1
|
Léger C, Pitard I, Sadi M, Carvalho N, Brier S, Mechaly A, Raoux-Barbot D, Davi M, Hoos S, Weber P, Vachette P, Durand D, Haouz A, Guijarro JI, Ladant D, Chenal A. Dynamics and structural changes of calmodulin upon interaction with the antagonist calmidazolium. BMC Biol 2022; 20:176. [PMID: 35945584 PMCID: PMC9361521 DOI: 10.1186/s12915-022-01381-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/29/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Calmodulin (CaM) is an evolutionarily conserved eukaryotic multifunctional protein that functions as the major sensor of intracellular calcium signaling. Its calcium-modulated function regulates the activity of numerous effector proteins involved in a variety of physiological processes in diverse organs, from proliferation and apoptosis, to memory and immune responses. Due to the pleiotropic roles of CaM in normal and pathological cell functions, CaM antagonists are needed for fundamental studies as well as for potential therapeutic applications. Calmidazolium (CDZ) is a potent small molecule antagonist of CaM and one the most widely used inhibitors of CaM in cell biology. Yet, CDZ, as all other CaM antagonists described thus far, also affects additional cellular targets and its lack of selectivity hinders its application for dissecting calcium/CaM signaling. A better understanding of CaM:CDZ interaction is key to design analogs with improved selectivity. Here, we report a molecular characterization of CaM:CDZ complexes using an integrative structural biology approach combining SEC-SAXS, X-ray crystallography, HDX-MS, and NMR. RESULTS We provide evidence that binding of a single molecule of CDZ induces an open-to-closed conformational reorientation of the two domains of CaM and results in a strong stabilization of its structural elements associated with a reduction of protein dynamics over a large time range. These CDZ-triggered CaM changes mimic those induced by CaM-binding peptides derived from physiological protein targets, despite their distinct chemical natures. CaM residues in close contact with CDZ and involved in the stabilization of the CaM:CDZ complex have been identified. CONCLUSION Our results provide molecular insights into CDZ-induced dynamics and structural changes of CaM leading to its inhibition and open the way to the rational design of more selective CaM antagonists. Calmidazolium is a potent and widely used inhibitor of calmodulin, a major mediator of calcium-signaling in eukaryotic cells. Structural characterization of calmidazolium-binding to calmodulin reveals that it triggers open-to-closed conformational changes similar to those induced by calmodulin-binding peptides derived from enzyme targets. These results provide molecular insights into CDZ-induced dynamics and structural changes of CaM leading to its inhibition and open the way to the rational design of more selective CaM antagonists.
Collapse
Affiliation(s)
- Corentin Léger
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, CNRS UMR3528, Institut Pasteur, Paris, 75015, France
| | - Irène Pitard
- Biological NMR and HDX-MS Technological Platform, CNRS UMR3528, Université Paris Cité, Institut Pasteur, Paris, 75015, France
| | - Mirko Sadi
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, CNRS UMR3528, Institut Pasteur, Paris, 75015, France
- Université Paris Cité, Paris, France
| | - Nicolas Carvalho
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, CNRS UMR3528, Institut Pasteur, Paris, 75015, France
- Université Paris Cité, Paris, France
| | - Sébastien Brier
- Biological NMR and HDX-MS Technological Platform, CNRS UMR3528, Université Paris Cité, Institut Pasteur, Paris, 75015, France
| | - Ariel Mechaly
- Plate-forme de Cristallographie-C2RT, Université Paris Cité, CNRS UMR3528, Institut Pasteur, Paris, France
| | - Dorothée Raoux-Barbot
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, CNRS UMR3528, Institut Pasteur, Paris, 75015, France
| | - Maryline Davi
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, CNRS UMR3528, Institut Pasteur, Paris, 75015, France
| | - Sylviane Hoos
- Plateforme de Biophysique Moléculaire, Université Paris Cité, CNRS UMR3528, Institut Pasteur, Paris, France
| | - Patrick Weber
- Plate-forme de Cristallographie-C2RT, Université Paris Cité, CNRS UMR3528, Institut Pasteur, Paris, France
| | - Patrice Vachette
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Dominique Durand
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Ahmed Haouz
- Plate-forme de Cristallographie-C2RT, Université Paris Cité, CNRS UMR3528, Institut Pasteur, Paris, France
| | - J Iñaki Guijarro
- Biological NMR and HDX-MS Technological Platform, CNRS UMR3528, Université Paris Cité, Institut Pasteur, Paris, 75015, France
| | - Daniel Ladant
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, CNRS UMR3528, Institut Pasteur, Paris, 75015, France.
| | - Alexandre Chenal
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, CNRS UMR3528, Institut Pasteur, Paris, 75015, France.
| |
Collapse
|
2
|
Milanesi L, Trevitt C, Whitehead B, Hounslow A, Tomas S, Hosszu L, Hunter C, Waltho J. High-affinity tamoxifen analogues retain extensive positional disorder when bound to calmodulin. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:629-642. [PMID: 37905217 PMCID: PMC10539762 DOI: 10.5194/mr-2-629-2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/03/2021] [Indexed: 11/02/2023]
Abstract
Using a combination of NMR and fluorescence measurements, we have investigated the structure and dynamics of the complexes formed between calcium-loaded calmodulin (CaM) and the potent breast cancer inhibitor idoxifene, a derivative of tamoxifen. High-affinity binding (K d ∼ 300 nM) saturates with a 2 : 1 idoxifene : CaM complex. The complex is an ensemble where each idoxifene molecule is predominantly in the vicinity of one of the two hydrophobic patches of CaM but, in contrast with the lower-affinity antagonists TFP, J-8, and W-7, does not substantially occupy the hydrophobic pocket. At least four idoxifene orientations per domain of CaM are necessary to satisfy the intermolecular nuclear Overhauser effect (NOE) restraints, and this requires that the idoxifene molecules switch rapidly between positions. The CaM molecule is predominantly in the form where the N and C-terminal domains are in close proximity, allowing for the idoxifene molecules to contact both domains simultaneously. Hence, the 2 : 1 idoxifene : CaM complex illustrates how high-affinity binding occurs without the loss of extensive positional dynamics.
Collapse
Affiliation(s)
- Lilia Milanesi
- Department of Molecular Biology and Biotechnology, University of
Sheffield, Sheffield S10 2TN, UK
- Department of Biological Sciences, School of Science, Birkbeck
University of London, London WC1E 7HX, UK
| | - Clare R. Trevitt
- Department of Molecular Biology and Biotechnology, University of
Sheffield, Sheffield S10 2TN, UK
| | - Brian Whitehead
- Department of Molecular Biology and Biotechnology, University of
Sheffield, Sheffield S10 2TN, UK
| | - Andrea M. Hounslow
- Department of Molecular Biology and Biotechnology, University of
Sheffield, Sheffield S10 2TN, UK
| | - Salvador Tomas
- Department of Biological Sciences, School of Science, Birkbeck
University of London, London WC1E 7HX, UK
- Departament de Química, Universitat de les Illes Balears, Cra. de Valldemossa, km 7.5. 07122 Palma de Mallorca, Spain
| | - Laszlo L. P. Hosszu
- Department of Molecular Biology and Biotechnology, University of
Sheffield, Sheffield S10 2TN, UK
- Medical Research Council Prion Unit, University College of London
Institute of Neurology, Queen Square, London WCN1 3BG, UK
| | - Christopher A. Hunter
- Department of Chemistry, University of Cambridge, Lensfield Road,
Cambridge CB2 1EW, UK
| | - Jonathan P. Waltho
- Department of Molecular Biology and Biotechnology, University of
Sheffield, Sheffield S10 2TN, UK
- Manchester Institute of Biotechnology, University of Manchester, 131
Princess Street, Manchester M1 7DN, UK
| |
Collapse
|
3
|
Gonzalez-Martinez D, Johnston JR, Landim-Vieira M, Ma W, Antipova O, Awan O, Irving TC, Bryant Chase P, Pinto JR. Structural and functional impact of troponin C-mediated Ca 2+ sensitization on myofilament lattice spacing and cross-bridge mechanics in mouse cardiac muscle. J Mol Cell Cardiol 2018; 123:26-37. [PMID: 30138628 DOI: 10.1016/j.yjmcc.2018.08.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/26/2018] [Accepted: 08/05/2018] [Indexed: 12/25/2022]
Abstract
Acto-myosin cross-bridge kinetics are important for beat-to-beat regulation of cardiac contractility; however, physiological and pathophysiological mechanisms for regulation of contractile kinetics are incompletely understood. Here we explored whether thin filament-mediated Ca2+ sensitization influences cross-bridge kinetics in permeabilized, osmotically compressed cardiac muscle preparations. We used a murine model of hypertrophic cardiomyopathy (HCM) harboring a cardiac troponin C (cTnC) Ca2+-sensitizing mutation, Ala8Val in the regulatory N-domain. We also treated wild-type murine muscle with bepridil, a cTnC-targeting Ca2+ sensitizer. Our findings suggest that both methods of increasing myofilament Ca2+ sensitivity increase cross-bridge cycling rate measured by the rate of tension redevelopment (kTR); force per cross-bridge was also enhanced as measured by sinusoidal stiffness and I1,1/I1,0 ratio from X-ray diffraction. Computational modeling suggests that Ca2+ sensitization through this cTnC mutation or bepridil accelerates kTR primarily by promoting faster cross-bridge detachment. To elucidate if myofilament structural rearrangements are associated with changes in kTR, we used small angle X-ray diffraction to simultaneously measure myofilament lattice spacing and isometric force during steady-state Ca2+ activations. Within in vivo lattice dimensions, lattice spacing and steady-state isometric force increased significantly at submaximal activation. We conclude that the cTnC N-domain controls force by modulating both the number and rate of cycling cross-bridges, and that the both methods of Ca2+ sensitization may act through stabilization of cTnC's D-helix. Furthermore, we propose that the transient expansion of the myofilament lattice during Ca2+ activation may be an additional factor that could increase the rate of cross-bridge cycling in cardiac muscle. These findings may have implications for the pathophysiology of HCM.
Collapse
Affiliation(s)
- David Gonzalez-Martinez
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Jamie R Johnston
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Maicon Landim-Vieira
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Weikang Ma
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL, USA
| | - Olga Antipova
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL, USA; X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | - Omar Awan
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Thomas C Irving
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL, USA
| | - P Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - J Renato Pinto
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
4
|
Nogueira RC, Sampaio LDFS. Eye and heart morphogenesis are dependent on melatonin signaling in chick embryos. ACTA ACUST UNITED AC 2017; 220:3826-3835. [PMID: 28839011 DOI: 10.1242/jeb.159848] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 08/18/2017] [Indexed: 12/15/2022]
Abstract
Calmodulin is vital for chick embryos morphogenesis in the incubation time 48-66 h when the rudimentary C-shaped heart attains an S-shaped pattern and the optic vesicles develop into optic cups. Melatonin is in the extraembryonic yolk sac of the avian egg; melatonin binds calmodulin. The aim of this study was to investigate the function of melatonin in the formation of the chick embryo optic cups and S-shaped heart, by pharmacological methods and immunoassays. Mel1a melatonin receptor immunofluorescence was distributed in the optic cups and rudimentary hearts. We separated embryonated chicken eggs at 48 h of incubation into basal, control and drug-treated groups, with treatment applied in the egg air sac. At 66 h of incubation, embryos were excised from the eggs and analyzed. Embryos from the basal, control (distilled water), melatonin and 6-chloromelatonin (melatonin receptor agonist) groups had regular optic cups and an S-shaped heart, while those from the calmidazolium (calmodulin inhibitor) group did not. Embryos from the luzindole (melatonin receptor antagonist) and prazosin (Mel1c melatonin receptor antagonist) groups did not have regular optic cups. Embryos from the 4-P-PDOT (Mel1b melatonin receptor antagonist) group did not have an S-shaped heart. Previous application of the melatonin, 6-chloromelatonin or forskolin (adenylate cyclase enhancer) prevented the abnormal appearance of chick embryos from the calmidazolium, luzindole, prazosin and 4-P-PDOT groups. However, 6-chloromelatonin and forskolin only partially prevented the development of defective eye cups in embryos from the calmidazolium group. The results suggested that melatonin modulates chick embryo morphogenesis via calmodulin and membrane receptors.
Collapse
Affiliation(s)
- Renato C Nogueira
- Laboratório de Bioquímica do Desenvolvimento do Sistema Nervoso, Instituto de Ciências Biológicas, Universidade Federal do Pará. Av. Augusto Corrêa 1, CEP: 66075-110 Belém, PA, Brazil
| | - Lucia de Fatima S Sampaio
- Laboratório de Bioquímica do Desenvolvimento do Sistema Nervoso, Instituto de Ciências Biológicas, Universidade Federal do Pará. Av. Augusto Corrêa 1, CEP: 66075-110 Belém, PA, Brazil
| |
Collapse
|
5
|
Budu A, Gomes MM, Melo PM, El Chamy Maluf S, Bagnaresi P, Azevedo MF, Carmona AK, Gazarini ML. Calmidazolium evokes high calcium fluctuations in Plasmodium falciparum. Cell Signal 2015; 28:125-135. [PMID: 26689736 DOI: 10.1016/j.cellsig.2015.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 11/30/2015] [Accepted: 12/07/2015] [Indexed: 10/22/2022]
Abstract
Calcium and calmodulin (CaM) are important players in eukaryote cell signaling. In the present study, by using a knockin approach, we demonstrated the expression and localization of CaM in all erythrocytic stages of Plasmodium falciparum. Under extracellular Ca(2+)-free conditions, calmidazolium (CZ), a potent CaM inhibitor, promoted a transient cytosolic calcium ([Ca(2+)]cyt) increase in isolated trophozoites, indicating that CZ mobilizes intracellular sources of calcium. In the same extracellular Ca(2+)-free conditions, the [Ca(2+)]cyt rise elicited by CZ treatment was ~3.5 fold higher when the endoplasmic reticulum (ER) calcium store was previously depleted ruling out the mobilization of calcium from the ER by CZ. The effects of the Ca(2+)/H(+) ionophore ionomycin (ION) and the Na(+)/H(+) ionophore monensin (MON) suggest that the [Ca(2+)]cyt-increasing effect of CZ is driven by the removal of Ca(2+) from at least one Ca(2+)-CaM-related (CaMR) protein as well as by the mobilization of Ca(2+) from intracellular acidic calcium stores. Moreover, we showed that the mitochondrion participates in the sequestration of the cytosolic Ca(2+) elicited by CZ. Finally, the modulation of membrane Ca(2+) channels by CZ and thapsigargin (THG) was demonstrated. The opened channels were blocked by the unspecific calcium channel blocker Co(2+) but not by 2-APB (capacitative calcium entry inhibitor) or nifedipine (L-type Ca(2+) channel inhibitor). Taken together, the results suggested that one CaMR protein is an important modulator of calcium signaling and homeostasis during the Plasmodium intraerythrocytic cell cycle, working as a relevant intracellular Ca(2+) reservoir in the parasite.
Collapse
Affiliation(s)
- Alexandre Budu
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Mayrim M Gomes
- Departamento de Biociências, Universidade Federal de São Paulo, Santos, SP, Brazil
| | - Pollyana M Melo
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Sarah El Chamy Maluf
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Piero Bagnaresi
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Mauro F Azevedo
- Instituto de Ciências Biomédicas, Universidade de São Paulo, SP, Brazil
| | - Adriana K Carmona
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| | - Marcos L Gazarini
- Departamento de Biociências, Universidade Federal de São Paulo, Santos, SP, Brazil.
| |
Collapse
|
6
|
McFadden MJ, Hryciw T, Brown A, Junop MS, Brennan JD. Evaluation of the calmodulin-SOX9 interaction by "magnetic fishing" coupled to mass spectrometry. Chembiochem 2014; 15:2411-9. [PMID: 25233956 DOI: 10.1002/cbic.201402414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Indexed: 11/09/2022]
Abstract
Disruption of calmodulin (CaM)-based protein interactions has been touted as a potential means for modulating several disease pathways. Among these is SOX9, which is a DNA binding protein that is involved in chrondrocyte differentiation and regulation of the hormones that control sexual development. In this work, we employed a "magnetic fishing"/mass spectrometry assay in conjunction with intrinsic fluorescence to examine the interaction of CaM with the CaM-binding domain of SOX9 (SOX-CAL), and to assess the modulation of this interaction by known anti-CaM compounds. Our data show that there is a high affinity interaction between CaM and SOX-CAL (27±9 nM), and that SOX-CAL bound to the same location as the well-known CaM antagonist melittin; unexpectedly, we also found that addition of CaM-binding small molecules initially produced increased SOX-CAL binding, indicative of binding to both the well-known high-affinity CaM binding site and a second, lower-affinity binding site.
Collapse
Affiliation(s)
- Meghan J McFadden
- Biointerfaces Institute and Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4M1 (Canada)
| | | | | | | | | |
Collapse
|
7
|
Caldirola P, Mannhold R, Timmerman H. Overview: Calmodulin and Calmodulin-Antagonists. ACTA ACUST UNITED AC 2011. [DOI: 10.1517/13543776.2.11.1889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Huo L, Fu G, Wang X, Ko WKW, Wong AOL. Modulation of calmodulin gene expression as a novel mechanism for growth hormone feedback control by insulin-like growth factor in grass carp pituitary cells. Endocrinology 2005; 146:3821-35. [PMID: 15932934 DOI: 10.1210/en.2004-1508] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Calmodulin (CaM), the Ca2+ sensor in living cells, is essential for biological functions mediated by Ca2+-dependent mechanisms. However, modulation of CaM gene expression at the pituitary level as a means to regulate pituitary hormone synthesis has not been characterized. In this study we examined the functional role of CaM in the feedback control of GH by IGF using grass carp pituitary cells as a cell model. To establish the structural identity of CaM expressed in the grass carp, a CaM cDNA, CaM-L, was isolated from the carp pituitary using 3'/5' rapid amplification of cDNA ends. The open reading frame of this cDNA encodes a 149-amino acid protein sharing the same primary structure with CaMs reported in mammals, birds, and amphibians. This CaM cDNA is phylogenetically related to the CaM I gene family, and its transcripts are ubiquitously expressed in the grass carp. In carp pituitary cells, IGF-I and IGF-II induced CaM mRNA expression with a concurrent drop in GH transcript levels. These stimulatory effects on CaM mRNA levels were not mimicked by insulin and appeared to be a direct consequence of IGF activation of CaM gene transcription without altering CaM transcript stability. CaM antagonism and inactivation of calcineurin blocked the inhibitory effects of IGF-I and IGF-II on GH gene expression, and CaM overexpression also suppressed the 5' promoter activity of the grass carp GH gene. These results, as a whole, provide evidence for the first time that IGF feedback on GH gene expression is mediated by activation of CaM gene expression at the pituitary level.
Collapse
Affiliation(s)
- Longfei Huo
- Department of Zoology, University of Hong Kong, Room 4S-12, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, SAR, Peoples Republic of China
| | | | | | | | | |
Collapse
|
9
|
Lin X, Dotson DG, Putkey JA. Covalent binding of peptides to the N-terminal hydrophobic region of cardiac troponin C has limited effects on function. J Biol Chem 1996; 271:244-9. [PMID: 8550567 DOI: 10.1074/jbc.271.1.244] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Exposure of an N-terminal hydrophobic region in troponin C is thought to be important for the regulation of contraction in striated muscle. To test this hypothesis, single Cys residues were engineered at positions 45, 81, 84, or 85 in the N-terminal hydrophobic region of cardiac troponin C (cTnC) to provide specific sites for attachment of blocking groups. A synthetic peptide, Ac-Val-Arg-Ala-Ile-Gly-Lys-Leu-Ser-Ser, or biotin was coupled to these Cys residues, and the covalent adducts were tested for activity in TnC-extracted myofibrils. Covalent modification of cTnC(C45) had no effect on maximal myofibril ATPase activity. Greatly decreased myofibril ATPase activity (70-80% inhibited) resulted when the peptide was conjugated to Cys-81 in cTnC(C81), while a lesser degree of inhibition (10-25% inhibited) resulted from covalent modification of cTnC(C84) and cTnC(C85). Inhibition was not due to an altered affinity of the cTnC(C81)/peptide conjugate for the myofibrils, and the Ca2+ dependence of ATPase activity was essentially identical to the unmodified protein. Thus, a subregion of the N-terminal hydrophobic region in cTnC is sensitive to disruption, while other regions are less important or can adapt to rather bulky blocking groups. The data suggest that Ca(2+)-sensitizing drugs may bind to the N-terminal hydrophobic region on cTnC but not interfere with transmission of the Ca2+ signal.
Collapse
Affiliation(s)
- X Lin
- Department of Biochemistry & Molecular Biology, University of Texas Medical School, Houston 77030, USA
| | | | | |
Collapse
|
10
|
Edwards AJ, Sweeney PJ, Reid DG, Walker JM, Elshourbagy N, Egwuagu CE, Young JF, Patton CL. Synthesis and analysis of the enantiomers of calmidazolium, and a 1H NMR demonstration of a chiral interaction with calmodulin. Chirality 1996; 8:545-50. [PMID: 9025254 DOI: 10.1002/(sici)1520-636x(1996)8:8<545::aid-chir2>3.0.co;2-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Calmidazolium [R24571, 1-[bis(4-chlorophenyl)methyl]-3-[2-(2,4-dichlorophenyl)-2-[(2,4- dichlorophenyl)methoxy]ethyl]-1H-imidazolium chloride] is a potent calmodulin inhibitor. This paper describes the synthesis and properties of the enantiomers of calmidazolium from the enantiomers of miconazole [1(N)-(2-(2,4-dichlorobenzyloxy)-2-(2,4 dichlorophenyl))-ethyl imidazole], prepared from the racemate by chiral preparative scale high performance liquid chromatography. Overlap between ligand and protein resonances in the aromatic region of the 1H NMR spectrum of the calmidazolium-calmodulin complexes has been obviated by preparation of the protein with all of its nine phenylalanine rings deuterated (Phe-d5 calmodulin). This has been accomplished by the overexpression of calmodulin derived from Trypanosoma brucei rhodiesiense in E. coli in a medium supplemented with ring-deuterated phenylalanine. The kinetics of binding of each enantiomer are slow on the 1H NMR time scale as judged by the behaviour of the H2 resonance of Histidine-107, which is clearly visible under the sample conditions used. The aromatic spectral regions of the protein-bound (+) and (-) enantiomers contrast strikingly, reflecting differences in bound environment and/or conformation.
Collapse
Affiliation(s)
- A J Edwards
- SmithKline Beecham Pharmaceuticals, The Frythe, Welwyn, Herts., United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Putkey J, Dotson D, Mouawad P. Formation of inter- and intramolecular disulfide bonds can activate cardiac troponin C. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53108-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
12
|
Brito RM, Putkey JA, Strynadka NC, James MN, Rosevear PR. Comparative NMR studies on cardiac troponin C and a mutant incapable of binding calcium at site II. Biochemistry 1991; 30:10236-45. [PMID: 1931952 DOI: 10.1021/bi00106a023] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
One- and two-dimensional NMR techniques were used to study both the influence of mutations on the structure of recombinant normal cardiac troponin C (cTnC3) and the conformational changes induced by Ca2+ binding to site II, the site responsible for triggering muscle contraction. Spin systems of the nine Phe and three Tyr residues were elucidated from DQF-COSY and NOESY spectra. Comparison of the pattern of NOE connectivities obtained from a NOESY spectrum of cTnC3 with a model of cTnC based on the crystal structure of skeletal TnC permitted sequence-specific assignment of all three Tyr residues, as well as Phe-101 and Phe-153. NOESY spectra and calcium titrations of cTnC3 monitoring the aromatic region of the 1H NMR spectrum permitted localization of six of the nine Phe residues to either the N- or C-terminal domain of cTnC3. Analysis of the downfield-shifted C alpha H resonances permitted sequence-specific assignment of those residues involved in the beta-strand structures which are part of the Ca(2+)-binding loops in both the N- and C-terminal domains of cTnC3. The short beta-strands in the N-terminal domain of cTnC3 were found to be present and in close proximity even in the absence of Ca2+ bound at site II. Using these assignments, we have examined the effects of mutating Asp-65 to Ala, CBM-IIA, a functionally inactive mutant which is incapable of binding Ca2+ at site II [Putkey, J.A., Sweeney, H. L., & Campbell, S. T. (1989) J. Biol. Chem. 264, 12370]. Comparison of the apo, Mg(2+)-, and Ca(2+)-bound forms of cTnC3 and CBM-IIA demonstrates that the inability of CBM-IIA to trigger muscle contraction is not due to global structural changes in the mutant protein but is a consequence of the inability of CBM-IIA to bind Ca2+ at site II. The pattern of NOEs between aromatic residues in the C-terminal domain is nearly identical in cTnC3 and CBM-IIA. Similar interresidue NOEs were also observed between Phe residues assigned to the N-terminal domain in the Ca(2+)-saturated forms of both cTnC3 and CBM-IIA. However, chemical shift changes were observed for the N-terminal Phe residues in CBM-IIA. This suggests that binding of Ca2+ to site II alters the chemical environment of the residues in the N-terminal hydrophobic cluster without disrupting the spatial relationship between the Phe residues located in helices A and D.
Collapse
Affiliation(s)
- R M Brito
- Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston 77225
| | | | | | | | | |
Collapse
|
13
|
Sweeney PJ, Walker JM, Reid DG, Elshourbagy N. Purification of cloned trypanosomal calmodulin and preliminary NMR studies. J Chromatogr A 1991; 539:501-5. [PMID: 2045459 DOI: 10.1016/s0021-9673(01)83960-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cloned trypanosomal calmodulin was expressed in Escherichia coli and purified to homogeneity using hydrophobic interaction chromatography on phenyl-Sepharose. The purified protein was subjected to NMR analysis which allows detailed changes to be observed when, firstly, calcium, and secondly, the drug calmidazolium bind. These spectral changes are the result of conformational changes in the protein and proximity effects due to the drug.
Collapse
Affiliation(s)
- P J Sweeney
- Division of Biological Sciences, Hatfield Polytechnic, Hertfordshire, U.K
| | | | | | | |
Collapse
|
14
|
Calmodulin structure and function: Implication of arginine in the compaction related to ligand binding. ACTA ACUST UNITED AC 1991. [DOI: 10.1007/bf00161666] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
MacLachlan LK, Reid DG, Mitchell RC, Salter CJ, Smith SJ. Binding of a calcium sensitizer, bepridil, to cardiac troponin C. A fluorescence stopped-flow kinetic, circular dichroism, and proton nuclear magnetic resonance study. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38736-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|