggesting that prrA affects photosynthesis gene expression positively in response to oxygen deprivation. Analysis of the expression of puc::lacZ fusions in wild-type and PrrA- cells revealed a substantial decrease in LacZ expression in the absence of prrA under all conditions of growth, especially when cells were grown anaerobically in the dark in the presence of dimethyl sulfoxide. Northern (RNA) and slot blot hybridizations confirmed the beta-galactoside results for puc and revealed additional positive regulation of puf, puhA, and cycA by PrrA. The effect of truncated PrrA on photosynthesis gene expression in the presence of low oxygen levels can be explained by assuming that PrrA may be effective as a multimer. PrrA was found to act on the downstream regulatory sequences (J. K. Lee and S. Kaplan, J. Bacteriol. 174:1146-1157, 1992) of the puc operon regulatory region. Finally, two spontaneous prrA mutations that abolish prrA function by changing amino acids in the amino-terminal domain of the protein were isolated.
Collapse
Affiliation(s)
- J M Eraso
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston 77030
| | | |
Collapse
|