1
|
Ton Tran HT, Li C, Chakraberty R, Cairo CW. NEU1 and NEU3 enzymes alter CD22 organization on B cells. BIOPHYSICAL REPORTS 2022; 2:100064. [PMID: 36425332 PMCID: PMC9680808 DOI: 10.1016/j.bpr.2022.100064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/19/2022] [Indexed: 06/16/2023]
Abstract
The B cell membrane expresses sialic-acid-binding immunoglobulin-like lectins, also called Siglecs, that are important for modulating immune response. Siglecs have interactions with sialoglycoproteins found on the same membrane (cis-ligands) that result in homotypic and heterotypic receptor clusters. The regulation and organization of these clusters, and their effect on cell activation, is not clearly understood. We investigated the role of human neuraminidase enzymes NEU1 and NEU3 on the clustering of CD22 on B cells using confocal microscopy. We observed that native NEU1 and NEU3 activity influence the cluster size of CD22. Using single-particle tracking, we observed that NEU3 activity increased the lateral mobility of CD22, which was in contrast to the effect of exogenous bacterial NEU enzymes. Moreover, we show that native NEU1 and NEU3 activity influenced cellular Ca2+ levels, supporting a role for these enzymes in regulating B cell activation. Our results establish a role for native NEU activity in modulating CD22 organization and function on B cells.
Collapse
Affiliation(s)
- Hanh-Thuc Ton Tran
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Caishun Li
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
2
|
Rios de la Rosa JM, Tirella A, Tirelli N. Receptor-Targeted Drug Delivery and the (Many) Problems We Know of: The Case of CD44 and Hyaluronic Acid. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201800049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Julio M. Rios de la Rosa
- NorthWest Centre for Advanced Drug Delivery (NoWCADD); School of Health Sciences; University of Manchester; Oxford Road Manchester M13 9PT UK
| | - Annalisa Tirella
- NorthWest Centre for Advanced Drug Delivery (NoWCADD); School of Health Sciences; University of Manchester; Oxford Road Manchester M13 9PT UK
| | - Nicola Tirelli
- NorthWest Centre for Advanced Drug Delivery (NoWCADD); School of Health Sciences; University of Manchester; Oxford Road Manchester M13 9PT UK
- Laboratory of Polymers and Biomaterials; Fondazione Istituto Italiano di Tecnologia; Genova 16163 Italy
| |
Collapse
|
3
|
CD45 in human physiology and clinical medicine. Immunol Lett 2018; 196:22-32. [PMID: 29366662 DOI: 10.1016/j.imlet.2018.01.009] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 01/20/2023]
Abstract
CD45 is an evolutionary highly conserved receptor protein tyrosine phosphatase exclusively expressed on all nucleated cells of the hematopoietic system. It is characterized by the expression of several isoforms, specific to a certain cell type and the developmental or activation status of the cell. CD45 is one of the key players in the initiation of T cell receptor signaling by controlling the activation of the Src family protein-tyrosine kinases Lck and Fyn. CD45 deficiency results in T- and B-lymphocyte dysfunction in the form of severe combined immune deficiency. It also plays a significant role in autoimmune diseases and cancer as well as in infectious diseases including fungal infections. The knowledge collected on CD45 biology is rather vast, but it remains unclear whether all findings in rodent immune cells also apply to human CD45. This review focuses on human CD45 expression and function and provides an overview on its ligands and role in human pathology.
Collapse
|
4
|
Rizzo D, Lotay A, Gachard N, Marfak I, Faucher JL, Trimoreau F, Guérin E, Bordessoule D, Jaccard A, Feuillard J. Very low levels of surface CD45 reflect CLL cell fragility, are inversely correlated with trisomy 12 and are associated with increased treatment-free survival. Am J Hematol 2013; 88:747-53. [PMID: 23733486 DOI: 10.1002/ajh.23494] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 05/18/2013] [Accepted: 05/20/2013] [Indexed: 12/20/2022]
Abstract
It has recently been suggested that the percentage of smudge cells on blood smears from patients with chronic lymphocytic leukemia (CLL) could predict overall survival. However, smudge cells are a cytological artifact influenced by multiple physical factors not related to CLL. To identify simple parameters reflecting CLL cell fragility, we studied CD45 expression in a series of 66 patients with Binet stage A CLL. Decreased CD45 expression was specific for CLL cells when compared to 44 patients with a leukemic phase of B-cell non Hodgkin lymphoma and 42 control B-cells. CD45 expression was markedly decreased for all patients with CLL with high percentages of smudge cells. CLL cells with the lowest CD45 expression were the most sensitive to osmotic shock. Very low levels of CD45 expression were significantly associated with lack of CD38 expression, absence of trisomy 12, and with increased treatment free survival time. Altogether, these results demonstrate that low levels of CD45 expression are specific to CLL cells and reflect cell fragility, suggesting that this is an important intrinsic biological feature that determines disease course.
Collapse
Affiliation(s)
| | - Angad Lotay
- UMR CNRS 7276, Faculty of Medicine; Limoges; France
| | | | | | - Jean-Luc Faucher
- Laboratory of Hematology; University Hospital Dupuytren; Limoges; France
| | - Franck Trimoreau
- Laboratory of Hematology; University Hospital Dupuytren; Limoges; France
| | - Estelle Guérin
- Laboratory of Hematology; University Hospital Dupuytren; Limoges; France
| | | | | | | |
Collapse
|
5
|
Williams K, Motiani K, Giridhar PV, Kasper S. CD44 integrates signaling in normal stem cell, cancer stem cell and (pre)metastatic niches. Exp Biol Med (Maywood) 2013; 238:324-38. [PMID: 23598979 PMCID: PMC11037417 DOI: 10.1177/1535370213480714] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The stem cell niche provides a regulatory microenvironment for cells as diverse as totipotent embryonic stem cells to cancer stem cells (CSCs) which exhibit stem cell-like characteristics and have the capability of regenerating the bulk of tumor cells while maintaining self-renewal potential. The transmembrane glycoprotein CD44 is a common component of the stem cell niche and exists as a standard isoform (CD44s) and a range of variant isoforms (CD44v) generated though alternative splicing. CD44 modulates signal transduction through post-translational modifications as well as interactions with hyaluronan, extracellular matrix molecules and growth factors and their cognate receptor tyrosine kinases. While the function of CD44 in hematopoietic stem cells has been studied in considerable detail, our knowledge of CD44 function in tissue-derived stem cell niches remains limited. Here we review CD44s and CD44v in both hematopoietic and tissue-derived stem cell niches, focusing on their roles in regulating stem cell behavior including self-renewal and differentiation in addition to cell-matrix interactions and signal transduction during cell migration and tumor progression. Determining the role of CD44 and CD44v in normal stem cell, CSC and (pre)metastatic niches and elucidating their unique functions could provide tools and therapeutic strategies for treating diseases as diverse as fibrosis during injury repair to cancer progression.
Collapse
Affiliation(s)
- Karin Williams
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, OH 45267
| | - Karan Motiani
- Division of Urology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267
| | | | - Susan Kasper
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, OH 45267
| |
Collapse
|
6
|
Marozzi C, Bertoni F, Randelli E, Buonocore F, Timperio AM, Scapigliati G. A monoclonal antibody for the CD45 receptor in the teleost fish Dicentrarchus labrax. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 37:342-353. [PMID: 22504161 DOI: 10.1016/j.dci.2012.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 03/27/2012] [Accepted: 03/28/2012] [Indexed: 05/31/2023]
Abstract
The CD45 tyrosine phosphatase plays an important role in regulating T lymphocyte activation in vertebrate species. In this study we describe some molecular and functional features of the CD45 receptor molecule from the European sea bass Dicentrarchus labrax. Following immunization with fixed sea bass thymocytes, we obtained a murine monoclonal antibody (mAb) able to stain fish leucocytes both alive, by immunofluorescence of thymus and mucosal tissues, and fixed, by in situ immunohistochemistry of tissue sections. The selected IgG(2) mAb (DLT22) was able to recognise by western blots polypeptides mainly at 180 kDa and 130 kDa in thymus, spleen, intestine and gill leucocyte. Accordingly, a 130 kDa polypeptide immunoprecipitated with DLT22 from thymocytes and analysed by nano-RP-HPLC-ESI-MS/MS, gave peptide sequences homologous to Fugu CD45, that were employed for the homology cloning of a partial sea bass CD45 cDNA sequence. This cDNA sequence was employed to measure by quantitative PCR the transcription of the CD45 gene both in unstimulated and in in vitro stimulated leucocytes, showing that the gene transcription was specifically modulated by LPS, ConA, PHA, IL-1, and poly I:C. When splenocytes were stimulated in vitro with ConA and PHA, a cell proliferation paralleled by an increase of DLT22-positive leucocytes was also observed. These data indicate that the DLT22 mAb recognizes a putative CD45 molecule in sea bass, documenting the presence of CD45-like developing lymphocytes in thymus and CD45-associated functional stages of lymphocytes in this species, thus dating back to teleost fish the functional activities of these cell populations in vertebrates.
Collapse
Affiliation(s)
- Catia Marozzi
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, 01100 Viterbo, Italy
| | | | | | | | | | | |
Collapse
|
7
|
Morrow JS, Rimm DL, Kennedy SP, Cianci CD, Sinard JH, Weed SA. Of Membrane Stability and Mosaics: The Spectrin Cytoskeleton. Compr Physiol 2011. [DOI: 10.1002/cphy.cp140111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
8
|
Dupéré-Minier G, Desharnais P, Bernier J. Involvement of tyrosine phosphatase CD45 in apoptosis. Apoptosis 2010; 15:1-13. [PMID: 19856105 DOI: 10.1007/s10495-009-0413-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CD45 is a transmembrane molecule with phosphatase activity expressed in all nucleated haematopoietic cells and plays a major role in immune cells. It is a protein tyrosine phosphatase that is essential for antigen-receptor-mediated signal transduction by regulating Src family members that initiate TCR signaling. CD45 is being attributed a new emerging role as an apoptosis regulator. Cross-linking of the extracellular portion of the CD45 by monoclonal antibodies and by galectin-1, can induce apoptosis in T and B cells. Interestingly, this phosphatase has also been involved in nuclear apoptosis induced by mitochondrial perturbing agents. Furthermore, it is involved in apoptosis induced by HIV-1. CD45 defect is implicated in various diseases such as severe-combined immunodeficiency disease (SCID), acquired immunodeficiency syndrome (AIDS), lymphoma and multiple myelomas. The understanding of the mechanisms by which CD45 regulates apoptosis would be very useful in disease treatment.
Collapse
|
9
|
Cairo CW, Das R, Albohy A, Baca QJ, Pradhan D, Morrow JS, Coombs D, Golan DE. Dynamic regulation of CD45 lateral mobility by the spectrin-ankyrin cytoskeleton of T cells. J Biol Chem 2010; 285:11392-401. [PMID: 20164196 DOI: 10.1074/jbc.m109.075648] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The leukocyte common antigen, CD45, is a critical immune regulator whose activity is modulated by cytoskeletal interactions. Components of the spectrin-ankyrin cytoskeleton have been implicated in the trafficking and signaling of CD45. We have examined the lateral mobility of CD45 in resting and activated T lymphocytes using single-particle tracking and found that the receptor has decreased mobility caused by increased cytoskeletal contacts in activated cells. Experiments with cells that have disrupted betaI spectrin interactions show decreased cytoskeletal contacts in resting cells and attenuation of receptor immobilization in activated cells. Applying two types of population analyses to single-particle tracking trajectories, we find good agreement between the diffusion coefficients obtained using either a mean squared displacement analysis or a hidden Markov model analysis. Hidden Markov model analysis also reveals the rate of association and dissociation of CD45-cytoskeleton contacts, demonstrating the importance of this analysis for measuring cytoskeleton binding events in live cells. Our findings are consistent with a model in which multiple cytoskeletal contacts, including those with spectrin and ankyrin, participate in the regulation of CD45 lateral mobility. These interactions are a major factor in CD45 immobilization in activated cells. Furthermore, cellular activation leads to CD45 immobilization by reduction of the CD45-cytoskeleton dissociation rate. Short peptides that mimic spectrin repeat domains alter the association rate of CD45 to the cytoskeleton and cause an apparent decrease in dissociation rates. We propose a model for CD45-cytoskeleton interactions and conclude that the spectrin-ankyrin-actin network is an essential determinant of immunoreceptor mobility.
Collapse
Affiliation(s)
- Christopher W Cairo
- Department of Chemistry and Alberta Ingenuity Centre for Carbohydrate Science, University of Alberta, Edmonton, Alberta T6G 2G2, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Pang M, He J, Johnson P, Baum LG. CD45-mediated fodrin cleavage during galectin-1 T cell death promotes phagocytic clearance of dying cells. THE JOURNAL OF IMMUNOLOGY 2009; 182:7001-8. [PMID: 19454697 DOI: 10.4049/jimmunol.0804329] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Disassembly and phagocytic removal of dying cells is critical to maintain immune homeostasis. The factors that regulate fragmentation and uptake of dying lymphocytes are not well understood. Degradation of fodrin, a cytoskeletal linker molecule that attaches CD45 to the actin cytoskeleton, has been described in apoptotic cells, although no specific initiator of fodrin degradation has been identified. CD45 is a glycoprotein receptor for galectin-1, an endogenous lectin that can trigger lymphocyte apoptosis, although CD45 is not required for phosphatidylserine externalization or DNA degradation during galectin-1 death. In this study, we show that fodrin degradation occurs during galectin-1 T cell death and that CD45 is essential for fodrin degradation to occur. In the absence of CD45, or if fodrin degradation is prevented, galectin-1-induced cell death is not accompanied by membrane blebbing, although phosphatidylserine externalization and DNA degradation proceed, indicating that fodrin degradation occurs via a distinct pathway compared with the pathway that leads to these other hallmarks of cell death. Moreover, there is slower phagocytic uptake by macrophages of T cells in which fodrin degradation is prevented, relative to T cells in which CD45-mediated fodrin degradation occurs. These studies identify a novel role for CD45 in regulating cellular disassembly and promoting phagocytic clearance during galectin-1-induced T cell death.
Collapse
Affiliation(s)
- Mabel Pang
- Department of Pathology and Laboratory Medicine, University of California Los Angeles School of Medicine, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
11
|
|
12
|
Bodrikov V, Leshchyns'ka I, Sytnyk V, Overvoorde J, den Hertog J, Schachner M. RPTPalpha is essential for NCAM-mediated p59fyn activation and neurite elongation. ACTA ACUST UNITED AC 2004; 168:127-39. [PMID: 15623578 PMCID: PMC2171675 DOI: 10.1083/jcb.200405073] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The neural cell adhesion molecule (NCAM) forms a complex with p59fyn kinase and activates it via a mechanism that has remained unknown. We show that the NCAM140 isoform directly interacts with the intracellular domain of the receptor-like protein tyrosine phosphatase RPTPα, a known activator of p59fyn. Whereas this direct interaction is Ca2+ independent, formation of the complex is enhanced by Ca2+-dependent spectrin cytoskeleton–mediated cross-linking of NCAM and RPTPα in response to NCAM activation and is accompanied by redistribution of the complex to lipid rafts. Association between NCAM and p59fyn is lost in RPTPα-deficient brains and is disrupted by dominant-negative RPTPα mutants, demonstrating that RPTPα is a link between NCAM and p59fyn. NCAM-mediated p59fyn activation is abolished in RPTPα-deficient neurons, and disruption of the NCAM–p59fyn complex in RPTPα-deficient neurons or with dominant-negative RPTPα mutants blocks NCAM-dependent neurite outgrowth, implicating RPTPα as a major phosphatase involved in NCAM-mediated signaling.
Collapse
Affiliation(s)
- Vsevolod Bodrikov
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, 20246 Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
Regulation of tyrosine phosphorylation is a critical control point for integration of environmental signals into cellular responses. This regulation is mediated by the reciprocal actions of protein tyrosine kinases and phosphatases. CD45, the first and prototypic receptor-like protein tyrosine phosphatase, is expressed on all nucleated hematopoietic cells and plays a central role in this process. Studies of CD45 mutant cell lines, CD45-deficient mice, and CD45-deficient humans initially demonstrated the essential role of CD45 in antigen receptor signal transduction and lymphocyte development. It is now known that CD45 also modulates signals emanating from integrin and cytokine receptors. Recent work has focused on regulation of CD45 expression and alternative splicing, isoform-specific differences in signal transduction, and regulation of phosphatase activity. From these studies, a model is emerging in which CD45 affects cellular responses by controlling the relative threshold of sensitivity to external stimuli. Perturbation of this function may contribute to autoimmunity, immunodeficiency, and malignancy. Moreover, recent advances suggest that modulation of CD45 function can have therapeutic benefit in many disease states.
Collapse
|
14
|
Martin TA, Harrison G, Mansel RE, Jiang WG. The role of the CD44/ezrin complex in cancer metastasis. Crit Rev Oncol Hematol 2003; 46:165-86. [PMID: 12711360 DOI: 10.1016/s1040-8428(02)00172-5] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
CD44 is a cell adhesion molecule that was traditionally known as 'homing receptor'. This molecule is known to interact with the ezrin family (ERM family) members and form a complex that plays diverse roles within both normal and abnormal cells, particularly cancer cells. CD44 and ezrin and their respective complex have properties suggesting that they may be important in the process of tumour-endothelium interactions, cell migrations, cell adhesion, tumour progression and metastasis. This article reviews the role of CD44, ezrin family and the CD44/ezrin complex in cancer cells and their clinical impact in patients with cancer.
Collapse
Affiliation(s)
- Tracey A Martin
- Metastasis Research Group, University Department of Surgery, University of Wales College of Medicine, Heath Park, Cardiff, S. Wales CF14 4XN, UK.
| | | | | | | |
Collapse
|
15
|
Pradhan D, Morrow J. The spectrin-ankyrin skeleton controls CD45 surface display and interleukin-2 production. Immunity 2002; 17:303-15. [PMID: 12354383 DOI: 10.1016/s1074-7613(02)00396-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
With T cell receptor stimulation, intracellular pools of CD45 and spectrin move to the surface. These processes are coupled. In both peripheral lymphocytes and Jurkat T cells, betaI spectrin and ankyrin associate with CD45. In Jurkat T cells, betaI spectrin peptides suppress surface recruitment of CD45 and CD3 and abrogate T cell activation. Other glycoproteins such as CD43 are not altered by the spectrin peptides. Spectrin's effects are mediated by ankyrin, which binds directly to the cytoplasmic domain of CD45 (K(d) = 4.3 +/- 3.0 nM). These data reveal a novel and unexpected contribution of the spectrin-ankyrin skeleton to the control of T lymphocyte function.
Collapse
Affiliation(s)
- Deepti Pradhan
- Department of Pathology, Yale University, 310 Cedar Street, New Haven, CT 06510, USA
| | | |
Collapse
|
16
|
Bennett V, Baines AJ. Spectrin and ankyrin-based pathways: metazoan inventions for integrating cells into tissues. Physiol Rev 2001; 81:1353-92. [PMID: 11427698 DOI: 10.1152/physrev.2001.81.3.1353] [Citation(s) in RCA: 720] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The spectrin-based membrane skeleton of the humble mammalian erythrocyte has provided biologists with a set of interacting proteins with diverse roles in organization and survival of cells in metazoan organisms. This review deals with the molecular physiology of spectrin, ankyrin, which links spectrin to the anion exchanger, and two spectrin-associated proteins that promote spectrin interactions with actin: adducin and protein 4.1. The lack of essential functions for these proteins in generic cells grown in culture and the absence of their genes in the yeast genome have, until recently, limited advances in understanding their roles outside of erythrocytes. However, completion of the genomes of simple metazoans and application of homologous recombination in mice now are providing the first glimpses of the full scope of physiological roles for spectrin, ankyrin, and their associated proteins. These functions now include targeting of ion channels and cell adhesion molecules to specialized compartments within the plasma membrane and endoplasmic reticulum of striated muscle and the nervous system, mechanical stabilization at the tissue level based on transcellular protein assemblies, participation in epithelial morphogenesis, and orientation of mitotic spindles in asymmetric cell divisions. These studies, in addition to stretching the erythrocyte paradigm beyond recognition, also are revealing novel cellular pathways essential for metazoan life. Examples are ankyrin-dependent targeting of proteins to excitable membrane domains in the plasma membrane and the Ca(2+) homeostasis compartment of the endoplasmic reticulum. Exciting questions for the future relate to the molecular basis for these pathways and their roles in a clinical context, either as the basis for disease or more positively as therapeutic targets.
Collapse
Affiliation(s)
- V Bennett
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
17
|
Abstract
Protein tyrosine phosphatases (PTPs), the enzymes that dephosphorylate tyrosyl phosphoproteins, were initially believed to be few in number and serve a 'housekeeping' role in signal transduction. Recent work indicates that this is totally incorrect. Instead, PTPs comprise a large superfamily whose members play critical roles in a wide variety of cellular processes. Moreover, PTPs exhibit exquisite substrate specificity in vivo. Recent evidence has led us to propose that members of the PTP family achieve selectivity through different combinations of specific targeting strategies and intrinsic catalytic domain specificity.
Collapse
Affiliation(s)
- N K Tonks
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA.
| | | |
Collapse
|
18
|
Berghs S, Aggujaro D, Dirkx R, Maksimova E, Stabach P, Hermel JM, Zhang JP, Philbrick W, Slepnev V, Ort T, Solimena M. betaIV spectrin, a new spectrin localized at axon initial segments and nodes of ranvier in the central and peripheral nervous system. J Cell Biol 2000; 151:985-1002. [PMID: 11086001 PMCID: PMC2174349 DOI: 10.1083/jcb.151.5.985] [Citation(s) in RCA: 219] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We report the identification of betaIV spectrin, a novel spectrin isolated as an interactor of the receptor tyrosine phosphatase-like protein ICA512. The betaIV spectrin gene is located on human and mouse chromosomes 19q13.13 and 7b2, respectively. Alternative splicing of betaIV spectrin generates at least four distinct isoforms, numbered betaIVSigma1-betaIVSigma4 spectrin. The longest isoform (betaIVSigma1 spectrin) includes an actin-binding domain, followed by 17 spectrin repeats, a specific domain in which the amino acid sequence ERQES is repeated four times, several putative SH3-binding sites and a pleckstrin homology domain. betaIVSigma2 and betaIVSigma3 spectrin encompass the NH(2)- and COOH-terminal halves of betaIVSigma1 spectrin, respectively, while betaIVSigma4 spectrin lacks the ERQES and the pleckstrin homology domain. Northern blots revealed an abundant expression of betaIV spectrin transcripts in brain and pancreatic islets. By immunoblotting, betaIVSigma1 spectrin is recognized as a protein of 250 kD. Anti-betaIV spectrin antibodies also react with two additional isoforms of 160 and 140 kD. These isoforms differ from betaIVSigma1 spectrin in terms of their distribution on subcellular fractionation, detergent extractability, and phosphorylation. In islets, the immunoreactivity for betaIV spectrin is more prominent in alpha than in beta cells. In brain, betaIV spectrin is enriched in myelinated neurons, where it colocalizes with ankyrin(G) 480/270-kD at axon initial segments and nodes of Ranvier. Likewise, betaIV spectrin is concentrated at the nodes of Ranvier in the rat sciatic nerve. In the rat hippocampus, betaIVSigma1 spectrin is detectable from embryonic day 19, concomitantly with the appearance of immunoreactivity at the initial segments. Thus, we suggest that betaIVSigma1 spectrin interacts with ankyrin(G) 480/270-kD and participates in the clustering of voltage-gated Na(+) channels and cell-adhesion molecules at initial segments and nodes of Ranvier.
Collapse
Affiliation(s)
- S Berghs
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kwiatkowska K, Sobota A. Local accumulation of alpha-spectrin-related protein under plasma membrane during capping and phagocytosis in Acanthamoeba. CELL MOTILITY AND THE CYTOSKELETON 2000; 36:253-65. [PMID: 9067621 DOI: 10.1002/(sici)1097-0169(1997)36:3<253::aid-cm6>3.0.co;2-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
During capping and phagocytosis the interaction between cluster cell surface receptors and the submembraneous actin-based skeleton may be mediated by spectrin-like proteins. To test this possibility we examined the localization of an alpha-spectrin immunoanalogue, that had been previously identified in whole extracts of Acanthamoeba, during capping of Con A receptors and during phagocytosis of Con A-coated yeast. During capping alpha-spectrin and filamentous actin co-migrated with the Con A receptors and accumulated in the region of cap formation, as demonstrated by double immunofluorescence studies. Immunoelectron microscopy revealed submembraneous location of alpha-spectrin in cells exposed to Con A, both at the time of initial cross-linking and during accumulation of alpha-spectrin in the region of the cap. Phagocytosis studies showed that alpha-spectrin and actin filaments were concentrated around phagocytic cups that enclosed ConA-coated yeast upon internalization. The proteins also surrounded nascent phagosomes present in the vicinity of the plasma membrane but were absent at the later time point of phagosome maturation. These data demonstrate a correlation between clustering of cell surface receptors and submembraneous localization of alpha-spectrin, suggesting an involvement of spectrin-like proteins in mediating the interaction of receptor clusters with the actin cytoskeleton.
Collapse
Affiliation(s)
- K Kwiatkowska
- Nencki Institute of Experimental Biology, Department of Cell Biology, Warsaw, Poland
| | | |
Collapse
|
20
|
Anton van der Merwe P, Davis SJ, Shaw AS, Dustin ML. Cytoskeletal polarization and redistribution of cell-surface molecules during T cell antigen recognition. Semin Immunol 2000; 12:5-21. [PMID: 10723794 DOI: 10.1006/smim.2000.0203] [Citation(s) in RCA: 234] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
T cell antigen recognition is accompanied by cytoskeletal polarization towards the APC and large-scale redistribution of cell surface molecules into 'supramolecular activation clusters' (SMACs), forming an organized contact interface termed the 'immunological synapse' (IS). Molecules are arranged in the IS in a micrometer scale bull's eye pattern with a central accumulation of TCR/peptide-MHC (the cSMAC) surrounded by a peripheral ring of adhesion molecules (the pSMAC). We propose that segregation of cell surface molecules on a much smaller scale initiates TCR triggering, which drives the formation of the IS by active transport processes. IS formation may function as a checkpoint for full T cell activation, integrating information on the presence and quality of TCR ligands and the nature and activation state of the APC.
Collapse
|
21
|
Simon SI, Cherapanov V, Nadra I, Waddell TK, Seo SM, Wang Q, Doerschuk CM, Downey GP. Signaling Functions of L-Selectin in Neutrophils: Alterations in the Cytoskeleton and Colocalization with CD18. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.5.2891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Ligation and clustering of L-selectin by Ab (“cross-linking”) or physiologic ligands results in activation of diverse responses that favor enhanced microvascular sequestration and emigration of neutrophils. The earliest responses include a rise in intracellular calcium, enhanced tyrosine phosphorylation, and activation of extracellular signal-regulated kinases. Additionally, cross-linking of L-selectin induces sustained shape change and activation of β2 integrins, leading to neutrophil arrest under conditions of shear flow. In this report, we examined several possible mechanisms whereby transmembrane signals from L-selectin might contribute to an increase in the microvascular retention of neutrophils and enhanced efficiency of emigration. In human peripheral blood neutrophils, cross-linking of L-selectin induced alterations in cellular biophysical properties, including a decrease in cell deformability associated with F-actin assembly and redistribution, as well as enhanced adhesion of microspheres bound to β2 integrins. L-selectin and the β2 integrin became spatially colocalized as determined by confocal immunofluorescence microscopy and fluorescence resonance energy transfer. We conclude that intracellular signals from L-selectin may enhance the microvascular sequestration of neutrophils at sites of inflammation through a combination of cytoskeletal alterations leading to cell stiffening and an increase in adhesiveness mediated through alterations in β2 integrins.
Collapse
Affiliation(s)
- Scott I. Simon
- *Department of Pediatrics, Section of Leukocyte Biology, Baylor College of Medicine, Houston, TX 77030
| | - Vera Cherapanov
- †Department of Medicine, Division of Respirology, University of Toronto, Toronto, Ontario, Canada; and
| | - Imad Nadra
- †Department of Medicine, Division of Respirology, University of Toronto, Toronto, Ontario, Canada; and
| | - Tom K. Waddell
- †Department of Medicine, Division of Respirology, University of Toronto, Toronto, Ontario, Canada; and
| | - Scott M. Seo
- *Department of Pediatrics, Section of Leukocyte Biology, Baylor College of Medicine, Houston, TX 77030
| | - Qin Wang
- ‡Physiology Program, Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115
| | - Claire M. Doerschuk
- ‡Physiology Program, Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115
| | - Gregory P. Downey
- †Department of Medicine, Division of Respirology, University of Toronto, Toronto, Ontario, Canada; and
| |
Collapse
|
22
|
Shao JY, Hochmuth RM. Mechanical anchoring strength of L-selectin, beta2 integrins, and CD45 to neutrophil cytoskeleton and membrane. Biophys J 1999; 77:587-96. [PMID: 10388783 PMCID: PMC1300355 DOI: 10.1016/s0006-3495(99)76915-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The strength of anchoring of transmembrane receptors to cytoskeleton and membrane is important in cell adhesion and cell migration. With micropipette suction, we applied pulling forces to human neutrophils adhering to latex beads that were coated with antibodies to CD62L (L-selectin), CD18 (beta2 integrins), or CD45. In each case, the adhesion frequency between the neutrophil and bead was low, and our Monte Carlo simulation indicates that only a single bond was probably involved in every adhesion event. When the adhesion between the neutrophil and bead was ruptured, it was very likely that receptors were extracted from neutrophil surfaces. We found that it took 1-2 s to extract an L-selectin at a force range of 25-45 pN, 1-4 s to extract a beta2 integrin at a force range of 60-130 pN, and 1-11 s to extract a CD45 at a force range of 35-85 pN. Our results strongly support the conclusion that, during neutrophil rolling, L-selectin is unbound from its ligand when the adhesion between neutrophils and endothelium is ruptured.
Collapse
Affiliation(s)
- J Y Shao
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708-0300, USA.
| | | |
Collapse
|
23
|
Kwiatkowska K, Sobota A. Engagement of spectrin and actin in capping of FcgammaRII revealed by studies on permeabilized U937 cells. Biochem Biophys Res Commun 1999; 259:287-93. [PMID: 10362500 DOI: 10.1006/bbrc.1999.0769] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Plasma membrane receptors can undergo translocation in the plane of plasma membrane after binding of polyvalent ligands. Ligand/receptor clusters, named patches, can collect into a polar cap, presumably due to their association with the submembrane actin-based cytoskeleton. We found that the assembly of Fcgamma receptor II caps in human monocytic U937 cells was accompanied by the accumulation of spectrin and actin in the cap region. Permeabilization of cells with streptolysin O rendered capping sensitive to inhibition by phalloidin, an actin filament stabilizing agent. A rabbit antibody directed against the chicken erythrocyte alpha-subunit of spectrin, an actin- and membrane-binding protein, also blocked the capping in a dose dependent manner. The inhibition reached approximately 50% after 20 minutes of cell treatment with the antibody. Anti-alpha-spectrin targeted specifically its submembrane antigen, in contrast to unspecific antibodies which remained dispersed in the cell interior and had no influence on the cap assembly. Our results indicate an active engagement of spectrin and actin filaments in the capping of Fcgamma receptor II.
Collapse
Affiliation(s)
- K Kwiatkowska
- Department of Cell Biology, Nencki Institute of Experimental Biology, 3 Pasteur Street, Warsaw, 02-093, Poland
| | | |
Collapse
|
24
|
Affiliation(s)
- L B Justement
- Department of Microbiology, University of Alabama at Birmingham 35294, USA
| |
Collapse
|
25
|
Altin JG, Sloan EK. The role of CD45 and CD45-associated molecules in T cell activation. Immunol Cell Biol 1997; 75:430-45. [PMID: 9429890 DOI: 10.1038/icb.1997.68] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
CD45 (lymphocyte common antigen) is a receptor-linked protein tyrosine phosphatase that is expressed on all leucocytes, and which plays a crucial role in the function of these cells. On T cells the extracellular domain of CD45 is expressed in several different isoforms, and the particular isoform(s) expressed depends on the particular subpopulation of cell, their state of maturation, and whether or not they have previously been exposed to antigen. It has been established that the expression of CD45 is essential for the activation of T cells via the TCR, and that different CD45 isoforms display a different ability to support T cell activation. Although the tyrosine phosphatase activity of the intracellular region of CD45 has been shown to be crucial for supporting signal transduction from the TCR, the nature of the ligands for the different isoforms of CD45 have been elusive. Moreover, the precise mechanism by which potential ligands may regulate CD45 function is unclear. Interestingly, in T cells CD45 has been shown to associate with numerous molecules, both membrane associated and intracellular; these include components of the TCR-CD3 complex and CD4/CD8. In addition, CD45 is reported to associate with several intracellular protein tyrosine kinases including p56lck and p59fyn of the src family, and ZAP-70 of the Syk family, and with numerous proteins of 29-34 kDa. These CD45-associated molecules may play an important role in regulating CD45 tyrosine phosphatase activity and function. However, although the role of some of the CD45-associated molecules (e.g. CD45-AP and LPAP) has become better understood in recent years, the role of others still remains obscure. This review aims to summarize recent findings on the role of CD45 and CD45-associated molecules in T cell activation, and to highlight issues that seem relevant to ongoing research in this area.
Collapse
Affiliation(s)
- J G Altin
- Division of Biochemistry and Molecular Biology, School of Life Sciences, Faculty of Science, Australian National University, Canberra, Australia.
| | | |
Collapse
|
26
|
Pani G, Siminovitch KA. Protein tyrosine phosphatase roles in the regulation of lymphocyte signaling. CLINICAL IMMUNOLOGY AND IMMUNOPATHOLOGY 1997; 84:1-16. [PMID: 9191879 DOI: 10.1006/clin.1996.4326] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Tyrosine phosphorylation-based signaling cascades represent an integral component of the signaling circuitry connecting extracellular stimuli to cell response. As the molecular elements which drive such cascades have become increasingly well-characterized, appreciation has grown for the critical roles played by protein tyrosine phosphatases (PTPs) in intracellular signal relay and for the capacity of PTPs to act not only as a counterbalance for protein kinase activities, but also as pivotal enzymes in directing and modulating signal relay and the translation of given stimuli to cell behaviour. PTP function has been particularly well studied in relation to lymphocyte antigen receptor signaling and the results of these studies have provided many novel and significant insights into the biochemical mechanisms whereby PTPs participate in the integration and interpretation of the complex transmembrane stimulatory signals driving cell function and development.
Collapse
Affiliation(s)
- G Pani
- Department of Medicine, University of Toronto, Ontario, Canada
| | | |
Collapse
|
27
|
Kang S, Liao PC, Gage DA, Esselman WJ. Identification of in vivo phosphorylation sites of CD45 protein-tyrosine phosphatase in 70Z/3.12 cells. J Biol Chem 1997; 272:11588-96. [PMID: 9111075 DOI: 10.1074/jbc.272.17.11588] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Phosphorylation of CD45, a transmembrane protein-tyrosine phosphatase (PTPase), has been proposed to mediate docking of signaling proteins and to modulate PTPase activity. To study the role of phosphorylation in CD45, in vivo phosphorylation sites of CD45 from 70Z/3.12 cells were identified using 32P labeling, trypsin digestion, two-dimensional peptide mapping, high performance liquid chromatography, phosphoamino acid analysis, matrix-assisted laser desorption/ionization mass spectrometry, and specific enzymatic degradation. Eight phosphopeptides, a through h, were isolated and four phosphorylation sites were identified. All four phosphorylation sites were in the membrane-distal PTPase domain (D2) and the C-terminal tail and none were in the membrane-proximal PTPase domain (D1). One site, Ser(P)939 peptide h, was in the D2 domain and, by comparison to the three-dimensional structure of PTP1B, is predicted to lie at the apex of the substrate binding loop. Ser939 was the only in vitro phosphorylation site for protein kinase C among the phosphorylation sites identified. Four of the C-terminal peptides identified (d, e, f, and g) spanned the same sequence and were derived from the same phosphorylation site in the C-terminal tail, Ser1204. Peptide a was derived from the intact C terminus and comprised a mixture of monophosphorylated peptides containing either Ser(P)1248 or Thr(P)1246. Knowledge of the precise phosphorylation sites of CD45 will lead to the design of experiments to define the role of phosphorylation in PTPase activity and in signaling.
Collapse
Affiliation(s)
- S Kang
- Department of Microbiology, Michigan State University, East Lansing, Michigan 48824-1101, USA
| | | | | | | |
Collapse
|
28
|
Haneji N, Nakamura T, Takio K, Yanagi K, Higashiyama H, Saito I, Noji S, Sugino H, Hayashi Y. Identification of alpha-fodrin as a candidate autoantigen in primary Sjögren's syndrome. Science 1997; 276:604-7. [PMID: 9110981 DOI: 10.1126/science.276.5312.604] [Citation(s) in RCA: 261] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
It is unclear whether organ-specific autoantigens are critical for the development of primary Sjögren's syndrome (SS). A 120-kilodalton organ-specific autoantigen was purified from salivary gland tissues of an NFS/sld mouse model of human SS. The amino-terminal residues were identical to those of the human cytoskeletal protein alpha-fodrin. The purified antigen induced proliferative T cell responses and production of interleukin-2 and interferon-gamma in vitro. Neonatal immunization with the 120-kilodalton antigen prevented the disease in mice. Sera from patients with SS reacted positively with purified antigen and recombinant human alpha-fodrin protein, whereas those from patients with systemic lupus erythematosus and rheumatoid arthritis did not. Thus, the immune response to 120-kilodalton alpha-fodrin could be important in the initial development of primary SS.
Collapse
Affiliation(s)
- N Haneji
- Department of Pathology, Tokushima University School of Dentistry, 3 Kuramotocho, Tokushima 770, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Law CL, Craxton A, Otipoby KL, Sidorenko SP, Klaus SJ, Clark EC. Regulation of signalling through B-lymphocyte antigen receptors by cell-cell interaction molecules. Immunol Rev 1996; 153:123-54. [PMID: 9010722 DOI: 10.1111/j.1600-065x.1996.tb00923.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- C L Law
- Department of Microbiology, University of Washington, Seattle 98195, USA
| | | | | | | | | | | |
Collapse
|
30
|
Caplan S, Baniyash M. Normal T cells express two T cell antigen receptor populations, one of which is linked to the cytoskeleton via zeta chain and displays a unique activation-dependent phosphorylation pattern. J Biol Chem 1996; 271:20705-12. [PMID: 8702821 DOI: 10.1074/jbc.271.34.20705] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The TCR couples antigen recognition and the transmission of activation signals. We report the expression of two TCR populations on the surface of T lymphocytes, one of which is linked to the cytoskeleton via the zeta chain. We also demonstrate that assembly of the CD3 subunits with cytoskeleton-associated zeta is necessary for their maximal localization to the cytoskeleton. The potential significance of these two receptor forms is underscored by differences observed in non-activated T cells; while detergent-soluble phosphorylated zeta appears as a 21-kDa protein, phosphorylated cytoskeleton-associated zeta appears as a 16-kDa form. This dichotomous phosphorylation pattern is rigidly maintained following activation, although each of the receptor populations undergoes different activation-dependent modifications: 1) levels of soluble phosphorylated 21-kDa zeta are enhanced, while phosphorylated 16-kDa cytoskeleton-associated zeta exhibits little change; 2) soluble non-phosphorylated 16-kDa zeta translocates to the cytoskeleton; 3) activation-dependent ubiquitinated zeta forms localize to both fractions, albeit with different kinetics. We also show that the protein tyrosine kinase Lck undergoes activation-dependent modifications and translocates to the cytoskeleton. The phosphorylation profiles of the dichotomous TCR populations in both non-activated and activated lymphocytes suggest that each population could regulate distinct cellular functions, possibly by select intermolecular associations.
Collapse
Affiliation(s)
- S Caplan
- The Lautenberg Center for General and Tumor Immunology, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | |
Collapse
|
31
|
Moffat FL, Han T, Li ZM, Peck MD, Jy W, Ahn YS, Chu AJ, Bourguignon LY. Supplemental L-arginine HCl augments bacterial phagocytosis in human polymorphonuclear leukocytes. J Cell Physiol 1996; 168:26-33. [PMID: 8647919 DOI: 10.1002/(sici)1097-4652(199607)168:1<26::aid-jcp4>3.0.co;2-a] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
That L-arginine (L-Arg) augments the host response to acute bacterial sepsis suggests that this amino acid intervenes early in the immune response, perhaps via the nitric oxide synthetase (NOS) pathway. The effect of L-Arg supplementation on in vitro phagocytosis of fluorescein-labeled, heat-killed Staphylococcus aureus by peripheral blood neutrophils (PMNs) from 12 normal human volunteers was studied. Separated PMNs were incubated for 2 h with labeled bacteria, with and without supplemental L-Arg, D-arginine, glycine, and/or the NOS inhibitors L-canavanine, aminoguanidine, or L-NG-nitroarginine methyl ester. PMNs were fixed and extracellular fluorescence quenched with crystal violet. By flow cytometry and confocal microscopy, L-Arg supplementation was shown to result in a highly significant increase in PMN bacterial phagocytosis, the maximal effect being seen with L-Arg 380 microM and falling off with higher concentrations. This augmentation was completely abrogated by NOS inhibitors in molar excess, but inhibitors alone did not suppress phagocytosis below that of unsupplemented controls. Neither D-arginine nor glycine affected phagocytosis; the L-Arg effect was stereospecific and not related to utilization of L-Arg as an energy source. L-Arg supplementation significantly enhances bacterial phagocytosis in human neutrophils, perhaps by effects on cytoskeletal phenomena, and this appears to be mediated through NOS activity. Phagocytosis by nonspecific immune cells which intervene early in the response to sepsis is critically important, and beneficial effects of L-Arg on the clinical course of sepsis may be due at least in part to augmentation of phagocyte function.
Collapse
Affiliation(s)
- F L Moffat
- Veterans Administration Medical Center, Miami, Florida 33136, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Ozawa K, Takahashi M, Sobue K. Phase specific association of heterotrimeric GTP-binding proteins with the actin-based cytoskeleton during thrombin receptor-mediated platelet activation. FEBS Lett 1996; 382:159-63. [PMID: 8612741 DOI: 10.1016/0014-5793(96)00162-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Subcellular distribution of heterotrimeric GTP-binding proteins during thrombin receptor-mediated platelet activation was examined, revealing two phases of translocation to the cytoskeleton. A part of Gi2 alpha and Gs alpha shows first phase translocation to the low-speed pellet (15000 x g pellet) within 1 min after activation, suggesting involvement in platelet shape change or granule secretion. In the second phase, Gi2 alpha, Gs alpha, Gq alpha, and G beta translocate to the low-speed pellet, depending on platelet aggregation. These translocations correlated with the reorganization of the actin-cytoskeleton and were inhibited by cytochalasin D. Reconstitution experiments also revealed that G proteins are associated with the actin-cytoskeleton during platelet activation.
Collapse
Affiliation(s)
- K Ozawa
- Department of Neurochemistry and Neuropharmacology, Biomedical Research Center, Osaka University Medical School, Japan
| | | | | |
Collapse
|
33
|
Repasky EA, Black JD. Chapter 15 Dynamic Properties of the Lymphocyte Membrane-Cytoskeleton: Relationship to Lymphocyte Activation Status, Signal Transduction, and Protein Kinase C. CURRENT TOPICS IN MEMBRANES 1996. [DOI: 10.1016/s0070-2161(08)60395-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
|
35
|
Reichle A, Diddens H, Altmayr F, Rastetter J, Andreesen R. Beta-tubulin and P-glycoprotein: major determinants of vincristine accumulation in B-CLL cells. Leuk Res 1995; 19:823-9. [PMID: 8551799 DOI: 10.1016/0145-2126(95)00062-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Vincristine (VCR) accumulation in chronic lymphatic leukemia of B-cell origin (B-CLL) has recently been shown not to be inversely correlated to P-glycoprotein (PGP) levels. Therefore, we studied, in addition to PGP expression and accumulation of VCR, the cellular beta-tubulin content in quiescent and rhIL-2 activated B-CLL cells. VCR mediates cytotoxicity by binding to tubulin. Constitutive beta-tubulin levels in B-CLL cells varied considerably. Upon activation with rhIL-2, beta-tubulin expression increased significantly. Therefore, tubulin levels could be correlated over a wide range to VCR accumulation. When the PGP-mediated drug efflux was blocked by verapamil (VRP), tubulin levels correlated linearly to VCR accumulation. All B-CLL cases expressed PGP at different levels. There was no linear correlation between PGP expression and VCR accumulation. A modulation factor m was defined as a quotient of VCR accumulation in the presence and absence of VRP to define the extent by which VRP inhibited a steady-state accumulation of VCR. The factor allowed discrimination between B-CLLs expressing low versus high PGP, irrespective of the levels of tubulin. However, PGP and beta-tubulin levels together were predictive for VCR accumulation in steady state. There was no uniform-accumulation defect for VCR in B-cell CLL because beta-tubulin and PGP were expressed independently. Non PGP-mediated VCR transport seems to play a minor role in B-cell CLL. Leukemia-associated varying of cytoskeletal organization in B-cell CLL might be one reason for the diverse cellular responses to receptor-mediated signals.
Collapse
Affiliation(s)
- A Reichle
- Klinik und Poliklinik der Medizinischen Klinik I, Universität Regensburg, Germany
| | | | | | | | | |
Collapse
|
36
|
Kitamura K, Maiti A, Ng DH, Johnson P, Maizel AL, Takeda A. Characterization of the interaction between CD45 and CD45-AP. J Biol Chem 1995; 270:21151-7. [PMID: 7673147 DOI: 10.1074/jbc.270.36.21151] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
CD45, a leukocyte-specific transmembrane protein tyrosine phosphatase, is required for critical signal transduction pathways in immune responses. To elucidate the molecular interactions of CD45 with other proteins involved in CD45-mediated signal transduction pathways, we have recently cloned a 30-kDa phosphorylated protein, CD45-AP, which specifically associates with CD45. Binding analysis employing several deleted or chimeric forms of CD45-AP and CD45 demonstrated that the potential transmembrane segment of CD45-AP bound to the transmembrane portion of CD45. CD45-AP was found in particulate fractions of lymphocytes along with CD45, indicating that it is likely to be a transmembrane protein. In addition, CD45-AP was resistant to proteolysis by tosylphenylalanyl chloromethyl ketone-treated trypsin applied to intact cells. This is consistent with the most likely membrane orientation of CD45-AP predicted from the amino acid sequence, that is, only a short amino-terminal segment of CD45-AP is extracellular. We propose that CD45-AP interacts with CD45 at the plasma membrane and that the bulk of CD45-AP located in the cytoplasm act as an adapter which directs the interaction between CD45 and other molecules involved in CD45-mediated signal transduction pathways.
Collapse
Affiliation(s)
- K Kitamura
- Department of Pathology, Roger Williams Medical Center-Brown University, Providence, Rhode Island 02908, USA
| | | | | | | | | | | |
Collapse
|
37
|
Rosales C, O'Brien V, Kornberg L, Juliano R. Signal transduction by cell adhesion receptors. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1242:77-98. [PMID: 7542926 DOI: 10.1016/0304-419x(95)00005-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Over the last few years, it has become clear that cell adhesion receptors function in signal transduction processes leading to the regulation of cell growth and differentiation. Signal transduction by both integrins and CAMs has been shown to involve activation of tyrosine kinases, while CAM signaling in neural cells involves G proteins as well. In the case of integrins, some of the downstream signaling events intersect with the Ras pathway, particularly the activation of MAP kinases. In fibroblasts, integrin mediated anchorage to the substratum regulates cell cycle traverse, while in epithelial cells, loss of anchorage can trigger programmed cell death. In many cell types, but particularly monocytic cells, integrin ligation has a profound impact on gene expression. Preliminary evidence also implicates CAMs and selectins in gene regulation. A consistent theme in signal transduction mediated by adhesion receptors concerns the role of the cytoskeleton. Integrin mediated signaling processes are interrupted by cytoskeletal disassembly. Identification of the APC and neurofibromatosis type 2 tumor suppressors suggest that cytoskeletal complexes also play a key role in signaling by cadherins and CD44, respectively. Thus, signaling by cell adhesion receptors may involve aspects that impinge on previously known signaling pathways including the RTK/Ras pathway and serpentine receptor/G protein pathways. However, novel aspects of signal transduction involving cytoskeletal assemblies may also be critical.
Collapse
Affiliation(s)
- C Rosales
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill 27599, USA
| | | | | | | |
Collapse
|
38
|
Caplan S, Baniyash M. Multisubunit receptors in the immune system and their association with the cytoskeleton: in search of functional significance. Immunol Res 1995; 14:98-118. [PMID: 8530880 DOI: 10.1007/bf02918171] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Various multisubunit receptors of the immune system share similarities in structure and induce closely related signal transduction pathways upon ligand binding. Examples include the T cell antigen receptor (TCR), the B cell antigen receptor (BCR), and the high-affinity receptor for immunoglobulin E (Fc epsilon RI). Although these receptors are devoid of intrinsic kinase activity, they can associate with a similar array of intracellular kinases, phosphatases and other signaling molecules. Furthermore, these receptor complexes all form an association with the cytoskeletal matrix. In this review, we compare the structural and functional characteristics of the TCR, BCR and Fc epsilon RI. We examine the role of the cytoskeleton in regulating receptor-mediated signal transduction, as analyzed in other well-characterized receptors, including the epidermal growth factor receptor and integrin receptors. On the basis of this evidence, we review the current data depicting a cytoskeletal association for multisubunit immune system receptors and explore the potential bearing of this interaction on signaling function.
Collapse
Affiliation(s)
- S Caplan
- Lautenberg Center for General and Tumor Immunology, Hebrew University Hadassah Medical School, Jerusalem, Israel
| | | |
Collapse
|
39
|
Bourguignon LY, Jin H. Identification of the ankyrin-binding domain of the mouse T-lymphoma cell inositol 1,4,5-trisphosphate (IP3) receptor and its role in the regulation of IP3-mediated internal Ca2+ release. J Biol Chem 1995; 270:7257-60. [PMID: 7706265 DOI: 10.1074/jbc.270.13.7257] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In this study we have used several complementary techniques to explore the interaction between the membrane linker molecule, ankyrin, and the inositol 1,4,5-trisphosphate (IP3) receptor in mouse T-lymphoma cells. Using double immunolabeling and laser confocal microscopy, we have found that both cytoplasmic IP3 receptor and ankyrin are preferentially accumulated within ligand-induced lymphocyte receptor-capped structures. The binding between ankyrin and IP3 receptor appears to be very specific. Further analyses indicate that the amino acid sequence GGVGDVLRKPS in the IP3 receptor shares a great deal of structural homology with the ankyrin-binding domain located in certain well characterized ankyrin-binding proteins such as the cell adhesion molecule, CD44. Biochemical studies using competition binding assays and a synthetic peptide identical to GGVGDVLRKPS (a sequence detected in rat brain IP3 receptor (amino acids 2548-2558) and mouse brain IP3 receptor (amino acids 2546-2556)) indicate that this 11-amino acid peptide binds specifically to ankyrin (but not fodrin or spectrin). Furthermore, this peptide competes effectively for ankyrin binding to IP3 receptor-containing vesicles and/or purified IP3 receptor, and it blocks ankyrin-induced inhibitory effects on IP3 binding and IP3-mediated internal Ca2+ release in mouse T-lymphoma cells. These findings suggest that this amino acid sequence, GGVGDVLRKPS, which is located close to the C terminus of the IP3 receptor, resides on the cytoplasmic side (not the luminal side) of IP3 receptor-containing vesicles. This unique region appears to be an important part of the IP3 receptor ankyrin-binding domain and may play an important role in the regulation of IP3 receptor-mediated internal Ca2+ release during lymphocyte activation.
Collapse
Affiliation(s)
- L Y Bourguignon
- Department of Cell Biology and Anatomy, University of Miami Medical School, Florida 33101, USA
| | | |
Collapse
|
40
|
Arendt CW, Ostergaard HL. CD45 protein-tyrosine phosphatase is specifically associated with a 116-kDa tyrosine-phosphorylated glycoprotein. J Biol Chem 1995; 270:2313-9. [PMID: 7836464 DOI: 10.1074/jbc.270.5.2313] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
CD45 is a protein-tyrosine phosphatase expressed on all cells of hematopoietic origin. In an attempt to further characterize CD45 function, we set out to identify molecule(s) that specifically associate with CD45. A 116-kDa protein was detected in immunoprecipitates from CD45+ cells but not CD45- cells. The association between CD45 and this 116-kDa protein can be reconstituted by mixing lysates from CD45- cell lines with purified CD45. p116 appears to associate with CD45 through the external, transmembrane, or membrane-proximal region of CD45 since p116 is associated with a mutant form of CD45 possessing a truncated cytoplasmic domain. The association of p116 with CD45 is not isoform-specific as p116 associates equally well with various CD45 isoforms. We have determined that p116 is a tyrosine-phosphorylated glycoprotein and that it is associated with CD45 in all hematopoietic cells examined. Because of its broad distribution, it is possible that identification of p116 will provide additional insight into the function of CD45 in lymphoid as well as non-lymphoid hematopoietic cells.
Collapse
Affiliation(s)
- C W Arendt
- Department of Immunology, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
41
|
Iida N, Lokeshwar VB, Bourguignon LY. Mapping the fodrin binding domain in CD45, a leukocyte membrane-associated tyrosine phosphatase. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)61944-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
42
|
Lombardo CR, Weed SA, Kennedy SP, Forget BG, Morrow JS. Beta II-spectrin (fodrin) and beta I epsilon 2-spectrin (muscle) contain NH2- and COOH-terminal membrane association domains (MAD1 and MAD2). J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)62032-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
43
|
Thomas ML. The regulation of B- and T-lymphocyte activation by the transmembrane protein tyrosine phosphatase CD45. Curr Opin Cell Biol 1994; 6:247-52. [PMID: 8024816 DOI: 10.1016/0955-0674(94)90143-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The expression of transmembrane protein tyrosine phosphatase CD45 is required for antigen-induced activation of T and B lymphocytes. During the past year, advances have been made in our understanding of CD45 regulation and its role in regulating Src-family members. The importance of CD45 in thymocyte maturation has been demonstrated through the generation of CD45-knockout mice.
Collapse
Affiliation(s)
- M L Thomas
- Howard Hughes Medical Institute, Washington University School of Medicine, St Louis, Missouri 63110
| |
Collapse
|
44
|
Davis L, Bennett V. Identification of two regions of beta G spectrin that bind to distinct sites in brain membranes. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)41795-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
45
|
Abstract
Motility is a complex process that depends on the coordination of many cellular functions, including the conversion of information from the environment into a series of coordinated responses that culminate in directed cell movement. Major advances have been made in the understanding of many functions involved in motility, such as transmembrane signaling events, leading to alterations in the actin cytoskeleton, and interactions between adhesion receptors and components of the cytoskeleton, providing a link between the extracellular and intracellular environments. Studies using yeast (Saccharomyces cerevisiae), slime molds (Dictyostelium discoideum) and nematodes (Caenorhabditis elegans) have advanced our understanding of the molecular biology of cytoskeletal proteins and have important implications for mammalian leukocyte motility.
Collapse
Affiliation(s)
- G P Downey
- Department of Medicine, University of Toronto, Ontario, Canada
| |
Collapse
|
46
|
Takeda A, Maizel A, Kitamura K, Ohta T, Kimura S. Molecular cloning of the CD45-associated 30-kDa protein. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)41950-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
47
|
Wilson GF, Kaczmarek LK. Mode-switching of a voltage-gated cation channel is mediated by a protein kinase A-regulated tyrosine phosphatase. Nature 1993; 366:433-8. [PMID: 8247151 DOI: 10.1038/366433a0] [Citation(s) in RCA: 92] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Tyrosine kinases and tyrosine phosphatases are abundant in central nervous system tissue, yet the role of these enzymes in the modulation of neuronal excitability is unknown. Patch-clamp studies of an Aplysia voltage-gated cation channel now demonstrate that a tyrosine phosphatase endogenous to excised patches determines both the gating mode of the channel and the response of the channel to protein kinase A. Moreover, a switch in gating modes similar to that triggered by the phosphatase occurs at the onset of a prolonged change in the excitability of Aplysia bag cell neurons.
Collapse
Affiliation(s)
- G F Wilson
- Department of Pharmacology, Yale University, New Haven, Connecticut 06510
| | | |
Collapse
|
48
|
Abstract
Cells crawl in response to external stimuli by extending and remodeling peripheral elastic lamellae in the direction of locomotion. The remodeling requires vectorial assembly of actin subunits into linear polymers at the lamella's leading edge and the crosslinking of the filaments by bifunctional gelation proteins. The disassembly of the crosslinked filaments into short fragments or monomeric subunits away from the leading edge supplies components for the actin assembly reactions that drive protrusion. Cellular proteins that respond to lipid and ionic signals elicited by sensory cues escort actin through this cycle in which filaments are assembled, crosslinked, and disassembled. One class of myosin molecules may contribute to crawling by guiding sensory receptors to the cell surface, and another class may contribute by imposing contractile forces on actin networks in the lamellae.
Collapse
Affiliation(s)
- T P Stossel
- Division of Experimental Medicine, Brigham and Women's Hospital, Boston, MA
| |
Collapse
|
49
|
Desai DM, Sap J, Schlessinger J, Weiss A. Ligand-mediated negative regulation of a chimeric transmembrane receptor tyrosine phosphatase. Cell 1993; 73:541-54. [PMID: 8490965 DOI: 10.1016/0092-8674(93)90141-c] [Citation(s) in RCA: 233] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
CD45, a transmembrane protein tyrosine phosphatase (PTPase), is required for TCR signaling. Multiple CD45 isoforms, differing in the extracellular domain, are expressed in a tissue- and activation-specific manner, suggesting an important function for this domain. We report that a chimeric protein in which the extracellular and transmembrane domains of CD45 are replaced with those of the EGF receptor (EGFR) is able to restore TCR signaling in a CD45-deficient cell. Thus, the cytoplasmic domain of CD45 is necessary and sufficient for TCR signal transduction. Moreover, EGFR ligands functionally inactivate the EGFR-CD45 chimera in a manner that is dependent on dimerization of the chimeric protein. Inactivation of EGFR-CD45 chimera function results in the loss of TCR signaling, indicating that CD45 function is continuously required for TCR-mediated proximal signaling events. These results suggest that ligand-mediated regulation of receptor-PTPases may have mechanistic similarities with receptor tyrosine kinases.
Collapse
Affiliation(s)
- D M Desai
- Howard Hughes Medical Institute, University of California, San Francisco 94143
| | | | | | | |
Collapse
|