1
|
Marini V, Nikulenkov F, Samadder P, Juul S, Knudsen BR, Krejci L. MUS81 cleaves TOP1-derived lesions and other DNA-protein cross-links. BMC Biol 2023; 21:110. [PMID: 37194054 PMCID: PMC10189953 DOI: 10.1186/s12915-023-01614-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 05/04/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND DNA-protein cross-links (DPCs) are one of the most deleterious DNA lesions, originating from various sources, including enzymatic activity. For instance, topoisomerases, which play a fundamental role in DNA metabolic processes such as replication and transcription, can be trapped and remain covalently bound to DNA in the presence of poisons or nearby DNA damage. Given the complexity of individual DPCs, numerous repair pathways have been described. The protein tyrosyl-DNA phosphodiesterase 1 (Tdp1) has been demonstrated to be responsible for removing topoisomerase 1 (Top1). Nevertheless, studies in budding yeast have indicated that alternative pathways involving Mus81, a structure-specific DNA endonuclease, could also remove Top1 and other DPCs. RESULTS This study shows that MUS81 can efficiently cleave various DNA substrates modified by fluorescein, streptavidin or proteolytically processed topoisomerase. Furthermore, the inability of MUS81 to cleave substrates bearing native TOP1 suggests that TOP1 must be either dislodged or partially degraded prior to MUS81 cleavage. We demonstrated that MUS81 could cleave a model DPC in nuclear extracts and that depletion of TDP1 in MUS81-KO cells induces sensitivity to the TOP1 poison camptothecin (CPT) and affects cell proliferation. This sensitivity is only partially suppressed by TOP1 depletion, indicating that other DPCs might require the MUS81 activity for cell proliferation. CONCLUSIONS Our data indicate that MUS81 and TDP1 play independent roles in the repair of CPT-induced lesions, thus representing new therapeutic targets for cancer cell sensitisation in combination with TOP1 inhibitors.
Collapse
Affiliation(s)
- Victoria Marini
- Department of Biology, Masaryk University, Kamenice 5/B07, Brno, 62500, Czech Republic
- International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital Brno, Pekařská 53, Brno, 60200, Czech Republic
| | - Fedor Nikulenkov
- Department of Biology, Masaryk University, Kamenice 5/B07, Brno, 62500, Czech Republic
| | - Pounami Samadder
- Department of Biology, Masaryk University, Kamenice 5/B07, Brno, 62500, Czech Republic
| | - Sissel Juul
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, Aarhus, 8000, Denmark
| | - Birgitta R Knudsen
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, Aarhus, 8000, Denmark
| | - Lumir Krejci
- Department of Biology, Masaryk University, Kamenice 5/B07, Brno, 62500, Czech Republic.
- International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital Brno, Pekařská 53, Brno, 60200, Czech Republic.
- National Centre for Biomolecular Research, Masaryk University, Kamenice 5/C04, Brno, 625 00, Czech Republic.
| |
Collapse
|
2
|
Keller JG, Petersen KV, Mizielinski K, Thiesen C, Bjergbæk L, Reguera RM, Pérez-Pertejo Y, Balaña-Fouce R, Trejo A, Masdeu C, Alonso C, Knudsen BR, Tesauro C. Gel-Free Tools for Quick and Simple Screening of Anti-Topoisomerase 1 Compounds. Pharmaceuticals (Basel) 2023; 16:ph16050657. [PMID: 37242440 DOI: 10.3390/ph16050657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
With the increasing need for effective compounds against cancer or pathogen-borne diseases, the development of new tools to investigate the enzymatic activity of biomarkers is necessary. Among these biomarkers are DNA topoisomerases, which are key enzymes that modify DNA and regulate DNA topology during cellular processes. Over the years, libraries of natural and synthetic small-molecule compounds have been extensively investigated as potential anti-cancer, anti-bacterial, or anti-parasitic drugs targeting topoisomerases. However, the current tools for measuring the potential inhibition of topoisomerase activity are time consuming and not easily adaptable outside specialized laboratories. Here, we present rolling circle amplification-based methods that provide fast and easy readouts for screening of compounds against type 1 topoisomerases. Specific assays for the investigation of the potential inhibition of eukaryotic, viral, or bacterial type 1 topoisomerase activity were developed, using human topoisomerase 1, Leishmania donovani topoisomerase 1, monkeypox virus topoisomerase 1, and Mycobacterium smegmatis topoisomerase 1 as model enzymes. The presented tools proved to be sensitive and directly quantitative, paving the way for new diagnostic and drug screening protocols in research and clinical settings.
Collapse
Affiliation(s)
| | | | | | - Celine Thiesen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Lotte Bjergbæk
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Rosa M Reguera
- Department of Biomedical Sciences, Faculty of Veterinary Medicine, University of León, 24071 León, Spain
| | - Yolanda Pérez-Pertejo
- Department of Biomedical Sciences, Faculty of Veterinary Medicine, University of León, 24071 León, Spain
| | - Rafael Balaña-Fouce
- Department of Biomedical Sciences, Faculty of Veterinary Medicine, University of León, 24071 León, Spain
| | - Angela Trejo
- Department of Organic Chemistry, Faculty of Pharmacy, University of Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - Carme Masdeu
- Department of Organic Chemistry, Faculty of Pharmacy, University of Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - Concepcion Alonso
- Department of Organic Chemistry, Faculty of Pharmacy, University of Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - Birgitta R Knudsen
- VPCIR Biosciences ApS, 8000 Aarhus C, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | | |
Collapse
|
3
|
Petersen KV, Selas A, Hymøller KM, Mizielinski K, Thorsager M, Stougaard M, Alonso C, Palacios F, Pérez-Pertejo Y, Reguera RM, Balaña-Fouce R, Knudsen BR, Tesauro C. Simple and Fast DNA Based Sensor System for Screening of Small-Molecule Compounds Targeting Eukaryotic Topoisomerase 1. Pharmaceutics 2021; 13:1255. [PMID: 34452216 PMCID: PMC8401307 DOI: 10.3390/pharmaceutics13081255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 11/18/2022] Open
Abstract
Background: Eukaryotic topoisomerase 1 is a potential target of anti-parasitic and anti-cancer drugs. Parasites require topoisomerase 1 activity for survival and, consequently, compounds that inhibit topoisomerase 1 activity may be of interest. All effective topoisomerase 1 drugs with anti-cancer activity act by inhibiting the ligation reaction of the enzyme. Screening for topoisomerase 1 targeting drugs, therefore, should involve the possibility of dissecting which step of topoisomerase 1 activity is affected. Methods: Here we present a novel DNA-based assay that allows for screening of the effect of small-molecule compounds targeting the binding/cleavage or the ligation steps of topoisomerase 1 catalysis. This novel assay is based on the detection of a rolling circle amplification product generated from a DNA circle resulting from topoisomerase 1 activity. Results: We show that the binding/cleavage and ligation reactions of topoisomerase 1 can be investigated separately in the presented assay termed REEAD (C|L) and demonstrate that the assay can be used to investigate, which of the individual steps of topoisomerase 1 catalysis are affected by small-molecule compounds. The assay is gel-free and the results can be detected by a simple colorimetric readout method using silver-on-gold precipitation rendering large equipment unnecessary. Conclusion: REEAD (C|L) allows for easy and quantitative investigations of topoisomerase 1 targeting compounds and can be performed in non-specialized laboratories.
Collapse
Affiliation(s)
- Kamilla Vandsø Petersen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; (K.V.P.); (K.M.H.); (B.R.K.)
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark;
| | - Asier Selas
- Department of Organic Chemistry, University of Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; (A.S.); (C.A.); (F.P.)
| | - Kirstine Mejlstrup Hymøller
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; (K.V.P.); (K.M.H.); (B.R.K.)
| | | | - Maria Thorsager
- VPCIR Biosciences ApS., 8000 Aarhus, Denmark; (K.M.); (M.T.)
| | - Magnus Stougaard
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark;
- VPCIR Biosciences ApS., 8000 Aarhus, Denmark; (K.M.); (M.T.)
- Department of Pathology, Aarhus University Hospital, 8000 Aarhus, Denmark
| | - Concepcion Alonso
- Department of Organic Chemistry, University of Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; (A.S.); (C.A.); (F.P.)
| | - Francisco Palacios
- Department of Organic Chemistry, University of Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; (A.S.); (C.A.); (F.P.)
| | - Yolanda Pérez-Pertejo
- Department of Biomedical Sciences, University of Leon (ULE), 24071 Leon, Spain; (Y.P.-P.); (R.M.R.); (R.B.-F.)
| | - Rosa M. Reguera
- Department of Biomedical Sciences, University of Leon (ULE), 24071 Leon, Spain; (Y.P.-P.); (R.M.R.); (R.B.-F.)
| | - Rafael Balaña-Fouce
- Department of Biomedical Sciences, University of Leon (ULE), 24071 Leon, Spain; (Y.P.-P.); (R.M.R.); (R.B.-F.)
| | - Birgitta R. Knudsen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; (K.V.P.); (K.M.H.); (B.R.K.)
- VPCIR Biosciences ApS., 8000 Aarhus, Denmark; (K.M.); (M.T.)
| | - Cinzia Tesauro
- VPCIR Biosciences ApS., 8000 Aarhus, Denmark; (K.M.); (M.T.)
| |
Collapse
|
4
|
Yang Z, Jiang T, Zhong H, Kang Y. Bulge oligonucleotide as an inhibitory agent of bacterial topoisomerase I. J Enzyme Inhib Med Chem 2018; 33:319-323. [PMID: 29281935 PMCID: PMC6009931 DOI: 10.1080/14756366.2017.1419218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bacterial topoisomerase I (Btopo I) was defined as potential target for discovery of new antibacterial compounds. Various oligonucleotides containing bulge structure were designed and synthesised as inhibitors to Btopo I in this investigation. The results of this study demonstrated that the designed oligonucleotides display high inhibitory efficiency on the activity of Btopo I and the inhibitory effect could be modulated by the amount of bulge DNA bases. The most efficient one among them showed an IC50 value of 63.1 nM in its inhibition on the activity of Btopo I. In addition, our studies confirmed that the designed oligonucleotide would induce irreversible damages to Btopo I and without any effects occur to eukaryotic topoisomerase I. It is our hope that the results provided in these studies could provide a novel way to inhibit Btopo I.
Collapse
Affiliation(s)
- Zhaoqi Yang
- a School of Pharmaceutical Sciences , Jiangnan University , Jiangsu , People's Republic of China.,b Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University , Jiangsu , People's Republic of China
| | - Tuoyu Jiang
- b Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University , Jiangsu , People's Republic of China
| | - Hanshi Zhong
- b Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University , Jiangsu , People's Republic of China
| | - Yu Kang
- b Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University , Jiangsu , People's Republic of China
| |
Collapse
|
5
|
Yang Z, Jiang T, Zhong H, Liu Y. Portion mismatch in duplex oligonucleotides as inhibitors of bacterial topoisomerase I. RSC Adv 2016. [DOI: 10.1039/c6ra23304j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The activities of bacterial topoisomerase I can be modulated by non-perfect match duplex oligonucleotides.
Collapse
Affiliation(s)
- Zhaoqi Yang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province
- School of Food Science and Technology
- Jiangnan University
- China
- School of Pharmaceutical Sciences
| | - Tuoyu Jiang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province
- School of Food Science and Technology
- Jiangnan University
- China
| | - Hanshi Zhong
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province
- School of Food Science and Technology
- Jiangnan University
- China
| | - Yuanfa Liu
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province
- School of Food Science and Technology
- Jiangnan University
- China
| |
Collapse
|
6
|
Ashour ME, Atteya R, El-Khamisy SF. Topoisomerase-mediated chromosomal break repair: an emerging player in many games. Nat Rev Cancer 2015; 15:137-51. [PMID: 25693836 DOI: 10.1038/nrc3892] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The mammalian genome is constantly challenged by exogenous and endogenous threats. Although much is known about the mechanisms that maintain DNA and RNA integrity, we know surprisingly little about the mechanisms that underpin the pathology and tissue specificity of many disorders caused by defective responses to DNA or RNA damage. Of the different types of endogenous damage, protein-linked DNA breaks (PDBs) are emerging as an important player in cancer development and therapy. PDBs can arise during the abortive activity of DNA topoisomerases, a class of enzymes that modulate DNA topology during several chromosomal transactions, such as gene transcription and DNA replication, recombination and repair. In this Review, we discuss the mechanisms underpinning topoisomerase-induced PDB formation and repair with a focus on their role during gene transcription and the development of tissue-specific cancers.
Collapse
Affiliation(s)
- Mohamed E Ashour
- 1] Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK. [2] Center for Genomics, Helmy Institute, Zewail City of Science and Technology, Giza 12588, Egypt
| | - Reham Atteya
- Center for Genomics, Helmy Institute, Zewail City of Science and Technology, Giza 12588, Egypt
| | - Sherif F El-Khamisy
- 1] Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK. [2] Center for Genomics, Helmy Institute, Zewail City of Science and Technology, Giza 12588, Egypt
| |
Collapse
|
7
|
Cho JE, Kim N, Li YC, Jinks-Robertson S. Two distinct mechanisms of Topoisomerase 1-dependent mutagenesis in yeast. DNA Repair (Amst) 2013; 12:205-11. [PMID: 23305949 DOI: 10.1016/j.dnarep.2012.12.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 11/09/2012] [Accepted: 12/03/2012] [Indexed: 11/27/2022]
Abstract
Topoisomerase 1 (Top1) resolves transcription-associated supercoils by generating transient single-strand breaks in DNA. Top1 activity in yeast is a major source of transcription-associated mutagenesis, generating a distinctive mutation signature characterized by deletions in short, tandem repeats. A similar signature is associated with the persistence of ribonucleoside monophosphates (rNMPs) in DNA, and it also depends on Top1 activity. There is only partial overlap, however, between Top1-dependent deletion hotspots identified in highly transcribed DNA and those associated with rNMPs, suggesting the existence of both rNMP-dependent and rNMP-independent events. Here, we present genetic studies confirming that there are two distinct types of hotspots. Data suggest a novel model in which rNMP-dependent hotspots are generated by sequential Top1 reactions and are consistent with rNMP-independent hotspots reflecting processing of a trapped Top1 cleavage complex.
Collapse
Affiliation(s)
- Jang-Eun Cho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | |
Collapse
|
8
|
Bugreev DV, Nevinskiĭ GA. [The structure and mechanism of the action of type-IB DNA topoisomerases]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2010; 36:293-311. [PMID: 20644584 DOI: 10.1134/s1068162010030015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
DNA topoisomerases responsible for the superspiralization of genomic DNA participate in almost all vitally important cell processes, including replication, transcription, and recombination, and are essential for normal cell functioning. The present review summarizes published data for type-IB topoisomerases. The results concerning the thermodynamic, structural, and kinetic aspects of the functioning of topoisomerases and the peculiarities of the mechanisms of their action have been analyzed for the first time.
Collapse
|
9
|
Hackbarth JS, Galvez-Peralta M, Dai NT, Loegering DA, Peterson KL, Meng XW, Karnitz LM, Kaufmann SH. Mitotic phosphorylation stimulates DNA relaxation activity of human topoisomerase I. J Biol Chem 2008; 283:16711-22. [PMID: 18408216 PMCID: PMC2423254 DOI: 10.1074/jbc.m802246200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 03/20/2008] [Indexed: 11/06/2022] Open
Abstract
Human DNA topoisomerase I (topo I) is an essential mammalian enzyme that regulates DNA supercoiling during transcription and replication. In addition, topo I is specifically targeted by the anticancer compound camptothecin and its derivatives. Previous studies have indicated that topo I is a phosphoprotein and that phosphorylation stimulates its DNA relaxation activity. The locations of most topo I phosphorylation sites have not been identified, preventing a more detailed examination of this modification. To address this issue, mass spectrometry was used to identify four topo I residues that are phosphorylated in intact cells: Ser(10), Ser(21), Ser(112), and Ser(394). Immunoblotting using anti-phosphoepitope antibodies demonstrated that these sites are phosphorylated during mitosis. In vitro kinase assays demonstrated that Ser(10) can be phosphorylated by casein kinase II, Ser(21) can be phosphorylated by protein kinase Calpha, and Ser(112) and Ser(394) can be phosphorylated by Cdk1. When wild type topo I was pulled down from mitotic cells and dephosphorylated with alkaline phosphatase, topo I activity decreased 2-fold. Likewise, topo I polypeptide with all four phosphorylation sites mutated to alanine exhibited 2-fold lower DNA relaxation activity than wild type topo I after isolation from mitotic cells. Further mutational analysis demonstrated that Ser(21) phosphorylation was responsible for this change. Consistent with these results, wild type topo I (but not S21A topo I) exhibited increased sensitivity to camptothecin-induced trapping on DNA during mitosis. Collectively these results indicate that topo I is phosphorylated during mitosis at multiple sites, one of which enhances DNA relaxation activity in vitro and interaction with DNA in cells.
Collapse
Affiliation(s)
- Jennifer S. Hackbarth
- Department of Biochemistry and Molecular
Biology and Division of Oncology Research, Mayo
Clinic, Mayo Graduate School, Rochester, Minnesota 55905
| | - Marina Galvez-Peralta
- Department of Biochemistry and Molecular
Biology and Division of Oncology Research, Mayo
Clinic, Mayo Graduate School, Rochester, Minnesota 55905
| | - Nga T. Dai
- Department of Biochemistry and Molecular
Biology and Division of Oncology Research, Mayo
Clinic, Mayo Graduate School, Rochester, Minnesota 55905
| | - David A. Loegering
- Department of Biochemistry and Molecular
Biology and Division of Oncology Research, Mayo
Clinic, Mayo Graduate School, Rochester, Minnesota 55905
| | - Kevin L. Peterson
- Department of Biochemistry and Molecular
Biology and Division of Oncology Research, Mayo
Clinic, Mayo Graduate School, Rochester, Minnesota 55905
| | - Xue W. Meng
- Department of Biochemistry and Molecular
Biology and Division of Oncology Research, Mayo
Clinic, Mayo Graduate School, Rochester, Minnesota 55905
| | - Larry M. Karnitz
- Department of Biochemistry and Molecular
Biology and Division of Oncology Research, Mayo
Clinic, Mayo Graduate School, Rochester, Minnesota 55905
| | - Scott H. Kaufmann
- Department of Biochemistry and Molecular
Biology and Division of Oncology Research, Mayo
Clinic, Mayo Graduate School, Rochester, Minnesota 55905
| |
Collapse
|
10
|
Wang Y, Ng MTT, Zhou T, Li X, Tan CH, Li T. C3-Spacer-containing circular oligonucleotides as inhibitors of human topoisomerase I. Bioorg Med Chem Lett 2008; 18:3597-602. [PMID: 18490159 DOI: 10.1016/j.bmcl.2008.04.076] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2008] [Revised: 04/25/2008] [Accepted: 04/30/2008] [Indexed: 11/18/2022]
Abstract
Some dumbbell-shaped circular oligonucleotides containing internal C3-spacers and Topo I-binding sites were designed and synthesized which displayed high inhibitory efficiency on the activity of human Topo I as well as resisted the degradation by some DNA repair enzymes.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Chemistry, 3 Science Drive 3, National University of Singapore, Singapore 117543, Singapore
| | | | | | | | | | | |
Collapse
|
11
|
Boisseau M, Guichard S, Canal P, Bugat R. Drug Evaluation: Oncologic, Endocrine & Metabolic: Irinotecan (CPT-11): Current status and perspectives. Expert Opin Investig Drugs 2008. [DOI: 10.1517/13543784.5.6.613] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Martial Boisseau
- Centre Claudius Régaud, 20–24 rue du pont St Pierre, 31052, Toulouse, cedex, France
| | - Sylvie Guichard
- Centre Claudius Régaud, 20–24 rue du pont St Pierre, 31052, Toulouse, cedex, France
| | - Pierre Canal
- Centre Claudius Régaud, 20–24 rue du pont St Pierre, 31052, Toulouse, cedex, France
| | - Roland Bugat
- Centre Claudius Régaud, 20–24 rue du pont St Pierre, 31052, Toulouse, cedex, France
| |
Collapse
|
12
|
Abstract
The inhibition of DNA topoisomerase I (Top1) has proven to be a successful approach in the design of anticancer agents. However, despite the clinical successes of the camptothecin derivatives, a significant need for less toxic and more chemically stable Top1 inhibitors still persists. Here, we describe one of the most frequently used protocols to identify novel Top1 inhibitors. These methods use uniquely 3'-radiolabeled DNA substrates and denaturing polyacrylamide gel electrophoresis to provide evidence for the Top1-mediated DNA cleaving activity of potential Top1 inhibitors. These assays allow comparison of the effectiveness of different drugs in stabilizing the Top1-DNA intermediate or cleavage (cleavable) complex. A variation on these assays is also presented, which provides a suitable system for determining whether the inhibitor blocks the forward cleavage or religation reactions by measuring the reversibility of the drug-induced Top1-DNA cleavage complexes. This entire protocol can be completed in approximately 2 d.
Collapse
Affiliation(s)
- Thomas S Dexheimer
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
13
|
Li X, Tao Ng MT, Wang Y, Liu X, Li T. Dumbbell-shaped circular oligonucleotides as inhibitors of human topoisomerase I. Bioorg Med Chem Lett 2007; 17:4967-71. [PMID: 17591440 DOI: 10.1016/j.bmcl.2007.06.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 06/04/2007] [Accepted: 06/07/2007] [Indexed: 10/23/2022]
Abstract
A dumbbell-shaped circular oligonucleotide containing topoisomerase I-binding sites and two mismatched base pairs in its sequence has been designed and synthesized. Our further studies demonstrate that this particularly designed oligonucleotide displays an IC(50) value of 9 nM in its inhibition on the activity of human topoisomerase I, a magnitude smaller than that of camptothecin, an anticancer drug currently in clinical use.
Collapse
Affiliation(s)
- Xinming Li
- Department of Chemistry, 3 Science Drive 3, National University of Singapore, Singapore, Singapore
| | | | | | | | | |
Collapse
|
14
|
Beretta GL, Zunino F. Molecular Mechanisms of Anthracycline Activity. Top Curr Chem (Cham) 2007; 283:1-19. [DOI: 10.1007/128_2007_3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Hede MS, Petersen RL, Frøhlich RF, Krüger D, Andersen FF, Andersen AH, Knudsen BR. Resolution of Holliday junction substrates by human topoisomerase I. J Mol Biol 2006; 365:1076-92. [PMID: 17101150 DOI: 10.1016/j.jmb.2006.10.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Revised: 09/15/2006] [Accepted: 10/15/2006] [Indexed: 11/23/2022]
Abstract
Prompted by the close relationship between tyrosine recombinases and type IB topoisomerases we have investigated the ability of human topoisomerase I to resolve the typical intermediate of recombinase catalysis, the Holliday junction. We demonstrate that human topoisomerase I catalyzes unidirectional resolution of a synthetic Holliday junction substrate containing two preferred cleavage sites surrounded by DNA sequences supporting branch migration. Deleting part of the N-terminal domain (amino acid residues 1-202) did not affect topoisomerase I resolution activity, whereas a topoisomerase I variant lacking both the N-terminal domain and amino acid residues 660-688 of the linker domain was unable to resolve the Holliday junction substrate. The inability of the double deleted variant to mediate resolution correlated with the inability of this enzyme to introduce concomitant cleavage at the two preferred cleavage sites in a single Holliday junction substrate, which is a prerequisite for resolution. As determined by the gel electrophoretic mobility of native enzyme or enzyme crosslinked by disulfide bridging, the double deleted mutant existed almost entirely in a dimeric form. The impairment of this enzyme in performing double cleavages on the Holliday junction substrate may be explained by only one cleavage competent active site being formed at a time within the dimer. The assembly of only one active site within dimers is a well-known characteristic of the tyrosine recombinases. Hence, the obtained results may suggest a recombinase-like active site assembly of the double deleted topoisomerase I variant. Taken together the presented results consolidate the relationship between type IB topoisomerases and tyrosine recombinases.
Collapse
Affiliation(s)
- Marianne S Hede
- Department of Molecular Biology, University of Aarhus, C.F. Møllers Allé, Building 130, DK-8000, Aarhus C, Denmark
| | | | | | | | | | | | | |
Collapse
|
16
|
Søe K, Hartung S, Grosse F. Human topoisomerase I forms double cleavage complexes on natural DNA. Biochem Biophys Res Commun 2006; 349:178-85. [PMID: 16930551 DOI: 10.1016/j.bbrc.2006.08.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Accepted: 08/04/2006] [Indexed: 11/22/2022]
Abstract
DNA topoisomerase I releases torsional stress generated in chromatin during transcription and replication. Usually topoisomerase I is recognized to work as a monomer, but previously we have shown that two molecules can form a dimer-like protein-protein complex on a 'suicide' DNA substrate resulting in a topoisomerase I double cleavage complex. Here we show that during the normal relaxation reaction a considerable fraction of human topoisomerase I formed transient dimers on plasmid DNA too. Recombinant as well as topoisomerase I purified from human cells formed double cleavage complexes within a distance of 12 or 14 nucleotides. When topoisomerase I was isolated from camptothecin-treated HeLa cells, a considerable fraction migrated to the same position as topoisomerase I bearing a covalently bound 12-to-14-mer oligonucleotide. Taken together our data suggest that human topoisomerase I double cleavage complexes are part of the normal catalytic cycle of this enzyme that occur in vitro and possibly also in vivo.
Collapse
Affiliation(s)
- Kent Søe
- Leibniz Institute for Age Research, Fritz Lipmann Institute (FLI), Biochemical Group, Beutenbergstrasse 11, D-07745 Jena, Germany
| | | | | |
Collapse
|
17
|
Lebedeva N, Auffret Vander Kemp P, Bjornsti MA, Lavrik O, Boiteux S. Trapping of DNA topoisomerase I on nick-containing DNA in cell free extracts of Saccharomyces cerevisiae. DNA Repair (Amst) 2006; 5:799-809. [PMID: 16713756 DOI: 10.1016/j.dnarep.2006.03.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Revised: 03/27/2006] [Accepted: 03/31/2006] [Indexed: 11/25/2022]
Abstract
The aim of the present study was to identify proteins that bind nicked DNA intermediates formed in the course of base excision repair (BER) in cell free extracts of Saccharomyces cerevisiae. In mammalian cells, nicks in DNA are targets of proteins such as PARP-1 or XRCC1 that have no homologues in yeast. One of the most promising methodologies to trap proteins that interact with damaged DNA lies in using a photocrosslinking technique with photoactivable dNTP analogues such as exo-N-{2-[N-(4-azido-2,5-difluoro-3-chloropyridine-6-yl)-3-aminopropionyl]-aminoethyl}-2'-deoxycytidine-5'-triphosphate (FAP-dCTP) for enzymatic synthesis of DNA probes with a photoreactive dNMP residue at the 3'-margin of a nick. Using this approach, we identified a major covalent DNA-protein adduct between a nick-containing 34-mer DNA duplex and a protein of a molecular mass of around 100-kDa. Unexpectedly, the formation of the 100-kDa adduct did not require the incorporation of the photoreactive dNMP residue at the 3'-margin of the nick nor exposure to near UV-light. However, the formation of the 100-kDa adduct strictly required a nick or a short gap in the DNA probe. Furthermore, the 100-kDa adduct was not detected in yeast extracts lacking DNA topoisomerase I (Top1). To further establish the nature of crosslinked protein, yeast Top1 was tagged with a Myc-epitope. In this case, the mobility of the Top1-DNA adduct increased by 7- kDa. Therefore, our data speak in favor of Top1 trapping by nicked DNA. In support of this hypothesis, purified yeast Top1 was also crosslinked to nicked DNA structures. Undamaged, uracil- and abasic (AP) site-containing DNAs were unable to trap Top1 under the same assay conditions. Since nicked DNA structures are frequently formed in the course of BER, their covalent linkage to Top1 has the potential to interfere with BER in vivo.
Collapse
Affiliation(s)
- Natalia Lebedeva
- CEA, UMR217 CNRS Radiobiologie Moléculaire et Cellulaire, route du Panorama, BP6, 92265-Fontenay aux Roses, France
| | | | | | | | | |
Collapse
|
18
|
Gao R, Claeboe CD, Eisenhauer BM, Hecht SM. Identification of specific nonbridging phosphate oxygens important for DNA cleavage by human topoisomerase I. Biochemistry 2004; 43:6167-81. [PMID: 15147201 DOI: 10.1021/bi040005z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Methylphosphonate-bearing oligonucleotides are characterized by the replacement of one of the nonbridging oxygen atoms with a methyl group. While neutralizing the negative charge associated with the phosphodiester at the point of substitution, the methyl group also imparts chirality to the phosphorus atom. Herein we report the synthesis of a number of oligonucleotides containing isomerically pure S(p) and R(p) methylphosphonates at single positions for the purpose of investigating the hydrogen-bonding contacts necessary for human topoisomerase I function. It was possible to correlate these data to the recent X-ray crystal structure of a truncated form of the enzyme and demonstrate a severe decrease of cleavage efficiency when any of the nonbridging oxygen atoms upstream from the cleavage site was removed. Also observed was increased cleavage for oligonucleotides substituted with methylphosphonates downstream from the cleavage site. These effects were shown to be due primarily to alteration of the binding of the modified DNA substrates by human DNA topoisomerase I.
Collapse
Affiliation(s)
- Rong Gao
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22901, USA
| | | | | | | |
Collapse
|
19
|
Palumbo M, Gatto B, Moro S, Sissi C, Zagotto G. Sequence-specific interactions of drugs interfering with the topoisomerase-DNA cleavage complex. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1587:145-54. [PMID: 12084456 DOI: 10.1016/s0925-4439(02)00077-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA-processing enzymes, such as the topoisomerases (tops), represent major targets for potent anticancer (and antibacterial) agents. The drugs kill cells by poisoning the enzymes' catalytic cycle. Understanding the molecular details of top poisoning is a fundamental requisite for the rational development of novel, more effective antineoplastic drugs. In this connection, sequence-specific recognition of the top-DNA complex is a key step to preferentially direct the action of the drugs onto selected genomic sequences. In fact, the (reversible) interference of drugs with the top-DNA complex exhibits well-defined preferences for DNA bases in the proximity of the cleavage site, each drug showing peculiarities connected to its structural features. A second level of selectivity can be observed when chemically reactive groups are present in the structure of the top-directed drug. In this case, the enzyme recognizes or generates a unique site for covalent drug-DNA binding. This will further subtly modulate the drug's efficiency in stimulating DNA damage at selected sites. Finally, drugs can discriminate not only among different types of tops, but also among different isoenzymes, providing an additional level of specific selection. Once the molecular basis for DNA sequence-dependent recognition has been established, the above-mentioned modes to generate selectivity in drug poisoning can be rationally exploited, alone or in combination, to develop tailor-made drugs targeted at defined loci in cancer cells.
Collapse
Affiliation(s)
- Manlio Palumbo
- Department of Pharmaceutical Sciences, University of Padova, Via Marzolo 5, 35131 Padua, Italy.
| | | | | | | | | |
Collapse
|
20
|
Pommier Y, Laco GS, Kohlhagen G, Sayer JM, Kroth H, Jerina DM. Position-specific trapping of topoisomerase I-DNA cleavage complexes by intercalated benzo[a]- pyrene diol epoxide adducts at the 6-amino group of adenine. Proc Natl Acad Sci U S A 2000; 97:10739-44. [PMID: 10995470 PMCID: PMC27093 DOI: 10.1073/pnas.190312697] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2000] [Accepted: 07/06/2000] [Indexed: 11/18/2022] Open
Abstract
DNA topoisomerase I (top1) is the target of potent anticancer agents, including camptothecins and DNA intercalators, which reversibly stabilize (trap) top1 catalytic intermediates (cleavage complexes). The aim of the present study was to define the structural relationship between the site(s) of covalently bound intercalating agents, whose solution conformations in DNA are known, and the site(s) of top1 cleavage. Two diastereomeric pairs of oligonucleotide 22-mers, derived from a sequence used to determine the crystal structure of top1-DNA complexes, were synthesized. One pair contained either a trans-opened 10R- or 10S-benzo[a]pyrene 7, 8-diol 9,10-epoxide adduct at the N(6)-amino group of a central 2'-deoxyadenosine residue in the scissile strand, and the other pair contained the same two adducts in the nonscissile strand. These adducts were derived from the (+)-(7R,8S,9S,10R)- and (-)-(7S,8R,9R, 10S)-7,8-diol 9,10-epoxides in which the benzylic 7-hydroxyl group and the epoxide oxygen are trans. On the basis of analogy with known solution conformations of duplex oligonucleotides containing these adducts, we conclude that top1 cleavage complexes are trapped when the hydrocarbon adduct is intercalated between the base pairs flanking a preexisting top1 cleavage site, or between the base pairs immediately downstream (3' relative to the scissile strand) from this site. We propose a model with the +1 base rotated out of the duplex, and in which the intercalated adduct prevents religation of the corresponding nucleotide at the 5' end of the cleaved DNA. These results suggest mechanisms whereby intercalating agents interfere with the normal function of human top1.
Collapse
Affiliation(s)
- Y Pommier
- Laboratory of Molecular Pharmacology, Division of Basic Sciences, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Sim SP, Pilch DS, Liu LF. Site-specific topoisomerase I-mediated DNA cleavage induced by nogalamycin: a potential role of ligand-induced DNA bending at a distal site. Biochemistry 2000; 39:9928-34. [PMID: 10933812 DOI: 10.1021/bi000906h] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Many DNA binding ligands (e.g., nogalamycin, actinomycin D, terbenzimidazoles, indolocarbazoles, nitidine, and coralyne) and various types of DNA lesions (e.g., UV dimers, DNA mismatches, and abasic sites) are known to stimulate topoisomerase I-mediated DNA cleavage. However, the mechanism(s) by which these covalent and noncovalent DNA interactions stimulate topoisomerase I-mediated DNA cleavage remains unclear. Using nogalamycin as a model, we have studied the mechanism of ligand-induced topoisomerase I-mediated DNA cleavage. We show by both mutational and DNA footprinting analyses that the binding of nogalamycin to an upstream site (from position -6 to -3) can induce highly specific topoisomerase I-mediated DNA cleavage. Substitution of this nogalamycin binding site with a DNA bending sequence (A(5)) stimulated topoisomerase I-mediated DNA at the same site in the absence of nogalamycin. Replacement of the A(5) sequence with a disrupted DNA bending sequence (A(2)TA(2)) significantly reduced the level of topoisomerase I-mediated DNA cleavage. These results, together with the known DNA bending property of nogalamycin, suggest that the nogalamycin-DNA complex may provide a DNA structural bend to stimulate topoisomerase I-mediated DNA cleavage.
Collapse
Affiliation(s)
- S P Sim
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
22
|
Strumberg D, Pilon AA, Smith M, Hickey R, Malkas L, Pommier Y. Conversion of topoisomerase I cleavage complexes on the leading strand of ribosomal DNA into 5'-phosphorylated DNA double-strand breaks by replication runoff. Mol Cell Biol 2000; 20:3977-87. [PMID: 10805740 PMCID: PMC85758 DOI: 10.1128/mcb.20.11.3977-3987.2000] [Citation(s) in RCA: 277] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Topoisomerase I cleavage complexes can be induced by a variety of DNA damages and by the anticancer drug camptothecin. We have developed a ligation-mediated PCR (LM-PCR) assay to analyze replication-mediated DNA double-strand breaks induced by topoisomerase I cleavage complexes in human colon carcinoma HT29 cells at the nucleotide level. We found that conversion of topoisomerase I cleavage complexes into replication-mediated DNA double-strand breaks was only detectable on the leading strand for DNA synthesis, which suggests an asymmetry in the way that topoisomerase I cleavage complexes are metabolized on the two arms of a replication fork. Extension by Taq DNA polymerase was not required for ligation to the LM-PCR primer, indicating that the 3' DNA ends are extended by DNA polymerase in vivo closely to the 5' ends of the topoisomerase I cleavage complexes. These findings suggest that the replication-mediated DNA double-strand breaks generated at topoisomerase I cleavage sites are produced by replication runoff. We also found that the 5' ends of these DNA double-strand breaks are phosphorylated in vivo, which suggests that a DNA 5' kinase activity acts on the double-strand ends generated by replication runoff. The replication-mediated DNA double-strand breaks were rapidly reversible after cessation of the topoisomerase I cleavage complexes, suggesting the existence of efficient repair pathways for removal of topoisomerase I-DNA covalent adducts in ribosomal DNA.
Collapse
Affiliation(s)
- D Strumberg
- Laboratory of Molecular Pharmacology, Division of Basic Sciences, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4255, USA
| | | | | | | | | | | |
Collapse
|
23
|
Pommier Y, Kohlhagen G, Pourquier P, Sayer JM, Kroth H, Jerina DM. Benzo[a]pyrene diol epoxide adducts in DNA are potent suppressors of a normal topoisomerase I cleavage site and powerful inducers of other topoisomerase I cleavages. Proc Natl Acad Sci U S A 2000; 97:2040-5. [PMID: 10688881 PMCID: PMC15750 DOI: 10.1073/pnas.040397497] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The catalytic intermediates of DNA topoisomerase I (top1) are cleavage complexes that can relax DNA supercoiling (intramolecular reaction) or mediate recombinations (intermolecular religation). We report here that DNA adducts formed from benzo[a]pyrene bay-region diol epoxides can markedly affect top1 activity. Four oligonucleotide 22-mers of the same sequence were synthesized, each of which contained a stereoisomerically unique benzo[a]pyrene 7, 8-diol 9,10-epoxide adduct at the 2-amino group of a central 2'-deoxyguanosine residue. These four adducts correspond to either cis or trans opening at C-10 of the (+)-(7R, 8S, 9S, 10R)- or (-)-(7S, 8R, 9R, 10S)-7,8-diol 9,10-epoxides. Their solution conformations in duplex DNA (intercalated and minor-groove bound for the cis and trans opened adducts respectively) can be deduced from previous NMR studies. All four adducts completely suppress top1 cleavage activity at the alkylation site and induce the formation of new top1cleavage complexes on both strands of the DNA 3-6 bases away from the alkylation site. The trans opened adduct from the highly carcinogenic (+)-diol epoxide is the most active in inducing top1 cleavage independently of camptothecin, demonstrating that minor groove alkylation can efficiently poison top1. We also found that this isomer of the diol epoxide induces the formation of top1-DNA complexes in mammalian cells, which suggests a possible relationship between induction of top1 cleavage complexes and carcinogenic activity of benzo[a]pyrene diol epoxides.
Collapse
Affiliation(s)
- Y Pommier
- Laboratory of Molecular Pharmacology, Division of Basic Sciences, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
24
|
Christiansen K, Westergaard O. Mapping of eukaryotic DNA topoisomerase I catalyzed cleavage without concomitant religation in the vicinity of DNA structural anomalies. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1489:249-62. [PMID: 10673027 DOI: 10.1016/s0167-4781(99)00198-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Sensitive sites for covalent trapping of eukaryotic topoisomerase I at DNA structural anomalies were mapped by a new method using purified enzyme and defined DNA substrates. To insure that the obtained topoisomerase I trapping patterns were not influenced by DNA sequence variations, a single DNA imperfection was placed centrally within a homonucleotide track. Mapping of topoisomerase I-mediated irreversible cleavage sites on homopolymeric DNA substrates containing mismatches showed trapping of the enzyme in several positions in close vicinity of the DNA imperfection, with a strong preference for the 5' junction between the duplex DNA and the base-pairing anomaly. On homopolymeric DNA substrates containing a nick, sites of topoisomerase I-mediated cleavage on the intact strand were located just opposite to the nick and from one to ten nucleotides 5' to the nick. Sites of enzyme-mediated cleavage next to a nick and an immobile single-stranded branch were located 5' to the strand interruption in distances of two to six nucleotides and two to ten nucleotides, respectively. Taken together these findings suggest that covalent trapping of topoisomerase I proceeds at positions adjacent to mismatches, nicks and single-stranded branches, where the cleavage reaction is allowed and the ensuing ligation reaction prevented. In principle, the developed interference method might be of general utility to define topoisomerase-DNA interactions relative to different types of structural anomalies.
Collapse
Affiliation(s)
- K Christiansen
- Department of Molecular and Structural Biology, University of Aarhus, Aarhus C, Denmark
| | | |
Collapse
|
25
|
Wang X, Short GF, Kingsbury WD, Johnson RK, Hecht SM. Effects of camptothecin analogues on DNA transformations mediated by calf thymus and human DNA topoisomerases I. Chem Res Toxicol 1998; 11:1352-60. [PMID: 9815197 DOI: 10.1021/tx9801110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Camptothecin (CPT) and 10 structural analogues were studied to characterize their effects on specific rearrangements of DNA structure mediated by human and calf thymus DNA topoisomerases I. A 30 base pair DNA duplex containing a single high-efficiency topoisomerase cleavage site was incubated with each of the enzymes in the presence of the inhibitors. Individual inhibitors stabilized the covalent enzyme-DNA binary complex to different extents, as anticipated. However, for several of the inhibitors, the extent of ternary complex formation differed substantially for the human and calf thymus enzymes. In common with calf thymus topoisomerase I, the human enzyme was shown to mediate the rearrangement of branched, nicked, and gapped DNA substrates that constitute models for illegitimate recombination. However, some of these rearrangements proceeded with different rates and efficiencies in the presence of human topoisomerase I. When inhibition of three of the rearrangements by CPT analogues was studied, most of the analogues exhibited differential effects on a given transformation, depending on the source of the enzyme employed.
Collapse
Affiliation(s)
- X Wang
- Departments of Chemistry and Biology, University of Virginia, Charlottesville, Virginia 22901, USA
| | | | | | | | | |
Collapse
|
26
|
Capranico G, Binaschi M. DNA sequence selectivity of topoisomerases and topoisomerase poisons. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1400:185-94. [PMID: 9748568 DOI: 10.1016/s0167-4781(98)00135-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chemical agents able to interfere with DNA topoisomerases are widespread in nature, and some of them have clinical efficacy as antitumor or antibacterial drugs. Drugs which have as a target DNA topoisomerases could be divided into two categories: poisons and catalytic inhibitors. Classical topoisomerase poisons stimulate cleavage in a sequence-selective manner, yielding drug-specific cleavage intensity pattern. The mechanisms of drug interaction with DNA topoisomerases, the DNA sequence selectivity of the action of topoisomerase II poisons and the identification of structural determinants of their activity have suggested that topoisomerase II poisons may fit into a specific pharmacophore, constituted by a planar ring system with DNA intercalation or intercalation-like properties, and protruding side chains interfering with the protein side of the covalent enzyme-DNA complex. The complete definition of the diverse pharmacophores of topoisomerase II poisons will certainly be of value for the design of new agents directed to specific genomic sites, and more effective in the treatment of human cancer.
Collapse
Affiliation(s)
- G Capranico
- Division of Experimental Oncology B, Istituto Nazionale per lo Studio e la Cura dei Tumori, via Venezian 1, 20133 Milan, Italy.
| | | |
Collapse
|
27
|
Lisby M, Krogh BO, Boege F, Westergaard O, Knudsen BR. Camptothecins inhibit the utilization of hydrogen peroxide in the ligation step of topoisomerase I catalysis. Biochemistry 1998; 37:10815-27. [PMID: 9692972 DOI: 10.1021/bi980757r] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The antitumor compounds camptothecin and its derivatives topotecan and irinotecan stabilize topoisomerase I cleavage complexes by inhibiting the religation reaction of the enzyme. Previous studies, using radiolabeled camptothecin or affinity labeling reagents structurally related to camptothecin, suggest that the agent binds at the topoisomerase I-DNA interface of the cleavage complexes, interacting with both the covalently bound enzyme and with the +1 base. In this study, we have investigated the molecular mechanism of camptothecin action further by taking advantage of the ability of topoisomerase I to couple non-DNA nucleophiles to the cleaved strand of the covalent enzyme-DNA complexes. This reaction of topoisomerase I was originally observed at moderate basic pH where active cleavage complexes mediate hydrolysis or alcoholysis by accepting water or polyhydric alcohol compounds as substitutes for a 5'-OH DNA end in the ligation step. Here, we report that a H2O2-derived nucleophile, presumably, the peroxide anion, facilitates the release of topoisomerase I from the cleavage complexes at neutral pH, and we present evidence showing that this reaction is mechanistically analogous to DNA ligation. We find that camptothecin, topotecan, and SN-38 (the active metabolite of irinotecan) inhibit H2O2 ligation mediated by cleavage complexes not containing DNA downstream of the cleavage site, indicating that drug interaction with DNA 3' to the covalently bound enzyme is not strictly required for the inhibition, although the presence of double-stranded DNA in this region enhances the drug effect. The results suggest that camptothecins prevent ligation by blocking the active site of the covalently bound enzyme.
Collapse
Affiliation(s)
- M Lisby
- Department of Molecular and Structural Biology, University of Aarhus, Denmark
| | | | | | | | | |
Collapse
|
28
|
Arslan T, Abraham AT, Hecht SM. DNA duplexes containing 3'-deoxynucleotides as substrates for DNA topoisomerase I cleavage and ligation. J Biol Chem 1998; 273:12383-90. [PMID: 9575192 DOI: 10.1074/jbc.273.20.12383] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The DNA cleavage-ligation reaction of DNA topoisomerase I was investigated employing synthetic DNA substrates containing 3'-deoxyadenosine or 3'-deoxythymidine at specific sites and acceptor oligonucleotides of different lengths. The modified nucleotides were substituted systematically within the putative enzyme-binding domain and also next to the high efficiency cleavage site to determine the effect of single base changes on enzyme function. Depending on the site of substitution, the facility of the cleavage and ligation reactions were altered. The bases at positions -1 and -2 on the noncleaved strand were found to be important for determining the site of cleavage. Inclusion of 3'-deoxythymidine in the scissile strand at position -1 permitted the demonstration that topoisomerase I can cleave and form a 2' --> 5'-phosphodiester linkage. Partial duplexes doubly modified at positions -4 or -6 in the noncleaved strand and at positions +1 or -1 within scissile strand were not good substrates for topoisomerase I, showing that cleavage can depend importantly on binding interactions based on structural alterations at spatially separated sites. Substitution of a 3'-deoxynucleotide on the scissile strand at position -6 enhanced formation of the ligation product resulting from cleavage at site 1 and suppressed cleavage at site 2.
Collapse
Affiliation(s)
- T Arslan
- Departments of Chemistry and Biology, University of Virginia, Charlottesville, Virginia 22901, USA
| | | | | |
Collapse
|
29
|
Bugreev DV, Vasyutina EL, Kolocheva TI, Buneva VN, Andoh T, Nevinsky GA. Interaction of human DNA topoisomerase I with specific sequence oligodeoxynucleotides. Biochimie 1998; 80:303-8. [PMID: 9672749 DOI: 10.1016/s0300-9084(98)80071-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The interaction of human DNA topoisomerase I (topo I) with specific sequence oligodeoxynucleotides (ODNs) of different length and structure has been investigated. All the ODNs used were shown to be effective enzyme inhibitors and to inhibit the topo I catalyzed relaxation of scDNA in a competitive manner. Among two DNA regions (A and B) required for topo I-mediated DNA cleavage, the former was found to display the higher affinity for the enzyme. The enzyme's affinity for ODNs corresponding to the scissile strand (five and nine nucleotide units in length) is about 2-4 orders of magnitude higher than that for non-specific ODNs of the same length. Topo I can efficiently recognize even extremely short specific ODNs containing only two or three bases (AGA and pAG, Ki = 15 and 60 microM, respectively): the sequence AAGA (Ki = 10 microM) is essential for tight DNA binding to topo I. The affinities of ODNs corresponding to the non-scissile strand are significantly lower. The ligand's affinity increases with its length. Additionally, about a ten-fold enhancement of specific sequence affinity occurs due to stable duplex formation during enzyme preincubation with ligands before addition of scDNA. We believe the possibility of using the short specific oligonucleotides and its derivatives as topoisomerase I-targeting drugs could not be excluded.
Collapse
Affiliation(s)
- D V Bugreev
- Novosibirsk Institute of Bioorganic Chemistry, Siberian Division of the Russian Academy of Sciences, Russia
| | | | | | | | | | | |
Collapse
|
30
|
Topoisomerase I-targeting drugs. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s1067-568x(98)80005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
31
|
Abstract
Type I topoisomerases alter DNA topology by cleaving and rejoining one strand of duplex DNA through a covalent protein-DNA intermediate. Here we show that vaccinia topoisomerase, a eukaryotic type IB enzyme, catalyzes site-specific endoribonucleolytic cleavage of an RNA-containing strand. The RNase reaction occurs via transesterification at the scissile ribonucleotide to form a covalent RNA-3'-phosphoryl-enzyme intermediate, which is then attacked by the vicinal 2' OH of the ribose sugar to yield a free 2', 3' cyclic phosphate product. Introduction of a single ribonucleoside at the scissile phosphate of an otherwise all-DNA substrate suffices to convert the topoisomerase into an endonuclease. Human topoisomerase I also has endoribonuclease activity. These findings suggest potential roles for topoisomerases in RNA processing.
Collapse
Affiliation(s)
- J Sekiguchi
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | |
Collapse
|
32
|
Stewart L, Ireton GC, Champoux JJ. Reconstitution of human topoisomerase I by fragment complementation. J Mol Biol 1997; 269:355-72. [PMID: 9199405 DOI: 10.1006/jmbi.1997.1056] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Human topoisomerase I (topo I, 91 kDa) is composed of four major domains; the unconserved and highly charged "N-terminal" domain (24 kDa), the conserved "core" domain (54 kDa), a poorly conserved and positively charged "linker" region (5 kDa), and the highly conserved "C-terminal" domain (8 kDa) which contains the active site tyrosine at position 723. Here we demonstrate that human topo I activity can be reconstituted by mixing a 58 kDa recombinant core domain (residues Lys175 to Ala659) with any one of a series of recombinant C-terminal fragments that range in size from 12 kDa (linker and C-terminal domains, residues Leu658 to Phe765) to 6.3 kDa (C-terminal domain residues Gln713 to Phe765). The C-terminal fragments bind tightly to the core domain, forming a 1:1 complex that is stable irrespective of ionic strength (0.01 to 1 M). The reconstituted enzymes are active only over a relatively narrow range of salt concentrations (25 to 200 mM KCl) as compared to the intact topo70 enzyme (missing the N-terminal domain). Under physiological conditions (150 mM KCl and 10 mM Mg2+) they are much more distributive in their mode of action than topo70. The reconstituted enzyme binds DNA with an affinity that is approximately 20-fold lower than that of the intact topo70. In addition, the cleavage/religation equilibrium of the reconstituted enzyme appears to be biased towards religation relative to that of the intact enzyme. Despite differences in the cleavage/religation equilibrium and affinity for DNA, the reconstituted and intact enzymes have identical sequence specificities for the cleavage of duplex DNA or suicide cleavage of oligonucleotide substrates.
Collapse
Affiliation(s)
- L Stewart
- Department of Microbiology, School of Medicine, University of Washington, Seattle 98195-7242, USA
| | | | | |
Collapse
|
33
|
Stivers JT, Harris TK, Mildvan AS. Vaccinia DNA topoisomerase I: evidence supporting a free rotation mechanism for DNA supercoil relaxation. Biochemistry 1997; 36:5212-22. [PMID: 9136883 DOI: 10.1021/bi962880t] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Vaccinia type I topoisomerase catalyzes site-specific DNA strand cleavage and religation by forming a transient phosphotyrosyl linkage between the DNA and Tyr-274, resulting in the release of DNA supercoils. For type I topoisomerases, two mechanisms have been proposed for supercoil release: (I) a coupled mechanism termed strand passage, in which a single supercoil is removed per cleavage/religation cycle, resulting in multiple topoisomer intermediates and late product formation, or (2) an uncoupled mechanism termed free rotation, where multiple supercoils are removed per cleavage/religation cycle, resulting in few intermediates and early product formation. To determine the mechanism, single-turnover experiments were done with supercoiled plasmid DNA under conditions in which the topoisomerase cleaves predominantly at a single site per DNA molecule. The concentrations of supercoiled substrate, intermediate topoisomers, and relaxed product vs time were measured by fluorescence imaging, and the rate constants for their interconversion were determined by kinetic simulation. Few intermediates and early product formation were observed. From these data, the rate constants for cleavage (0.3 s(-1)), religation (4 s(-1)), and the cleavage equilibrium constant on the enzyme (0.075) at 22 degrees C are in reasonable agreement with those obtained with small oligonucleotide substrates, while the rotation rate of the cleaved DNA strand is fast (approximately 20 rotations/s). Thus, the average number of supercoils removed for each cleavage event greatly exceeds unity (delta n = 5) and depends on kinetic competition between religation and supercoil release, establishing a free rotation mechanism. This free rotation mechanism for a type I topoisomerase differs from the strand passage mechanism proposed for the type II enzymes.
Collapse
Affiliation(s)
- J T Stivers
- Center for Advanced Research in Biotechnology of the University of Maryland Biotechnology Institute and National Institute of Standards and Technology, Rockville 20850, USA
| | | | | |
Collapse
|
34
|
Pourquier P, Ueng LM, Kohlhagen G, Mazumder A, Gupta M, Kohn KW, Pommier Y. Effects of uracil incorporation, DNA mismatches, and abasic sites on cleavage and religation activities of mammalian topoisomerase I. J Biol Chem 1997; 272:7792-6. [PMID: 9065442 DOI: 10.1074/jbc.272.12.7792] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Abasic sites and deamination of cytosine to uracil are probably the most common types of endogenous DNA damage. The effects of such lesions on DNA topoisomerase I (top1) activity were examined in oligonucleotides containing a unique top1 cleavage site. The presence of uracils and abasic sites within the first 4 bases immediately 5' to the cleavage site suppressed normal top1 cleavage and induced new top1 cleavage sites. Uracils immediately 3' to the cleavage site increased cleavage and produced a camptothecin mimicking effect. A mismatch with a bulge or abasic sites immediately 3' to the top1 cleavage site irreversibly trapped top1 cleavable complexes in the absence of camptothecin and produced a suicide cleavage complex. These results demonstrate that top1 activity is sensitive to physiological, environmental, and pharmacological DNA modifications and that top1 can act as a specific mismatch- and abasic site-nicking enzyme.
Collapse
Affiliation(s)
- P Pourquier
- Laboratory of Molecular Pharmacology, Division of Basic Sciences, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
The existence of a covalent intermediate in topoisomerase I catalysis allows uncoupling of the cleavage and ligation half-reactions on partially single-stranded DNA substrates containing a highly preferred interaction site. Using this model DNA substrate system we have demonstrated that the cleavage reaction requires bipartite interaction with two distinct DNA duplex regions; One located around the cleavage site (region A) and another located on the side holding the 5'-OH end generated by cleavage (region B). The postcleavage complexes containing the enzyme covalently attached at an internal position are capable of ligating DNA strands matching the noncleaved strand. Previously, we have characterized the effect of the antitumor agent camptothecin on the two half-reactions of topoisomerase I catalysis on DNA substrates allowing bipartite DNA interaction. The obtained results demonstrated that the drug only inhibited the ligation reaction leaving the cleavage reaction unaffected at the studied site. Here, we report that camptothecin also impairs ligation of the cleaved strand to a dinucleotide within region A in the absence of additional DNA contacts. When these results are taken together with the observation that camptothecin-trapped topoisomerase I-DNA complexes preferentially are generated at sites containing guanine immediately 3' to the cleavage position, it suggests that camptothecin inhibits the ligation reaction by forming a reversible ternary complex with the enzyme and DNA at the cleavage site within region A.
Collapse
Affiliation(s)
- K Christiansen
- Department of Molecular and Structural Biology, University of Aarhus, Denmark
| | | |
Collapse
|
36
|
Knudsen BR, Straub T, Boege F. Separation and functional analysis of eukaryotic DNA topoisomerases by chromatography and electrophoresis. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL APPLICATIONS 1996; 684:307-21. [PMID: 8906479 DOI: 10.1016/0378-4347(96)00152-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
DNA topoisomerases are enzymes that control DNA topology by cleaving and rejoining DNA strands and passing other DNA strands through the transient gaps. Consequently, these enzymes play a crucial role in the regulation of the physiological function of the genome. Beyond their normal functions, topoisomerases are important cellular targets in the treatment of human cancers. In this review we summarize current protocols for extracting and purifying DNA topoisomerases, and for separating subtypes and isoforms of these enzymes. Furthermore, we discuss methods for measuring the catalytic activity of topoisomerases and for monitoring the molecular effects of topoisomerase-directed antitumor drugs in cell-free assays.
Collapse
Affiliation(s)
- B R Knudsen
- Department of Molecular and Structural Biology, Univ. Aarhus, Denmark
| | | | | |
Collapse
|
37
|
Tan RK, Harvey SC, Di Mauro E, Camilloni G, Venditti P. DNA topological context affects access to eukaryotic DNA topoisomerase I. J Biomol Struct Dyn 1996; 13:855-72. [PMID: 8723779 DOI: 10.1080/07391102.1996.10508897] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We have analyzed the reactivity of a 217 base pair segment of the intrinsically curved Crithidia fasciculata kinetoplast DNA towards eukaryotic DNA topoisomerase I. The substrates were open [linear fragment and nicked circle] and closed minidomains [closed relaxed circle and circles with linking differences of -1 and -2]. We interpreted the results with the aid of a model that was used to predict the structures of the topoisomers. The modelling shows that the delta Lk(-1) form is unusually compact because of the curvature in the DNA. To determine the role of sequence-directed curvature in both the experimental and modeling studies, controls were examined in which the curved Crithidia sequence was replaced by an uncurved sequence obtained from the plasmid pBR322. Reactivity of the Crithidia DNA [as analyzed both by the cleavage and topoisomerization reactions] markedly varied among the DNA forms: (i) the hierarchy of overall reactivity observed is: linear fragment > nicked circular, closed circular [delta Lk(0)], interwound [delta Lk(-2)] > bent interwound [delta Lk(-1)]; (ii) the intensity of several cleavage positions differs among DNA forms. The results show that eukaryotic DNA topoisomerase I is very sensitive to the conformation of the substrates and that its reactivity is modulated by the variation of the compactness of the DNA molecule. The C. fasciculata sequence contains a highly curved segment that determines the conformation of the closed circle in a complex way.
Collapse
Affiliation(s)
- R K Tan
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham 35294, USA
| | | | | | | | | |
Collapse
|
38
|
Abstract
Using limited proteolysis, we show that the domain boundaries of human topoisomerase I closely parallel those predicted from sequence comparisons with other cellular Topo I enzymes. The enzyme is comprised of (i) an NH2-terminal domain (approximately 24 kDa), which is known to be dispensable for activity, (ii) the core domain (approximately 54 kDa), (iii) a linker region (approximately 3 kDa), and (iv) the COOH-terminal domain (approximately 10 kDa), which contains the active site tyrosine. The highly conserved core and COOH-terminal domains are resistant to proteolysis, while the unconserved NH2-terminal and linker domains are sensitive. Noncovalent binding of Topo I to plasmid DNA or to short duplex oligonucleotides decreases the sensitivity of the linker to proteolysis by approximately a factor of 10 but has no effect on proteolysis of the NH2-terminal domain. When the enzyme is covalently complexed to an 18 base pair single-stranded oligonucleotide, the linker region is sensitive to proteolysis whether or not duplex DNA is present. The net positive charge of the linker domain suggests that at a certain point in catalysis the linker may bind directly to DNA. Further, we show that limited subtilisin cleavage can generate a mixture of 60-kDa core and approximately 10-kDa COOH-terminal fragments, which retain a level of topoisomerase activity that is nearly equal to undigested control samples, presumably because the two fragments remain associated after proteolytic cleavage. Thus, despite its potential role in DNA binding, the linker domain (in addition to the NH2-terminal domain) appears to be dispensable for topoisomerase activity. Finally, the limited proteolysis pattern of the human enzyme differs substantially from the limited proteolysis pattern of the vaccinia viral Topo I, indicating that the two enzymes belong to separate eukaryotic topoisomerase I subfamilies.
Collapse
Affiliation(s)
- L Stewart
- Department of Microbiology, School of Medicine, University of Washington, Seattle, 98195-7242, USA
| | | | | |
Collapse
|
39
|
Jensen AD, Svejstrup JQ. Purification and characterization of human topoisomerase I mutants. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 236:389-94. [PMID: 8612607 DOI: 10.1111/j.1432-1033.1996.00389.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A system for rapid purification and characterization of eukaryotic topoisomerase-I mutants has been developed. The system utilizes six-histidine tagging of human topoisomerase I expressed in Saccharomyces cerevisiae to enable purification by nickel-affinity chromatography. Virtually homogenous mutant proteins are then tested for their ability to relax supercoiled DNA plasmids and their capacity for binding, cleaving and religating short defined DNA substrates. Relaxation-deficient mutants were obtained by site-directed mutagenesis of selected highly conserved amino acids. The mutants Tyr723Phe (active site mutation), Arg488Gln and Lys532Glu were inert in relaxation of DNA, whereas Lys720Glu showed a 50-fold reduction in specific relaxation activity. Accordingly, only Lys720Glu showed low, but detectable cleavage activity on suicide DNA substrates, uncoupling the cleavage and religation events of topoisomerase I. The relative religation efficiency of Lys720Glu comparable to that of wild-type topoisomerase I, indicating that Lys720 is involved in interactions important for normal DNA cleavage, but not for the religation reaction. All mutants could be cross linked by ultraviolet light to bromo-dUTP-substituted DNA oligonucleotides carrying a topoisomerase-I-binding site, indicating that the deficiency of Tyr723Phe, Arg488Gln and Lys532Glu in DNA relaxation and cleavage is not due to an inability of these mutants to bind DNA non-covalently.
Collapse
Affiliation(s)
- A D Jensen
- Department of Molecular Biology, University of Aarhus, Denmark
| | | |
Collapse
|
40
|
Nevinsky GA, Bugreev DV, Buneva VN, Yasui Y, Nishizawa M, Andoh T. High affinity interaction of mammalian DNA topoisomerase I with short single- and double-stranded oligonucleotides. FEBS Lett 1995; 368:97-100. [PMID: 7615096 DOI: 10.1016/0014-5793(95)00609-d] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The interaction of DNA topoisomerase I (topo I) with a set of single- and double-stranded oligonucleotides containing 5-27 mononucleotides was investigated. All single- and double-stranded oligonucleotides were found to inhibit competitively the supercoiled DNA relaxation reaction catalyzed by topo I. The enzyme affinity for specific sequence pentanucleotides of the scissile (GACTT, Ki = 2 microM) and non-cleaved chain (AAGTC, Ki = 110 microM) is about 2-4 orders of magnitude higher than that for non-specific oligonucleotides. This specific sequence affinity increases in several cases; lengthening of single-stranded oligonucleotides, formation of stable duplexes between complementary oligonucleotides and preincubation of the enzyme with ligands before addition of supercoiled DNA. We assume that oligonucleotides having a high affinity to the enzyme can offer a unique opportunity for rational design of topoisomerase-targeting drugs.
Collapse
Affiliation(s)
- G A Nevinsky
- Novosibirsk Institute of Bioorganic Chemistry, Siberian Division of the Russian Academy of Sciences
| | | | | | | | | | | |
Collapse
|
41
|
Christiansen K, Knudsen B, Westergaard O. The covalent eukaryotic topoisomerase I-DNA intermediate catalyzes pH-dependent hydrolysis and alcoholysis. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)78134-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
42
|
Andersen AH, Svejstrup JQ, Westergaard O. The DNA binding, cleavage, and religation reactions of eukaryotic topoisomerases I and II. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1994; 29A:83-101. [PMID: 7826866 DOI: 10.1016/s1054-3589(08)60541-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- A H Andersen
- Department of Molecular Biology, University of Aarhus, Denmark
| | | | | |
Collapse
|
43
|
Christiansen K, Westergaard O. Characterization of intra- and intermolecular DNA ligation mediated by eukaryotic topoisomerase I. Role of bipartite DNA interaction in the ligation process. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)42409-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
44
|
Pommier Y, Tanizawa A, Kohn KW. Mechanisms of topoisomerase I inhibition by anticancer drugs. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1994; 29B:73-92. [PMID: 8996602 DOI: 10.1016/s1054-3589(08)61132-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Y Pommier
- National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
45
|
Christiansen K, Svejstrup A, Andersen A, Westergaard O. Eukaryotic topoisomerase I-mediated cleavage requires bipartite DNA interaction. Cleavage of DNA substrates containing strand interruptions implicates a role for topoisomerase I in illegitimate recombination. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)98404-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
46
|
Pan G, Luetke K, Juby C, Brousseau R, Sadowski P. Ligation of synthetic activated DNA substrates by site-specific recombinases and topoisomerase I. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53747-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
47
|
Kjeldsen E, Svejstrup JQ, Gromova II, Alsner J, Westergaard O. Camptothecin inhibits both the cleavage and religation reactions of eukaryotic DNA topoisomerase I. J Mol Biol 1992; 228:1025-30. [PMID: 1335513 DOI: 10.1016/0022-2836(92)90310-g] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We investigated the mode of action of the antitumor drug, camptothecin, by use of a partly double-stranded suicide DNA substrate which enables uncoupling of the cleavage and religation half-reactions of topoisomerase I. The suicide DNA substrate contains a single topoisomerase I site at which SDS cleavage is strongly enhanced by camptothecin on normal double-stranded DNA. The results show that the religation reaction of topoisomerase I per se is strongly inhibited at this site compared to site that is only marginally affected by camptothecin on double-stranded DNA. This study hereby directly demonstrates that camptothecin-mediated stability of a topoisomerase I-DNA complex is sequence-dependent. The influence of camptothecin on the suicide cleavage reaction of topoisomerase I was also investigated. Surprisingly, the cleavage reaction per se is strongly inhibited by the drug. However, reformation of a cleavable suicide DNA substrate, which is fully double-stranded downstream from the cleavage position except for a nick, completely reverses the inhibitory effect of the drug on the cleavage reaction. The results suggest that the inhibitory effect of camptothecin on cleavage is due to a general decrease in the noncovalent interaction of topoisomerase I with partly double-stranded suicide DNA substrates. Based on the findings, a plausible model for camptothecin action is discussed.
Collapse
Affiliation(s)
- E Kjeldsen
- Department of Molecular Biology, University of Aarhus, Denmark
| | | | | | | | | |
Collapse
|
48
|
Alsner J, Svejstrup J, Kjeldsen E, Sørensen B, Westergaard O. Identification of an N-terminal domain of eukaryotic DNA topoisomerase I dispensable for catalytic activity but essential for in vivo function. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42288-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
49
|
Svejstrup JQ, Christiansen K, Gromova II, Andersen AH, Westergaard O. New technique for uncoupling the cleavage and religation reactions of eukaryotic topoisomerase I. The mode of action of camptothecin at a specific recognition site. J Mol Biol 1991; 222:669-78. [PMID: 1660929 DOI: 10.1016/0022-2836(91)90503-x] [Citation(s) in RCA: 120] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A new technique for uncoupling the cleavage and religation half-reactions of topoisomerase I at a specific site has been developed. The technique takes advantage of a suicidal DNA substrate to attain enzyme-mediated cleavage without concomitant religation. Efficient religation can be achieved, subsequently, by addition of an oligonucleotide capable of hybridising to the non-cleaved strand of the suicide DNA substrate. The technique was used to study the effect of different compounds on the half-reactions of topoisomerase I. It was shown that topoisomerase I-mediated cleavage was inhibited by NaCl concentrations higher than 200 mM, while the religation reaction seemed unaffected by concentrations as high as 3 M-NaCl. The divalent cations Mg2+, Ca2+ and Mn2+ were found to enhance the cleavage but not the religation reaction of topoisomerase I, whereas Cu2+ and Zn2+ inhibited both reactions. Furthermore, the effect of the anti-neoplastic agent, camptothecin, on the half-reactions of topoisomerase I was investigated. It was found that the drug did not affect the cleavage reaction of topoisomerase I at the studied site, while the religation reaction of the enzyme was inhibited. Camptothecin was found to stabilise the enzyme-DNA cleavage complex even when the drug was added after complex formation.
Collapse
Affiliation(s)
- J Q Svejstrup
- Department of Molecular Biology and Plant Physiology, University of Aarhus, Denmark
| | | | | | | | | |
Collapse
|
50
|
Jaxel C, Capranico G, Kerrigan D, Kohn K, Pommier Y. Effect of local DNA sequence on topoisomerase I cleavage in the presence or absence of camptothecin. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54939-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|