1
|
Abstract
When compared to other conserved housekeeping protein families, such as ribosomal proteins, during the evolution of higher eukaryotes, aminoacyl-tRNA synthetases (aaRSs) show an apparent high propensity to add new sequences, and especially new domains. The stepwise emergence of those new domains is consistent with their involvement in a broad range of biological functions beyond protein synthesis, and correlates with the increasing biological complexity of higher organisms. These new domains have been extensively characterized based on their evolutionary origins and their sequence, structural, and functional features. While some of the domains are uniquely found in aaRSs and may have originated from nucleic acid binding motifs, others are common domain modules mediating protein-protein interactions that play a critical role in the assembly of the multi-synthetase complex (MSC). Interestingly, the MSC has emerged from a miniature complex in yeast to a large stable complex in humans. The human MSC consists of nine aaRSs (LysRS, ArgRS, GlnRS, AspRS, MetRS, IleRS, LeuRS, GluProRS, and bifunctional aaRs) and three scaffold proteins (AIMP1/p43, AIMP2/p38, and AIMP3/p18), and has a molecular weight of 1.5 million Dalton. The MSC has been proposed to have a functional dualism: facilitating protein synthesis and serving as a reservoir of non-canonical functions associated with its synthetase and non-synthetase components. Importantly, domain additions and functional expansions are not limited to the components of the MSC and are found in almost all aaRS proteins. From a structural perspective, multi-functionalities are represented by multiple conformational states. In fact, alternative conformations of aaRSs have been generated by various mechanisms from proteolysis to alternative splicing and posttranslational modifications, as well as by disease-causing mutations. Therefore, the metamorphosis between different conformational states is connected to the activation and regulation of the novel functions of aaRSs in higher eukaryotes.
Collapse
Affiliation(s)
- Min Guo
- Department of Cancer Biology, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33410, USA,
| | - Xiang-Lei Yang
- Department of Cancer Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA,
| |
Collapse
|
2
|
Keller TL, Zocco D, Sundrud MS, Hendrick M, Edenius M, Yum J, Kim YJ, Lee HK, Cortese JF, Wirth DF, Dignam JD, Rao A, Yeo CY, Mazitschek R, Whitman M. Halofuginone and other febrifugine derivatives inhibit prolyl-tRNA synthetase. Nat Chem Biol 2012; 8:311-7. [PMID: 22327401 PMCID: PMC3281520 DOI: 10.1038/nchembio.790] [Citation(s) in RCA: 291] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 11/22/2011] [Indexed: 01/01/2023]
Abstract
Febrifugine, one of the fifty fundamental herbs of traditional Chinese medicine, has been characterized for its therapeutic activity whilst its molecular target has remained unknown. Febrifugine derivatives have been used to treat malaria, cancer, fibrosis, and inflammatory disease. We recently demonstrated that halofuginone (HF), a widely studied derivative of febrifugine, inhibits the development of Th17-driven autoimmunity in a mouse model of multiple sclerosis by activating the amino acid response pathway (AAR). Here we show that HF binds glutamyl-prolyl-tRNA synthetase (EPRS) inhibiting prolyl-tRNA synthetase activity; this inhibition is reversed by the addition of exogenous proline or EPRS. We further show that inhibition of EPRS underlies the broad bioactivities of this family of natural products. This work both explains the molecular mechanism of a promising family of therapeutics, and highlights the AAR pathway as an important drug target for promoting inflammatory resolution.
Collapse
Affiliation(s)
- Tracy L Keller
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
van Dooren SHJ, van Venrooij WJ, Pruijn GJM. Myositis-specific autoantibodies: detection and clinical associations. AUTOIMMUNITY HIGHLIGHTS 2011; 2:5-20. [PMID: 26000115 PMCID: PMC4389074 DOI: 10.1007/s13317-011-0018-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 01/11/2011] [Indexed: 11/24/2022]
Abstract
In recent years, the detection and characterization of (novel) autoantibodies is becoming increasingly important for the early diagnosis of autoimmune diseases. The idiopathic inflammatory myopathies (IIM, also indicated with myositis) are a group of systemic autoimmune disorders that involve inflammation and weakness of skeletal muscles. One of the hallmarks is the infiltration of inflammatory cells in muscle tissues. A number of myositis-specific autoantibodies have been identified and these may be associated with distinct IIM subclasses and clinical symptoms. Here, we review all myositis-specific autoantibodies identified today as well as their target proteins, together with their clinical associations in IIM patients. Post-translational modifications that might be associated with the generation of autoantibodies and the development of the disease are discussed as well. In addition, we describe well established autoantibody detection techniques that are currently being used in diagnostic laboratories, as well as novel multiplexed methods. The latter techniques provide great opportunities for the simultaneous detection of distinct autoantibodies, but may also contribute to the identification of novel autoantibody profiles, which may have additional diagnostic and prognostic value. The ongoing characterization of novel autoantibody specificities emphasizes the complexity of processes involved in the development of such autoimmune diseases.
Collapse
Affiliation(s)
- Sander H J van Dooren
- 271 Department of Biomolecular Chemistry, Nijmegen Centre for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University Nijmegen, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Walther J van Venrooij
- 271 Department of Biomolecular Chemistry, Nijmegen Centre for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University Nijmegen, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Ger J M Pruijn
- 271 Department of Biomolecular Chemistry, Nijmegen Centre for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University Nijmegen, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
4
|
Guo M, Schimmel P, Yang XL. Functional expansion of human tRNA synthetases achieved by structural inventions. FEBS Lett 2009; 584:434-42. [PMID: 19932696 DOI: 10.1016/j.febslet.2009.11.064] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 11/17/2009] [Accepted: 11/17/2009] [Indexed: 02/06/2023]
Abstract
Known as an essential component of the translational apparatus, the aminoacyl-tRNA synthetase family catalyzes the first step reaction in protein synthesis, that is, to specifically attach each amino acid to its cognate tRNA. While preserving this essential role, tRNA synthetases developed other roles during evolution. Human tRNA synthetases, in particular, have diverse functions in different pathways involving angiogenesis, inflammation and apoptosis. The functional diversity is further illustrated in the association with various diseases through genetic mutations that do not affect aminoacylation or protein synthesis. Here we review the accumulated knowledge on how human tRNA synthetases used structural inventions to achieve functional expansions.
Collapse
Affiliation(s)
- Min Guo
- The Skaggs Institute for Chemical Biology, Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
5
|
WHEP domains direct noncanonical function of glutamyl-Prolyl tRNA synthetase in translational control of gene expression. Mol Cell 2008; 29:679-90. [PMID: 18374644 DOI: 10.1016/j.molcel.2008.01.010] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 11/20/2007] [Accepted: 01/02/2008] [Indexed: 12/19/2022]
Abstract
The heterotetrameric GAIT complex suppresses translation of selected mRNAs in interferon-gamma-activated monocytic cells. Specificity is dictated by glutamyl-prolyl tRNA synthetase (EPRS) binding to a 3'UTR element in target mRNAs. EPRS consists of two synthetase cores joined by a linker containing three WHEP domains of unknown function. Here we show the critical role of EPRS WHEP domains in targeting and regulating GAIT complex binding to RNA. The upstream WHEP pair directs high-affinity binding to GAIT element-bearing mRNAs, while the overlapping, downstream pair binds NSAP1, which inhibits mRNA binding. Interaction of EPRS with ribosomal protein L13a and GAPDH induces a conformational switch that rescues mRNA binding and restores translational control. Total reconstitution from purified components indicates that the four GAIT proteins are necessary and sufficient for self-assembly of a functional complex. Our results establish the essentiality of WHEP domains in the noncanonical function of EPRS in regulating inflammatory gene expression.
Collapse
|
6
|
Sampath P, Mazumder B, Seshadri V, Gerber CA, Chavatte L, Kinter M, Ting SM, Dignam JD, Kim S, Driscoll DM, Fox PL. Noncanonical function of glutamyl-prolyl-tRNA synthetase: gene-specific silencing of translation. Cell 2004; 119:195-208. [PMID: 15479637 DOI: 10.1016/j.cell.2004.09.030] [Citation(s) in RCA: 211] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2004] [Revised: 08/21/2004] [Accepted: 09/10/2004] [Indexed: 10/26/2022]
Abstract
Aminoacyl tRNA synthetases (ARS) catalyze the ligation of amino acids to cognate tRNAs. Chordate ARSs have evolved distinctive features absent from ancestral forms, including compartmentalization in a multisynthetase complex (MSC), noncatalytic peptide appendages, and ancillary functions unrelated to aminoacylation. Here, we show that glutamyl-prolyl-tRNA synthetase (GluProRS), a bifunctional ARS of the MSC, has a regulated, noncanonical activity that blocks synthesis of a specific protein. GluProRS was identified as a component of the interferon (IFN)-gamma-activated inhibitor of translation (GAIT) complex by RNA affinity chromatography using the ceruloplasmin (Cp) GAIT element as ligand. In response to IFN-gamma, GluProRS is phosphorylated and released from the MSC, binds the Cp 3'-untranslated region in an mRNP containing three additional proteins, and silences Cp mRNA translation. Thus, GluProRS has divergent functions in protein synthesis: in the MSC, its aminoacylation activity supports global translation, but translocation of GluProRS to an inflammation-responsive mRNP causes gene-specific translational silencing.
Collapse
Affiliation(s)
- Prabha Sampath
- Department of Cell Biology, The Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Cen S, Javanbakht H, Kim S, Shiba K, Craven R, Rein A, Ewalt K, Schimmel P, Musier-Forsyth K, Kleiman L. Retrovirus-specific packaging of aminoacyl-tRNA synthetases with cognate primer tRNAs. J Virol 2002; 76:13111-5. [PMID: 12438642 PMCID: PMC136713 DOI: 10.1128/jvi.76.24.13111-13115.2002] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The tRNAs used to prime reverse transcription in human immunodeficiency virus type 1 (HIV-1), Rous sarcoma virus (RSV), and Moloney murine leukemia virus (Mo-MuLV) are, tRNA(Trp), and tRNA(Pro), respectively. Using antibodies to the three cognate human aminoacyl-tRNA synthetases, we found that only lysyl-tRNA synthetase (LysRS) is present in HIV-1, only tryptophanyl-tRNA synthetase (TrpRS) is present in RSV, and neither these two synthetases nor prolyl-tRNA synthetase (ProRS) is present in Mo-MuLV. LysRS and TrpRS are present in HIV-1 and RSV at approximately 25 and 12 molecules/virion, respectively. These results support the hypothesis that, in HIV-1 and RSV, the cognate aminoacyl-tRNA synthetase may be used as the signal for targeting the selective packaging of primer tRNAs into retroviruses. The absence of ProRS in Mo-MuLV is consistent with reports that selective packaging of tRNA(Pro) in this virus is less important for achieving optimum annealing of the primer to Mo-MuLV genomic RNA.
Collapse
Affiliation(s)
- Shan Cen
- Lady Davis Institute for Medical Research and McGill AIDS Center, Jewish General Hospital, McGill University, 3755 Cote Ste-Catherine Road, Montreal, Quebec, Canada H3T 1E2
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Cen S, Khorchid A, Javanbakht H, Gabor J, Stello T, Shiba K, Musier-Forsyth K, Kleiman L. Incorporation of lysyl-tRNA synthetase into human immunodeficiency virus type 1. J Virol 2001; 75:5043-8. [PMID: 11333884 PMCID: PMC114908 DOI: 10.1128/jvi.75.11.5043-5048.2001] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2000] [Accepted: 03/03/2001] [Indexed: 11/20/2022] Open
Abstract
During human immunodeficiency virus type 1 (HIV-1) assembly, tRNA(Lys) isoacceptors are selectively incorporated into virions and tRNA(Lys)3 is used as the primer for reverse transcription. We show herein that the tRNA(Lys)-binding protein, lysyl-tRNA synthetase (LysRS), is also selectively packaged into HIV-1. The viral precursor protein Pr55gag alone will package LysRS into Pr55gag particles, independently of tRNA(Lys). With the additional presence of the viral precursor protein Pr160gag-pol, tRNA(Lys) and LysRS are both packaged into the particle. While the predominant cytoplasmic LysRS has an apparent M(r) of 70,000, viral LysRS associated with tRNA(Lys) packaging is shorter, with an apparent M(r) of 63,000. The truncation occurs independently of viral protease and might be required to facilitate interactions involved in the selective packaging and genomic placement of primer tRNA.
Collapse
Affiliation(s)
- S Cen
- Lady Davis Institute for Medical Research and McGill AIDS Centre, Jewish General Hospital, McGill University, Montreal, Quebec, Canada H3T 1E2
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
The aminoacyl-tRNA synthetases are an ancient group of enzymes that catalyze the covalent attachment of an amino acid to its cognate transfer RNA. The question of specificity, that is, how each synthetase selects the correct individual or isoacceptor set of tRNAs for each amino acid, has been referred to as the second genetic code. A wealth of structural, biochemical, and genetic data on this subject has accumulated over the past 40 years. Although there are now crystal structures of sixteen of the twenty synthetases from various species, there are only a few high resolution structures of synthetases complexed with cognate tRNAs. Here we review briefly the structural information available for synthetases, and focus on the structural features of tRNA that may be used for recognition. Finally, we explore in detail the insights into specific recognition gained from classical and atomic group mutagenesis experiments performed with tRNAs, tRNA fragments, and small RNAs mimicking portions of tRNAs.
Collapse
Affiliation(s)
- P J Beuning
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
10
|
Abstract
The genes of glutamyl- and prolyl-tRNA synthetases (GluRS and ProRS) are organized differently in the three kingdoms of the tree of life. In bacteria and archaea, distinct genes encode the two proteins. In several organisms from the eukaryotic phylum of coelomate metazoans, the two polypeptides are carried by a single polypeptide chain to form a bifunctional protein. The linker region is made of imperfectly repeated units also recovered as singular or plural elements connected as N-terminal or C-terminal polypeptide extensions in various eukaryotic aminoacyl-tRNA synthetases. Phylogenetic analysis points to the monophyletic origin of this polypeptide motif appended to six different members of the synthetase family, belonging to either of the two classes of aminoacyl-tRNA synthetases. In particular, the monospecific GluRS and ProRS from Caenorhabditis elegans, an acoelomate metazoan, exhibit this recurrent motif as a C-terminal or N-terminal appendage, respectively. Our analysis of the extant motifs suggests a possible series of events responsible for a gene fusion that gave rise to the bifunctional glutamyl-prolyl-tRNA synthetase through recombination between genomic sequences encoding the repeated units.
Collapse
Affiliation(s)
- E Berthonneau
- Laboratoire d'Enzymologie et Biochimie Structurales, C.N.R.S., 1 Avenue de la Terrasse, 91190, Gif-sur-Yvette, France
| | | |
Collapse
|
11
|
Norcum MT, Dignam JD. Immunoelectron microscopic localization of glutamyl-/ prolyl-tRNA synthetase within the eukaryotic multisynthetase complex. J Biol Chem 1999; 274:12205-8. [PMID: 10212184 DOI: 10.1074/jbc.274.18.12205] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A high molecular mass complex of aminoacyl-tRNA synthetases is readily isolated from a variety of eukaryotes. Although its composition is well characterized, knowledge of its structure and organization is still quite limited. This study uses antibodies directed against prolyl-tRNA synthetase for immunoelectron microscopic localization of the bifunctional glutamyl-/prolyl-tRNA synthetase. This is the first visualization of a specific site within the multisynthetase complex. Images of immunocomplexes are presented in the characteristic views of negatively stained multisynthetase complex from rabbit reticulocytes. As described in terms of a three domain working model of the structure, in "front" views of the particle and "intermediate" views, the primary antibody binding site is near the intersection between the "base" and one "arm." In "side" views, where the particle is rotated about its long axis, the binding site is near the midpoint. "Top" and "bottom" views, which appear as square projections, are also consistent with the central location of the binding site. These data place the glutamyl-/prolyl-tRNA synthetase polypeptide in a defined area of the particle, which encompasses portions of two domains, yet is consistent with the previous structural model.
Collapse
Affiliation(s)
- M T Norcum
- Department of Biochemistry, The University of Mississippi Medical Center, Jackson, Mississippi 39216-4505, USA.
| | | |
Collapse
|
12
|
Pelchat M, Gagnon Y, Laberge S, Lapointe J. Co-transcription of Rhizobium meliloti lysyl-tRNA synthetase and glutamyl-tRNA synthetase genes. FEBS Lett 1999; 449:23-7. [PMID: 10225420 DOI: 10.1016/s0014-5793(99)00385-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
An open reading frame encoding a putative polypeptide very similar to several lysyl-tRNA synthetases was found 10 nucleotides downstream of Rhizobium meliloti gltX encoding glutamyl-tRNA synthetase. Expression of this gene complemented a mutation in lysS of Escherichia coli and led to the overexpression of a polypeptide of the expected mass (62 kDa), thus confirming that it encodes R. meliloti lysyl-tRNA synthetase. Reverse transcription/polymerase chain reaction was used to demonstrate that this lysS gene is co-transcribed with gltX in R. meliloti. This is the first reported case of two immediately adjacent and co-transcribed genes encoding aminoacyl-tRNA synthetases.
Collapse
Affiliation(s)
- M Pelchat
- Département de Biochimie, Faculté des Sciences et de Génie, Université Laval, Sainte-Foy, Que., Canada
| | | | | | | |
Collapse
|
13
|
Cerini C, Semeriva M, Gratecos D. Evolution of the aminoacyl-tRNA synthetase family and the organization of the Drosophila glutamyl-prolyl-tRNA synthetase gene. Intron/exon structure of the gene, control of expression of the two mRNAs, selective advantage of the multienzyme complex. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 244:176-85. [PMID: 9063462 DOI: 10.1111/j.1432-1033.1997.00176.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In Drosophila, glutamyl-prolyl-tRNA synthetase is a multifunctional synthetase encoded by a unique gene and composed of three domains: the amino- and carboxy-terminal domains catalyze the aminoacylation of glutamic acid and proline tRNA species, respectively, and the central domain is made of 75 amino acids repeated six times amongst which 46 are highly conserved and constitute the repeated motifs [Cerini, C., Kerjan, P., Astier, M., Gratecos, D., Mirande, M. & Sémériva, M. (1991) EMBO J. 10, 4267-4277]. The intron/exon organization of the Drosophila gene reveals the presence of six exons among which four are in the 5'-end encoding glutamic acid activity. Only one exon encodes the repeated motifs. A comparison of introns positions, intron classes and intron/exon boundaries in the Drosophila gene and in its human counterpart is compatible with the intron-early hypothesis presiding, at least in part, to the evolution of the synthetases. The full-length fly protein is encoded by a 6.1-kb mRNA which is expressed throughout development. In addition, a shorter transcript encompasses the 3'-end of the cDNA and it is especially abundant in 5-10-h embryos until the first larval stage. Expression of these two mRNAs seems to be controlled by two independent promoters. The 6.1-kb mRNA promoter is probably localized in the 5'-end of the gene. The small mRNA promoter resides in the 4th intron and evidence is provided that the mRNA encodes only the domain corresponding to prolyl-tRNA synthetase and is functional in vivo. Finally, transgenic flies have been established by using constructs corresponding to the three domains of the protein. Overexpression of the repeated motifs leads to a sterility of the flies that suggests a role of these motifs in linking the multienzyme complex to an, as yet, unknown structure of the protein synthesis apparatus.
Collapse
Affiliation(s)
- C Cerini
- Laboratoire de Génétique et Physiologie du Développement, UMR 9943, CNRS Université de la Méditerranée, Marseille, France
| | | | | |
Collapse
|
14
|
Affiliation(s)
- D C Yang
- Department of Chemistry, Georgetown University, Washington DC 20057, USA
| |
Collapse
|
15
|
A motif in human histidyl-tRNA synthetase which is shared among several aminoacyl-tRNA synthetases is a coiled-coil that is essential for enzymatic activity and contains the major autoantigenic epitope. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)51078-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
16
|
Ting S, Dignam J. Post-transcriptional regulation of glutamyl-prolyl-tRNA synthetase in rat salivary gland. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37066-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
17
|
Kisselev LL, Wolfson AD. Aminoacyl-tRNA synthetases from higher eukaryotes. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1994; 48:83-142. [PMID: 7938555 DOI: 10.1016/s0079-6603(08)60854-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- L L Kisselev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow
| | | |
Collapse
|
18
|
Nada S, Chang P, Dignam J. Primary structure of the gene for glycyl-tRNA synthetase from Bombyx mori. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53008-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
19
|
Escalante C, Yang D. Expression of human aspartyl-tRNA synthetase in Escherichia coli. Functional analysis of the N-terminal putative amphiphilic helix. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53420-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|