1
|
Pérez-Sayáns M, Suárez-Peñaranda JM, Barros-Angueira F, Diz PG, Gándara-Rey JM, García-García A. An update in the structure, function, and regulation of V-ATPases: the role of the C subunit. BRAZ J BIOL 2012; 72:189-98. [PMID: 22437401 DOI: 10.1590/s1519-69842012000100023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 02/23/2011] [Indexed: 11/22/2022] Open
Abstract
Vacuolar ATPases (V-ATPases) are present in specialized proton secretory cells in which they pump protons across the membranes of various intracellular organelles and across the plasma membrane. The proton transport mechanism is electrogenic and establishes an acidic pH and a positive transmembrane potential in these intracellular and extracellular compartments. V-ATPases have been found to be practically identical in terms of the composition of their subunits in all eukaryotic cells. They have two distinct structures: a peripheral catalytic sector (V1) and a hydrophobic membrane sector (V0) responsible for driving protons. V-ATPase activity is regulated by three different mechanisms, which control pump density, association/dissociation of the V1 and V0 domains, and secretory activity. The C subunit is a 40-kDa protein located in the V1 domain of V-ATPase. The protein is encoded by the ATP6V1C gene and is located at position 22 of the long arm of chromosome 8 (8q22.3). The C subunit has very important functions in terms of controlling the regulation of the reversible dissociation of V-ATPases.
Collapse
Affiliation(s)
- M Pérez-Sayáns
- Faculty of Medicine and Dentistry, Santiago de Compostela, Spain
| | | | | | | | | | | |
Collapse
|
2
|
Imamura H, Funamoto S, Yoshida M, Yokoyama K. Reconstitution in vitro of V1 complex of Thermus thermophilus V-ATPase revealed that ATP binding to the A subunit is crucial for V1 formation. J Biol Chem 2006; 281:38582-91. [PMID: 17050529 DOI: 10.1074/jbc.m608253200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vacuolar-type H(+)-ATPase (V-ATPase or V-type ATPase) is a multisubunit complex comprised of a water-soluble V(1) complex, responsible for ATP hydrolysis, and a membrane-embedded V(o) complex, responsible for proton translocation. The V(1) complex of Thermus thermophilus V-ATPase has the subunit composition of A(3)B(3)DF, in which the A and B subunits form a hexameric ring structure. A central stalk composed of the D and F subunits penetrates the ring. In this study, we investigated the pathway for assembly of the V(1) complex by reconstituting the V(1) complex from the monomeric A and B subunits and DF subcomplex in vitro. Assembly of these components into the V(1) complex required binding of ATP to the A subunit, although hydrolysis of ATP is not necessary. In the absence of the DF subcomplex, the A and B monomers assembled into A(1)B(1) and A(3)B(3) subcomplexes in an ATP binding-dependent manner, suggesting that ATP binding-dependent interaction between the A and B subunits is a crucial step of assembly into V(1) complex. Kinetic analysis of assembly of the A and B monomers into the A(1)B(1) heterodimer using fluorescence resonance energy transfer indicated that the A subunit binds ATP prior to binding the B subunit. Kinetics of binding of a fluorescent ADP analog, N-methylanthraniloyl ADP (mant-ADP), to the monomeric A subunit also supported the rapid nucleotide binding to the A subunit.
Collapse
Affiliation(s)
- Hiromi Imamura
- ATP System Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency (JST), 5800-3 Nagatsuta, Midori-ku, Yokohama 226-0026, Japan
| | | | | | | |
Collapse
|
3
|
Crider BP, Xie XS. Characterization of the functional coupling of bovine brain vacuolar-type H(+)-translocating ATPase. Effect of divalent cations, phospholipids, and subunit H (SFD). J Biol Chem 2003; 278:44281-8. [PMID: 12949075 DOI: 10.1074/jbc.m307372200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vacuolar-type H+-translocating ATPases (V-ATPases or V-pumps) are complex proteins containing multiple subunits and are organized into two functional domains: a peripheral catalytic sector V1 and a membranous proton channel V0. The functional coupling of ATP hydrolysis activity to proton transport in V-pumps requires a regulatory component known as subunit H (SFD) as has been shown both in vivo and in vitro (Ho, M. N., Hirata, R., Umemoto, N., Ohya, Y., Takatsuki, A., Stevens, T. H., and Anraku, Y. (1993) J. Biol. Chem. 268, 18286-18292; Xie, X. S., Crider, B. P., Ma, Y. M., and Stone, D. K. (1994) J. Biol. Chem. 269, 25809-25815). Ca2+ is thought to uncouple V-pumps because it is found to support ATP hydrolysis but not proton transport, while Mg2+ supports both activities. The direct effect of phospholipids on the coupling of V-ATPases has not been reported, likely due to the fact that phospholipids are constituents of biological membranes. We now report that Ca2+-induced uncoupling of the bovine brain V-ATPase can be reversed by imposition of a favorable membrane potential. Furthermore we report a simple "membrane-free" assay system using the V0 proton channel-specific inhibitor bafilomycin as a probe to detect the coupling of V-ATPase under certain conditions. With this system, we have characterized the functional effect of subunit H, divalent cations, and phospholipids on bovine brain V-ATPase and have found that each of these three factors plays a critical role in the functional coupling of the V-pump.
Collapse
Affiliation(s)
- Bill P Crider
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8591, USA
| | | |
Collapse
|
4
|
Parra KJ, Keenan KL, Kane PM. The H subunit (Vma13p) of the yeast V-ATPase inhibits the ATPase activity of cytosolic V1 complexes. J Biol Chem 2000; 275:21761-7. [PMID: 10781598 DOI: 10.1074/jbc.m002305200] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
V-ATPases are composed of a peripheral complex containing the ATP-binding sites, the V(1) sector, attached to a membrane complex containing the proton pore, the V(o) sector. In vivo, free, inactive V(1) and V(o) sectors exist in dynamic equilibrium with fully assembled, active V(1) V(o) complexes, and this equilibrium can be perturbed by changes in carbon source. Free V(1) complexes were isolated from the cytosol of wild-type yeast cells and mutant strains lacking V(o) subunit c (Vma3p) or V(1) subunit H (Vma13p). V(1) complexes from wild-type or vma3Delta mutant cells were very similar, and contained all previously identified yeast V(1) subunits except subunit C (Vma5p). These V(1) complexes hydrolyzed CaATP but not MgATP, and CaATP hydrolysis rapidly decelerated with time. V(1) complexes from vma13Delta cells contained all V(1) subunits except C and H, and had markedly different catalytic properties. The initial rate of CaATP hydrolysis was maintained for much longer. The complexes also hydrolyzed MgATP, but showed a rapid deceleration in hydrolysis. These results indicate that the H subunit plays an important role in silencing unproductive ATP hydrolysis by cytosolic V(1) complexes, but suggest that other mechanisms, such as product inhibition, may also play a role in silencing in vivo.
Collapse
Affiliation(s)
- K J Parra
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York 13210, USA
| | | | | |
Collapse
|
5
|
Mattsson JP, Li X, Peng SB, Nilsson F, Andersen P, Lundberg LG, Stone DK, Keeling DJ. Properties of three isoforms of the 116-kDa subunit of vacuolar H+-ATPase from a single vertebrate species. Cloning, gene expression and protein characterization of functionally distinct isoforms in Gallus gallus. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:4115-26. [PMID: 10866814 DOI: 10.1046/j.1432-1327.2000.01445.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vacuolar H+-ATPases (V-ATPases) are involved in a wide variety of essential cellular processes. An unresolved question is how the cell regulates the activity of these proton pumps and their targeting to distinct cellular compartments. There is growing evidence for the presence of subunit diversity amongst V-pumps, particularly regarding the 116-kDa subunit (called the a subunit). We have cloned and characterized three isoforms (a1, a2 and a3) of this subunit from chicken. The amino-acid sequences of these homologues are approximately 50% similar and their nucleotide differences indicate that they are products of distinct genes. The levels of mRNA expression of these isoforms was quantified by ribonuclease protection analysis. The a1 and a2 isoforms have a similar tissue distribution, with the highest level of mRNA expression in brain, an intermediate level in kidney and relatively low levels in liver and bone. In contrast, the highest level of expression of the a3 isoform is in bone and liver, with a moderate level in kidney, and the lowest level in brain. An antibody against the a1 isoform reacted with a 116 kDa protein in a brain V-ATPase preparation that was not detected in bone or liver V-ATPase preparations, whereas an antibody against the a3 isoform reacted with a 116-kDa peptide in bone and liver, but not brain V-ATPases preparations. The bone and brain V-ATPases showed differential sensitivity to the inhibitors bafilomycin and (2Z,4E)-5-(5,6-dichloro-2-indolyl)-2-methoxy-N-[4-(2, 2,6,6-tetramethyl)piperidinyl]-2,4-pentadienamide. Thus, this work demonstrates the presence of structurally and functionally distinct V-ATPases in a single vertebrate species.
Collapse
Affiliation(s)
- J P Mattsson
- Department of Cell Biology, AstraZeneca R&D, Mölndal, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Xu T, Vasilyeva E, Forgac M. Subunit interactions in the clathrin-coated vesicle vacuolar (H(+))-ATPase complex. J Biol Chem 1999; 274:28909-15. [PMID: 10506135 DOI: 10.1074/jbc.274.41.28909] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The vacuolar (H(+))-ATPases (or V-ATPases) are structurally related to the F(1)F(0) ATP synthases of mitochondria, chloroplasts and bacteria, being composed of a peripheral (V(1)) and an integral (V(0)) domain. To further investigate the arrangement of subunits in the V-ATPase complex, covalent cross-linking has been carried out on the V-ATPase from clathrin-coated vesicles using three different cross-linking reagents. Cross-linked products were identified by molecular weight and by Western blot analysis using polyclonal antibodies raised against individual V-ATPase subunits. In the intact V(1)V(0) complex, evidence for cross-linking of subunits C and E, D and F, as well as E and G by disuccinimidyl glutarate was obtained, while in the free V(1) domain, cross-linking of subunits H and E was also observed. Subunits C and E as well as D and E could be cross-linked by 1-ethyl-3-(dimethylaminopropyl)carbodiimide, while subunits a and E could be cross-linked by 4-(N-maleimido)benzophenone. It was further demonstrated that it is possible to treat the V-ATPase with potassium iodide and MgATP in such a way that while subunits A, B, and H are nearly quantitatively removed, significant amounts of subunits C, D, E, and F remain attached to the membrane, suggesting that one or more of these latter subunits are in contact with the V(0) domain. In addition, treatment of the V-ATPase with cystine, which modifies Cys-254 of the catalytic A subunit, results in dissociation of subunit H, suggesting communication between the catalytic nucleotide binding site and subunit H. Finally, the stoichiometry of subunits F, G, and H were determined by quantitative amino acid analysis. Based on these and previous observations, a new structural model of the V-ATPase from clathrin-coated vesicles is proposed.
Collapse
Affiliation(s)
- T Xu
- Department of Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
7
|
Abstract
The vacuolar H+-ATPase (V-ATPase) is one of the most fundamental enzymes in nature. It functions in almost every eukaryotic cell and energizes a wide variety of organelles and membranes. V-ATPases have similar structure and mechanism of action with F-ATPase and several of their subunits evolved from common ancestors. In eukaryotic cells, F-ATPases are confined to the semi-autonomous organelles, chloroplasts, and mitochondria, which contain their own genes that encode some of the F-ATPase subunits. In contrast to F-ATPases, whose primary function in eukaryotic cells is to form ATP at the expense of the proton-motive force (pmf), V-ATPases function exclusively as ATP-dependent proton pumps. The pmf generated by V-ATPases in organelles and membranes of eukaryotic cells is utilized as a driving force for numerous secondary transport processes. The mechanistic and structural relations between the two enzymes prompted us to suggest similar functional units in V-ATPase as was proposed to F-ATPase and to assign some of the V-ATPase subunit to one of four parts of a mechanochemical machine: a catalytic unit, a shaft, a hook, and a proton turbine. It was the yeast genetics that allowed the identification of special properties of individual subunits and the discovery of factors that are involved in the enzyme biogenesis and assembly. The V-ATPases play a major role as energizers of animal plasma membranes, especially apical plasma membranes of epithelial cells. This role was first recognized in plasma membranes of lepidopteran midgut and vertebrate kidney. The list of animals with plasma membranes that are energized by V-ATPases now includes members of most, if not all, animal phyla. This includes the classical Na+ absorption by frog skin, male fertility through acidification of the sperm acrosome and the male reproductive tract, bone resorption by mammalian osteoclasts, and regulation of eye pressure. V-ATPase may function in Na+ uptake by trout gills and energizes water secretion by contractile vacuoles in Dictyostelium. V-ATPase was first detected in organelles connected with the vacuolar system. It is the main if not the only primary energy source for numerous transport systems in these organelles. The driving force for the accumulation of neurotransmitters into synaptic vesicles is pmf generated by V-ATPase. The acidification of lysosomes, which are required for the proper function of most of their enzymes, is provided by V-ATPase. The enzyme is also vital for the proper function of endosomes and the Golgi apparatus. In contrast to yeast vacuoles that maintain an internal pH of approximately 5.5, it is believed that the vacuoles of lemon fruit may have a pH as low as 2. Similarly, some brown and red alga maintain internal pH as low as 0.1 in their vacuoles. One of the outstanding questions in the field is how such a conserved enzyme as the V-ATPase can fulfill such diverse functions.
Collapse
Affiliation(s)
- N Nelson
- Department of Biochemistry, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
8
|
Abstract
The vacuolar (H+)-ATPases (or V-ATPases) function to acidify intracellular compartments in eukaryotic cells, playing an important role in such processes as receptor-mediated endocytosis, intracellular membrane traffic, protein degradation and coupled transport. V-ATPases in the plasma membrane of specialized cells also function in renal acidification, bone resorption and cytosolic pH maintenance. The V-ATPases are composed of two domains. The V1 domain is a 570-kDa peripheral complex composed of 8 subunits (subunits A-H) of molecular weight 70-13 kDa which is responsible for ATP hydrolysis. The V0 domain is a 260-kDa integral complex composed of 5 subunits (subunits a-d) which is responsible for proton translocation. The V-ATPases are structurally related to the F-ATPases which function in ATP synthesis. Biochemical and mutational studies have begun to reveal the function of individual subunits and residues in V-ATPase activity. A central question in this field is the mechanism of regulation of vacuolar acidification in vivo. Evidence has been obtained suggesting a number of possible mechanisms of regulating V-ATPase activity, including reversible dissociation of V1 and V0 domains, disulfide bond formation at the catalytic site and differential targeting of V-ATPases. Control of anion conductance may also function to regulate vacuolar pH. Because of the diversity of functions of V-ATPases, cells most likely employ multiple mechanisms for controlling their activity.
Collapse
Affiliation(s)
- M Forgac
- Department of Cellular and Molecular Physiology, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
9
|
Abstract
The vacuolar (H+)-ATPases (or V-ATPases) function in the acidification of intracellular compartments in eukaryotic cells. The V-ATPases are multisubunit complexes composed of two functional domains. The peripheral V1 domain, a 500-kDa complex responsible for ATP hydrolysis, contains at least eight different subunits of molecular weight 70-13 (subunits A-H). The integral V0 domain, a 250-kDa complex, functions in proton translocation and contains at least five different subunits of molecular weight 100-17 (subunits a-d). Biochemical and genetic analysis has been used to identify subunits and residues involved in nucleotide binding and hydrolysis, proton translocation, and coupling of these activities. Several mechanisms have been implicated in the regulation of vacuolar acidification in vivo, including control of pump density, regulation of assembly of V1 and V0 domains, disulfide bond formation, activator or inhibitor proteins, and regulation of counterion conductance. Recent information concerning targeting and regulation of V-ATPases has also been obtained.
Collapse
Affiliation(s)
- T H Stevens
- Institute of Molecular Biology, University of Oregon, Eugene 97403-1229, USA.
| | | |
Collapse
|
10
|
Crider BP, Andersen P, White AE, Zhou Z, Li X, Mattsson JP, Lundberg L, Keeling DJ, Xie XS, Stone DK, Peng SB. Subunit G of the vacuolar proton pump. Molecular characterization and functional expression. J Biol Chem 1997; 272:10721-8. [PMID: 9099722 DOI: 10.1074/jbc.272.16.10721] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The vacuolar type proton pump of clathrin-coated vesicles has a multisubunit ATP hydrolytic center that is peripheral to the membrane. Polypeptides present in this domain include the well characterized subunits A, B, C, D, E, and F; SFD, a dimer composed of 50- and 57-kDa polypeptides; and polypeptides termed G and H. Of these, subunits A, B, C, and E have been shown to be necessary but not sufficient for significant ATPase activity; in addition, either polypeptide G or H is also required for ATP hydrolysis (Xie, X.-S. (1996) J. Biol. Chem. 271, 30980-30985). In this study, the polypeptides G and H were purified and directly sequenced. Subsequent molecular analysis has revealed that these proteins are isoforms, which we designate G1 and G2. The cDNAs encoding the rat and bovine brain and chicken osteoclast forms of G1 have been cloned. The open reading frames of the rat and bovine clones encode hydrophilic proteins of 118 amino acids that differ at only five residues; bovine G1 has 36% identity with VMA10, a component of the proton channel of yeast. Northern blot analysis revealed a 1. 0-kilobase pair transcript encoding G1 in bovine brain, kidney, heart, and spleen. The cDNA encoding bovine polypeptide H was cloned and sequenced, revealing this protein to be 64% identical to G1, constituting isoform G2. In Northern blot analysis, a single 1. 7-kilobase pair transcript hybridized with a probe to G2 in brain, but not in heart, kidney, or spleen. An antibody against a bovine G1-specific domain reacts with V pump from bovine brain, kidney, and chromaffin granule, whereas an anti-G2 antibody reacts only with proton pump from brain. The bovine forms of G1 and G2 were subsequently expressed in Escherichia coli and Sf9 cells, respectively, and purified to homogeneity. Reconstitution of ATP hydrolysis was achieved by combination of recombinant subunits A, B, C, and E with either recombinant G1 or G2, demonstrating the role of these isoforms in pump function.
Collapse
Affiliation(s)
- B P Crider
- Division of Molecular Transport, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75235-9121, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Nelson N, Klionsky DJ. Vacuolar H(+)-ATPase: from mammals to yeast and back. EXPERIENTIA 1996; 52:1101-10. [PMID: 8988252 DOI: 10.1007/bf01952108] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Vacuolar H(+)-adenosine triphosphatase (V-ATPase) is composed of distinct catalytic (V1) and membrane (V0) sectors containing several subunits. The biochemistry of the enzyme was mainly studied in organelles from mammalian cells such as chromaffin granules and clathrin-coated vesicles. Subsequently, mammalian cDNAs and yeast genes encoding subunits of V-ATPase were cloned and sequenced. The sequence information revealed the relation between V- and F-ATPase that evolved from a common ancestor. The isolation of yeast genes encoding subunits of V-ATPase opened an avenue for molecular biology studies of the enzyme. Because V-ATPase is present in every known eukaryotic cell and provides energy for vital transport systems, it was anticipated that disruption of genes encoding V-ATPase subunits would be lethal. Fortunately, yeast cells can survive the absence of V-ATPase by 'drinking' the acidic medium. So far only yeast cells have been shown to be viable without an active V-ATPase. In contrast to yeast, mammalian cells may have more than one gene encoding each of the subunits of the enzyme. Some of these genes encode tissue- and/or organelle-specific subunits. Expression of these specific cDNAs in yeast cells may reveal their unique functions in mammalian cells. Following the route from mammals to yeast and back may prove useful in the study of many other complicated processes.
Collapse
Affiliation(s)
- N Nelson
- Department of Biochemistry, Tel Aviv University, Ramat Aviv, Israel
| | | |
Collapse
|
12
|
Reconstitution of ATPase Activity from Individual Subunits of the Clathrin-coated Vesicle Proton Pump. J Biol Chem 1996. [DOI: 10.1016/s0021-9258(19)79159-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
13
|
Nakagawa Y, Ishii S, Matsumura F. Diflubenzuron stimulates phosphorylation of a 39 kDa integumental protein from newly molted American cockroach (Periplaneta americana). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 1996; 26:891-898. [PMID: 9014334 DOI: 10.1016/s0965-1748(96)00048-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We identified a 39 kilodalton (kDa) protein from newly molted American cockroaches (Periplaneta americana), isolated from a 100,000 g precipitate of a 1000 g supernatant from an integument homogenate, which exhibited increased phosphorylation following diflubenzuron (DFB) treatment. This 39 kDa phosphoprotein was partially purified from an intracellular membrane vesicle containing fractions obtained by discontinuous sucrose density centrifugation. Both the interfaces of the 30/40% and 40/50% sucrose density layers were found to be enriched in the 39 kDa phosphoprotein. Treatments with various chemicals such as the ionophores valinomycin and A23187, the protonophore carbonylcyanide p-trifluoromethoxy-phenylhydrazone (FCCP), and the vacuolar H(+)-ATPase inhibitor N-ethylmaleimide (NEM), like DFB, were also found to stimulate phosphorylation of 39 kDa protein. These results suggest that by disrupting the normal pH gradient occurring in certain acidic vacuolar-type membrane vesicles, phosphorylation of the 39 kDa protein will be increased. In addition, we found that by decreasing the external pH to 5.0 from about neutral, it was possible to stimulate the phosphorylation activity of this particular protein, and thus stimulate the action of DFB. We concluded the DFB's action is very probably related to its ability to disrupt the normal ionic balance of these vacuolar-type vesicles, leading to eventual disruption of the proton gradient within the vesicles.
Collapse
Affiliation(s)
- Y Nakagawa
- Department of Environmental Toxicology, University of California, Davis 95616, USA
| | | | | |
Collapse
|
14
|
Abstract
The native V1 complex of the tobacco hornworm vacuolar type ATPase (V-ATPase) was purified from cytosolic extracts of molting larval midgut. It consisted of the established V-ATPase subunits A, B, and E along with the 14-kDa subunit F and the novel 13-kDa subunit G. The final amount of purified V1 complex made up an unexpectedly high 2% of the total cytosolic protein, with a yield of approximately 0.4 mg/g of tissue. An equally high amount of cytosolic V1 complex was obtained from starving intermolt larvae. By contrast, the cytosolic V1 pool was reduced drastically in feeding intermolt larvae or in larvae that had been refed after starvation. The activity of the membrane-bound V-ATPase holoenzyme was inversely related to the size of the cytosolic V1 pool, suggesting that the insect plasma membrane V-ATPase is regulated by reversible disassembly of the V1 complex as a function of the feeding condition of the larvae. Like F1-ATPases, the purified V1 complex exhibited Ca2+-dependent ATPase activity and, in the presence of 25% methanol, exhibited Mg2+-dependent ATPase activity. Therefore, we designate the native V1 complex, V1-ATPase. Both enzyme activities were completely inhibited by micromolar N-ethylmaleimide. In contrast to the Ca2+-dependent V1-ATPase activity, the Mg2+/methanol-dependent V1-ATPase activity did not decrease with the incubation time and thus was not inhibited by ADP. Methanol appears to induce a conformational change of the V1 complex, leading to enzymatic properties of the V1-ATPase that are similar to those of the membrane-bound V-ATPase holoenzyme. This is the first time that a native and enzymatically active V1 complex has been purified from the cytosol.
Collapse
Affiliation(s)
- R Gräf
- Zoologisches Institut der Universität München, Luisenstrasse 14, D-80333 München, Germany
| | | | | |
Collapse
|
15
|
Mattsson JP, Keeling DJ. [3H]Bafilomycin as a probe for the transmembrane proton channel of the osteoclast vacuolar H(+)-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1280:98-106. [PMID: 8634321 DOI: 10.1016/0005-2736(95)00285-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Bone resorption by the osteoclast is dependent on acidification of the bone surface by a vacuolar type H+-ATPase (V-ATPase) present in the ruffled membrane of the actively resorbing cell. V-ATPases are a highly conserved family of proton pumps consisting of two functional complexes: a cytoplasmic catalytic sector (VC) and a membrane bound proton channel (VB). Bafilomycin A1, a macrolide antibiotic, is a highly potent inhibitor of V-ATPases, and inhibits bone resorption in vitro in isolated rat calvariae. In order to investigate the binding of bafilomycin to the osteoclast V-ATPase, we used a tritiated bafilomycin which had been prepared by acetylating the 21-hydroxyl group of bafilomycin A1. Osteoclast ruffled membrane vesicles were prepared from purified chicken osteoclasts by differential centrifugation and proton transport in these vesicles was shown to be inhibited by [3H]bafilomycin (IC50 approximately 2 nM). Control membrane vesicles or membrane vesicles partially inhibited with [3H]bafilomycin were solubilized and separated by centrifugation on 15-30% glycerol gradients. V-ATPase activity and reconstitutable proton transport activity could be recovered in high density fractions of the gradient. However, the peak of [3H]bafilomycin radioactivity (>70% of total radioactivity in the gradient) was present in a single peak at lower density. Antibodies against subunits of VC (70, 56 and 40 kDa) reacted only in fractions containing the peak V-ATPase activity whereas an antibody to the 39 kDa subunit of VB reacted both with fractions containing the peak V-ATPase activity but also, and more strongly, in fractions containing the peak [3H]bafilomycin. The fractions in the control gradient corresponding to the peak of [3H]bafilomycin were reconstituted into liposomes and shown to mediate passive bafilomycin A1-inhibitable proton conductance. SDS-PAGE followed by autoradiography, indicated that the bafilomycin was not covalently bound to the V-ATPase or the proton channel. Quantification of VB by [3H]bafilomycin binding or by antibody staining suggested an excess of the free proton channel to that of the intact holoenzyme. A corresponding amount of free catalytic sector could not be found in any fraction throughout the isolation procedure of the V-ATPase from the initial homogenate. Thus, in conclusion, bafilomycin inhibits the V-ATPase by binding tightly but non-covalently to the proton channel region of the V-ATPase which appears to be present in excess over the intact holoenzyme in the osteoclast. The possible role of an excess of the proton channel subcomplex in the osteoclast is discussed.
Collapse
Affiliation(s)
- J P Mattsson
- Department of Cell Biology, Astra Hässle AB, Mölndal, Sweden.
| | | |
Collapse
|
16
|
Peng SB, Crider BP, Tsai SJ, Xie XS, Stone DK. Identification of a 14-kDa subunit associated with the catalytic sector of clathrin-coated vesicle H+-ATPase. J Biol Chem 1996; 271:3324-7. [PMID: 8621738 DOI: 10.1074/jbc.271.6.3324] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The clathrin-coated vesicle H+-ATPase is composed of a peripheral catalytic sector (VC) and an integral membrane proton channel (VB), both of which are multiple subunit complexes. This study was conducted to determine if subunit F, previously identified in vacuolar proton pumps of tobacco hornworm and yeast, was present in mammalian pumps. Using a polymerase chain reaction-based strategy, we have isolated and sequenced cDNA clones from bovine and rat brain cDNA libraries. A full-length clone from rat brain encodes a 119-amino acid polypeptide with a predicted molecular mass of 13, 370 Da and with approximately 72 and 49% identity to subunit F of tobacco hornworm and yeast, respectively. Southern and Northern blot analyses indicate that the protein is encoded by a single gene. An anti-peptide antibody, directed against deduced protein sequence, was affinity-purified and shown to react with a 14-kDa polypeptide that is present in a highly purified pump prepared from clathrin-coated vesicles and also isolated VC. When stripped clathrin-coated vacuolars and purified chromaffin granule membranes were treated with KI in the presence of ATP, the 14-kDa subunit was released from both membranes, further indicating that it is part of the peripheral catalytic sector. In addition, direct sequencing of this 14-kDa component of the coated vacuolar proton pump confirmed its identity as a subunit F homologue.
Collapse
Affiliation(s)
- S B Peng
- Division of Molecular Transport, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75235-9121, USA
| | | | | | | | | |
Collapse
|
17
|
Bowman EJ, Steinhardt A, Bowman BJ. Isolation of the vma-4 gene encoding the 26 kDa subunit of the Neurospora crassa vacuolar ATPase. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1237:95-8. [PMID: 7619848 DOI: 10.1016/0005-2736(95)00108-f] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have isolated the vma-4 gene, which encodes a 25,746 Dalton subunit of the vacuolar ATPase, from Neurospora crassa. The gene contains two introns and was mapped to the left arm of linkage group I. Comparison of the predicted amino acid sequence with homologous proteins from Saccharomyces cerevisiae, Manduca sexta, and Bos taurus showed only 25% sequence identity. However, computer-assisted predictions of secondary structures gave similar results for all four proteins. Analysis of the sequence and the available biochemical data indicated that the vma-4 gene product may play the same structural role in the vacuolar ATPase as does the gamma-subunit in F-type ATPases.
Collapse
Affiliation(s)
- E J Bowman
- Department of Biology, Sinsheimer Laboratories, University of California, Santa Cruz 95064, USA
| | | | | |
Collapse
|
18
|
Nucleotide Labeling and Reconstitution of the Recombinant 58-kDa Subunit of the Vacuolar Proton-translocating ATPase. J Biol Chem 1995. [DOI: 10.1016/s0021-9258(17)46929-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
19
|
|
20
|
|
21
|
Xie XS, Crider BP, Ma YM, Stone DK. Role of a 50-57-kDa polypeptide heterodimer in the function of the clathrin-coated vesicle proton pump. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47319-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
22
|
Peng S, Crider B, Xie X, Stone D. Alternative mRNA splicing generates tissue-specific isoforms of 116-kDa polypeptide of vacuolar proton pump. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32549-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
23
|
Peng S, Zhang Y, Tsai S, Xie X, Stone D. Reconstitution of recombinant 33-kDa subunit of the clathrin-coated vesicle H(+)-ATPase. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)78132-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|