1
|
Sosulin IS, Lisouskaya A. Structure and Kinetics of Organic Acid Radicals Formed in Reaction with •OH Radicals. J Phys Chem A 2024; 128:7558-7567. [PMID: 39191661 DOI: 10.1021/acs.jpca.4c03764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The study investigated •OH-derived radicals from certain organic acids employed in nuclear fuel processing and separation using EPR spectroscopy and quantum chemistry methods. Hydroxyl radicals were generated through a Fenton-like reaction within the EPR resonator under both acidic and basic conditions, allowing for the detection of neutral and radical anions, respectively. The spectral assignment and analysis were conducted using a combination of literature data and quantum chemical calculations employing DFT theory with B3LYP or LPBE functionals and the L2a_3 basis set. The reaction of the •OH radical with lactic and glycolic acids yielded primary C-centered radicals through hydrogen abstraction from these acids. In contrast, the •OH radical exclusively generated secondary radicals from oxalic acid, whereas for citric acid, it resulted in both primary and secondary species induced by decarboxylation. The EPR spectrum of acetohydroxamic acid, upon reaction with the •OH radical, displayed a complex pattern featuring primary •N-type and N-O•-type radicals. The decay pathways of the generated radicals were primarily attributed to radical-radical reactions, with the extracted reaction rate constants generally falling within the typical range observed for such reactions. The EPR parameters calculated for potential radicals using B3LYP and LPBE functionals with L2a_3 basis set demonstrated good accuracy for neutral radicals, albeit requiring minor adjustments for radical anions.
Collapse
Affiliation(s)
- Ilya S Sosulin
- Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Aliaksandra Lisouskaya
- Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
2
|
Conrad JK, Pilgrim CD, Pimblott SM, Mezyk SP, Horne GP. Multiscale modelling of the radical-induced chemistry of acetohydroxamic acid in aqueous solution. RSC Adv 2022; 12:29757-29766. [PMID: 36321097 PMCID: PMC9577708 DOI: 10.1039/d2ra03392e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
Acetohydroxamic acid (AHA) is a small organic acid with a wide variety of industrial, biological, and pharmacological applications. A deep fundamental molecular level understanding of the mechanisms responsible for the radical-induced reactions of AHA in these environments is necessary to predict and control their behaviour and elucidate their interplay with other attendant chemical species, for example, the oxidative degradation products of AHA. To this end, we present a comprehensive, multiscale computer model for interrogating the radical-induced degradation of AHA in acidic aqueous solutions. Model predictions were critically evaluated by a systematic experimental radiation chemistry investigation, leveraging time-resolved electron pulse irradiation techniques for the measurement of new radical reaction rate coefficients, and steady-state gamma irradiations for the identification and quantification of AHA degradation products: acetic acid, hydroxylamine, nitrous oxide, and molecular hydrogen, with formic acid and methane as minor products. Excellent agreement was achieved between calculation and experiment, indicating that this fundamental model can accurately predict the degradation pathways of AHA under irradiation in acidic aqueous solutions.
Collapse
Affiliation(s)
- Jacy K Conrad
- Center for Radiation Chemistry Research, Idaho National Laboratory 1955 N. Fremont Ave. Idaho Falls ID 83415 USA
| | - Corey D Pilgrim
- Center for Radiation Chemistry Research, Idaho National Laboratory 1955 N. Fremont Ave. Idaho Falls ID 83415 USA
| | - Simon M Pimblott
- Center for Radiation Chemistry Research, Idaho National Laboratory 1955 N. Fremont Ave. Idaho Falls ID 83415 USA
| | - Stephen P Mezyk
- Department of Chemistry and Biochemistry, California State University Long Beach 1250 Bellflower Blvd. Long Beach CA 90840 USA
| | - Gregory P Horne
- Center for Radiation Chemistry Research, Idaho National Laboratory 1955 N. Fremont Ave. Idaho Falls ID 83415 USA
| |
Collapse
|
3
|
Goldstein S, Samuni A. Oxidation Mechanism of Hydroxamic Acids Forming HNO and NO. ADVANCES IN INORGANIC CHEMISTRY 2015. [DOI: 10.1016/bs.adioch.2014.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
4
|
Brodhun F, Cristobal-Sarramian A, Zabel S, Newie J, Hamberg M, Feussner I. An iron 13S-lipoxygenase with an α-linolenic acid specific hydroperoxidase activity from Fusarium oxysporum. PLoS One 2013; 8:e64919. [PMID: 23741422 PMCID: PMC3669278 DOI: 10.1371/journal.pone.0064919] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 04/21/2013] [Indexed: 12/03/2022] Open
Abstract
Jasmonates constitute a family of lipid-derived signaling molecules that are abundant in higher plants. The biosynthetic pathway leading to plant jasmonates is initiated by 13-lipoxygenase-catalyzed oxygenation of α-linolenic acid into its 13-hydroperoxide derivative. A number of plant pathogenic fungi (e.g. Fusarium oxysporum) are also capable of producing jasmonates, however, by a yet unknown biosynthetic pathway. In a search for lipoxygenase in F. oxysporum, a reverse genetic approach was used and one of two from the genome predicted lipoxygenases (FoxLOX) was cloned. The enzyme was heterologously expressed in E. coli, purified via affinity chromatography, and its reaction mechanism characterized. FoxLOX was found to be a non-heme iron lipoxygenase, which oxidizes C18-polyunsaturated fatty acids to 13S-hydroperoxy derivatives by an antarafacial reaction mechanism where the bis-allylic hydrogen abstraction is the rate-limiting step. With α-linolenic acid as substrate FoxLOX was found to exhibit a multifunctional activity, because the hydroperoxy derivatives formed are further converted to dihydroxy-, keto-, and epoxy alcohol derivatives.
Collapse
Affiliation(s)
- Florian Brodhun
- Georg-August-University, Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, Goettingen, Germany
| | | | | | | | | | | |
Collapse
|
5
|
Samuni Y, Samuni U, Goldstein S. The mechanism underlying nitroxyl and nitric oxide formation from hydroxamic acids. Biochim Biophys Acta Gen Subj 2012; 1820:1560-6. [PMID: 22634736 DOI: 10.1016/j.bbagen.2012.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 04/19/2012] [Accepted: 05/17/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND The pharmacological effects of hydroxamic acids (RC(O)NHOH, HX) are partially attributed to their ability to serve as HNO and/or NO donors under oxidative stress. Given the development and use of HXs as therapeutic agents, elucidation of the oxidation mechanism is needed for more educated selection of HX-based drugs. METHODS Acetohydroxamic and glycine-hydroxamic acids were oxidized at pH 7.0 by a continuous flux of radiolytically generated (·)OH or by metmyoglobin and H(2)O(2) reactions system. Gas chromatography and spectroscopic methods were used to monitor the accumulation of N(2)O, N(2), nitrite and hydroxylamine. RESULTS Oxidation of HXs by (·)OH under anoxia yields N(2)O, but not nitrite, N(2) or hydroxylamine. Upon the addition of H(2)O(2) to solutions containing HX and metmyoglobin, which is instantaneously and continuously converted into compound II, nitrite and, to a lesser extent, N(2)O are accumulated under both anoxia and normoxia. CONCLUSIONS Oxidation of HXs under anoxia by a continuous flux of (·)OH, which solely oxidizes the hydroxamate moiety to RC(O)NHO(·), forms HNO. This observation implies that bimolecular decomposition of RC(O)NHO(·) competes efficiently with unimolecular decomposition processes such as internal disproportionation, hydrolysis or homolysis. Oxidation by metmyoglobin/H(2)O(2) involves relatively mild oxidants (compounds I and II). Compound I reacts with HX forming RC(O)NHO(·) and compound II, which oxidizes HX, RC(O)NHO(·), HNO and NO. The latter reaction is the main source of nitrite. GENERAL SIGNIFICANCE HXs under oxidative stress release HNO, but can be considered as NO-donors provided that HNO oxidation is more efficient than its reaction with other biological targets.
Collapse
Affiliation(s)
- Yuval Samuni
- Oral and Maxillofacial Surgery, The Brazilai Medical Center, Ashkelon, Israel
| | | | | |
Collapse
|
6
|
Boudreau LH, Maillet J, LeBlanc LM, Jean-François J, Touaibia M, Flamand N, Surette ME. Caffeic acid phenethyl ester and its amide analogue are potent inhibitors of leukotriene biosynthesis in human polymorphonuclear leukocytes. PLoS One 2012; 7:e31833. [PMID: 22347509 PMCID: PMC3276500 DOI: 10.1371/journal.pone.0031833] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 01/12/2012] [Indexed: 01/20/2023] Open
Abstract
Background 5-lipoxygenase (5-LO) catalyses the transformation of arachidonic acid (AA) into leukotrienes (LTs), which are important lipid mediators of inflammation. LTs have been directly implicated in inflammatory diseases like asthma, atherosclerosis and rheumatoid arthritis; therefore inhibition of LT biosynthesis is a strategy for the treatment of these chronic diseases. Methodology/Principal Findings Analogues of caffeic acid, including the naturally-occurring caffeic acid phenethyl ester (CAPE), were synthesized and evaluated for their capacity to inhibit 5-LO and LTs biosynthesis in human polymorphonuclear leukocytes (PMNL) and whole blood. Anti-free radical and anti-oxidant activities of the compounds were also measured. Caffeic acid did not inhibit 5-LO activity or LT biosynthesis at concentrations up to 10 µM. CAPE inhibited 5-LO activity (IC50 0.13 µM, 95% CI 0.08–0.23 µM) more effectively than the clinically-approved 5-LO inhibitor zileuton (IC50 3.5 µM, 95% CI 2.3–5.4 µM). CAPE was also more effective than zileuton for the inhibition of LT biosynthesis in PMNL but the compounds were equipotent in whole blood. The activity of the amide analogue of CAPE was similar to that of zileuton. Inhibition of LT biosynthesis by CAPE was the result of the inhibition of 5-LO and of AA release. Caffeic acid, CAPE and its amide analog were free radical scavengers and antioxidants with IC50 values in the low µM range; however, the phenethyl moiety of CAPE was required for effective inhibition of 5-LO and LT biosynthesis. Conclusions CAPE is a potent LT biosynthesis inhibitor that blocks 5-LO activity and AA release. The CAPE structure can be used as a framework for the rational design of stable and potent inhibitors of LT biosynthesis.
Collapse
Affiliation(s)
- Luc H. Boudreau
- Département de chimie et biochimie, Université de Moncton, Moncton, Canada
- Centre de recherche de l'institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ), Département de médecine, Faculté de médecine, Université Laval, Québec, Canada
| | - Jacques Maillet
- Département de chimie et biochimie, Université de Moncton, Moncton, Canada
| | - Luc M. LeBlanc
- Département de chimie et biochimie, Université de Moncton, Moncton, Canada
| | | | - Mohamed Touaibia
- Département de chimie et biochimie, Université de Moncton, Moncton, Canada
| | - Nicolas Flamand
- Centre de recherche de l'institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ), Département de médecine, Faculté de médecine, Université Laval, Québec, Canada
| | - Marc E. Surette
- Département de chimie et biochimie, Université de Moncton, Moncton, Canada
- * E-mail:
| |
Collapse
|
7
|
Samuni A, Goldstein S. One-Electron Oxidation of Acetohydroxamic Acid: The Intermediacy of Nitroxyl and Peroxynitrite. J Phys Chem A 2011; 115:3022-8. [DOI: 10.1021/jp201796q] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Amram Samuni
- Department of Molecular Biology, Medical School and #Chemistry Institute, The Accelerator Laboratory, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Sara Goldstein
- Department of Molecular Biology, Medical School and #Chemistry Institute, The Accelerator Laboratory, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
8
|
Petrović ZD, Hadjipavlou-Litina D, Pontiki E, Simijonović D, Petrović VP. Diethanolamine Pd(II) complexes in bioorganic modeling as model systems of metallopeptidases and soybean lipoxygenase inhibitors. Bioorg Chem 2009; 37:162-6. [PMID: 19679328 DOI: 10.1016/j.bioorg.2009.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 07/10/2009] [Accepted: 07/13/2009] [Indexed: 11/29/2022]
Abstract
The reaction of PdCl(2) with diethanolammonium chloride (DEAxHCl), in the molar ratio 1:2, affords the [HDEA](2)[PdCl(4)] complex (1). The hydrolytic activity of the novel Pd(II) complex 1 was tested in reaction with N-acetylated L-histidylglycine dipeptide (AcHis-Gly). Complex 1, as well as earlier prepared trans-[PdCl(2)(DEA)(2)] complex (2), and DEA, as their precursor, were tested for their in vitro free radical scavenging activity. UV absorbance-based enzyme assays were done in order to evaluate their inhibitory activity of soybean lipoxygenase (LOX). Also, assays with superoxide anion radical were done. The scavenging activities of the complexes were measured and compared with those of their precursors and caffeic acid. Complex 2 exhibits the highest antioxidant activity and the highest inhibitory effect against the soybean LOX.
Collapse
Affiliation(s)
- Zorica D Petrović
- Department of Chemistry, Faculty of Science, University of Kragujevac, R. Domanovića 12, 34000 Kragujevac, Serbia.
| | | | | | | | | |
Collapse
|
9
|
Abstract
Interstitial lung disease encompasses a large group of chronic lung disorders associated with excessive tissue remodeling, scarring, and fibrosis. The evidence of a redox imbalance in lung fibrosis is substantial, and the rationale for testing antioxidants as potential new therapeutics for lung fibrosis is appealing. Current animal models of lung fibrosis have clear involvement of ROS in their pathogenesis. New classes of antioxidant agents divided into catalytic antioxidant mimetics and antioxidant scavengers are being developed. The catalytic antioxidant class is based on endogenous antioxidant enzymes and includes the manganese-containing macrocyclics, porphyrins, salens, and the non-metal-containing nitroxides. The antioxidant scavenging class is based on endogenous antioxidant molecules and includes the vitamin E analogues, thiols, lazaroids, and polyphenolic agents. Numerous studies have shown oxidative stress to be associated with many interstitial lung diseases and that these agents are effective in attenuating fibroproliferative responses in the lung of animals and humans.
Collapse
Affiliation(s)
- Brian J Day
- Division of Environmental and Occupational Health Sciences, Department of Medicine, National Jewish Medical and Research Center, Denver, Colorado 80206, USA.
| |
Collapse
|
10
|
Cristea M, Oliw EH. A G316A Mutation of Manganese Lipoxygenase Augments Hydroperoxide Isomerase Activity. J Biol Chem 2006; 281:17612-23. [PMID: 16641090 DOI: 10.1074/jbc.m510311200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lipoxygenases with R stereospecificity have a conserved Gly residue, whereas (S)-lipoxygenases have an Ala residue. Site-directed mutagenesis has shown that these residues control position and S/R stereospecificity of oxygenation. Recombinant Mn-LO was expressed in Pichia pastoris, and its conserved Gly-316 residue was mutated to Ala, Ser, Val, and Thr. The G316A mutant was catalytically active. We compared the catalytic properties of Mn-LO and the G316A mutant with 17:3n-3, 18:2n-6, 18:3n-3, and 19:3n-3 as substrates. Increasing the fatty acid chain length from C17 to C19 shifted the oxygenation by Mn-LO from the n-6 toward the n-8 carbon. The G316A mutant increased the oxygenation at the n-8 carbon of 17:3n-3 and at the n-10 carbon of the C17 and C18 fatty acids (from 1-2% to 7-11%). The most striking effect of the G316A mutant was a 2-, 7-, and 15-fold increase in transformation of the n-6 hydroperoxides of 19:3n-3, 18:3n-3, and 17:3n-3, respectively, to keto fatty acids and epoxyalcohols. The n-3 double bond was essential. An experiment under an oxygen-18 atmosphere showed that both oxygen atoms were retained in the epoxyalcohols. (R)-Hydroperoxides at n-6 of C17:3, 18:3, and 19:3 were transformed 5 times faster than S stereoisomers. The G316A mutant converted (13R)-hydroperoxylinolenic acid to 13-ketolinolenic acid (with an apparent K(m) of 0.01 mm) and to epoxyalcohols (viz. erythro- and threo-11-hydroxy-(12R,13R)-epoxy-(9Z,15Z)-octadecadienoic acids and one of the corresponding cis-epoxides as major products). A reducing lipoxygenase inhibitor stimulated the hydroperoxide isomerase activity, whereas a suicide-type lipoxygenase inhibitor reduced this activity. The n-3 double bond also appeared to influence the anaerobic formation of epoxyalcohols by Mn-LO, since 18:2n-6 and 18:3n-3 yielded different profiles of epoxyalcohols. Our results suggest that the G316A mutant augmented the hydroperoxide isomerase activity by positioning the hydroperoxy group at the n-6 carbon of n-3 fatty acids closer to the reduced catalytic metal.
Collapse
Affiliation(s)
- Mirela Cristea
- Department of Pharmaceutical Biosciences, Biomedical Center, Uppsala University, SE-751 24 Uppsala, Sweden
| | | |
Collapse
|
11
|
Cho JY, Dutton A, Miller T, Houk KN, Fukuto JM. Oxidation of N-hydroxyguanidines by copper(II): model systems for elucidating the physiological chemistry of the nitric oxide biosynthetic intermediate N-hydroxyl-L-arginine. Arch Biochem Biophys 2003; 417:65-76. [PMID: 12921781 DOI: 10.1016/s0003-9861(03)00335-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The redox chemistry of models of N-hydroxy-L-arginine, the biosynthetic intermediate in the synthesis of NO by the family of nitric oxide synthase enzymes, has been explored experimentally and theoretically. The oxidation of N-hydroxyguanidine model compounds by Cu(II) was studied as a means of establishing possible metabolic fates and intermediates of this important functional group. These studies indicate than an iminoxyl intermediate is formed and may be an important biological species generated from N-hydroxyguanidines including N-hydroxy-L-arginine.
Collapse
Affiliation(s)
- Jennifer Y Cho
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569, USA
| | | | | | | | | |
Collapse
|
12
|
Moody JS, Marnett LJ. Kinetics of inhibition of leukocyte 12-lipoxygenase by the isoform-specific inhibitor 4-(2-oxapentadeca-4-yne)phenylpropanoic acid. Biochemistry 2002; 41:10297-303. [PMID: 12162745 DOI: 10.1021/bi020320q] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lipoxygenases (LOXs) are a ubiquitous family of enzymes that catalyze the dioxygenation of polyunsaturated fatty acids. Their role in a diverse range of biological processes has prompted the development of a large number of lipoxygenase inhibitors of possible therapeutic and probative value. The isoform-selective inhibitor 4-(2-oxapentadeca-4-yne)phenylpropanoic acid (OPP) was previously shown to inhibit leukocyte-type 12-LOX by a novel mechanism in which it binds to both the ferrous and ferric forms of the enzyme. The current study provides a detailed kinetic model of this inhibition. Nonlinear regression analysis of OPP's inhibition of arachidonic acid dioxygenation indicated mixed inhibition toward the ferric form of 12-LOX with apparent K(I) values in the low micromolar range: 2.0 +/- 0.2 microM for the free enzyme and 4.5 +/- 0.7 microM for the substrate-bound form of the enzyme. Rapid kinetic techniques allowed OPP's inhibition of the activation of the enzyme from the ferrous to the ferric form to be investigated. Titration of ferrous 12-LOX with OPP indicated that it bound to the ferrous form with an apparent K(I) value of 70 +/- 20 nM, suggesting a significantly higher affinity for the ferrous form than for the ferric form of the enzyme. Investigation of the LOX inhibitors nordihydroguaiaretic acid, N-(4-chlorophenyl)-N-hydroxy-N'-(3-chlorophenyl)urea, BWA137C, and eicosatetraynoic acid revealed that eicosatetraynoic acid also inhibited the activation of 12-LOX. These results demonstrate that LOX inhibitors are capable of binding to multiple forms of LOXs with high affinity and suggest that inhibition of enzyme activation may be an unrecognized mechanism of inhibition of additional LOX inhibitors.
Collapse
Affiliation(s)
- John S Moody
- Department of Biochemistry, Vanderbilt-Ingram Comprehensive Cancer Center and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
13
|
Rupon JW, Domingo SR, Smith SV, Gummadi BK, Shields H, Ballas SK, King SB, Kim-Shapiro DB. The reactions of myoglobin, normal adult hemoglobin, sickle cell hemoglobin and hemin with hydroxyurea. Biophys Chem 2000; 84:1-11. [PMID: 10723540 DOI: 10.1016/s0301-4622(99)00132-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The kinetics of the reaction of hydroxyurea (HU) with myoglobin (Mb), hemin, sickle cell hemoglobin (HbS), and normal adult hemoglobin (HbA) were determined using optical absorption spectroscopy as a function of time, wavelength, and temperature. Each reaction appeared to follow pseudo-first order kinetics. Electron paramagnetic resonance spectroscopy (EPR) experiments indicated that each reaction produced an FeNO product. Reactions of hemin and the ferric forms of HbA, HbS, and myoglobin with HU also formed the NO adduct. The formation of methemoglobin and nitric oxide-hemoglobin from these reactions may provide further insight into the mechanism of how HU benefits sickle cell patients.
Collapse
Affiliation(s)
- J W Rupon
- Department of Chemistry, Wake Forest University, Winston-Salem, NC 27103, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Hover CG, Kulkarni AP. Lipoxygenase-mediated hydrogen peroxide-dependent N-demethylation of N,N-dimethylaniline and related compounds. Chem Biol Interact 2000; 124:191-203. [PMID: 10728778 DOI: 10.1016/s0009-2797(99)00154-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
To date, studies of xenobiotic N-demethylation have focused on heme-proteins such as P450 and peroxidases. In this study we investigated the ability of non-heme iron proteins, namely soybean lipoxygenase (SLO) and human term placental lipoxygenase (HTPLO) to mediate N-demethylation of N,N-dimethylaniline (DMA) and related compounds in the presence of hydrogen peroxide. In addition to being hydrogen peroxide dependent, the reaction was also dependent on incubation time, concentration of enzyme and DMA and the pH of the medium. Using Nash reagent to estimate formaldehyde production, we determined the specific activity for SLO mediated N-demethylation of DMA to be 200 + 18 nmol HCHO/min per mg protein or 23 +/- 2 nmol/min per nmol of enzyme, while that of HTPLO was 33 +/- 4 nmol HCHO/min per mg protein. Nordihydroguaiaretic acid (NDGA), a classical inhibitor of lipoxygenase (LO), as well as antioxidants and free radical reducing agents, caused a marked reduction in the rate of production of formaldehyde from DMA by SLO. Besides N,N-dimethylaniline, N-methylaniline, N,N,N',N'-tetramethylbenzidine, N,N-dimethyl-p-phenylenediamine, N,N-dimethyl-3-nitroaniline and N,N-dimethyl-p-toluidine were also demethylated by SLO. The formation of a DMA N-oxide was not detected. Preliminary experiments suggested SLO-mediated hydrogen peroxide-dependent S-dealkylation of methiocarb or O-dealkylation of 4-nitroanisole does not occur.
Collapse
Affiliation(s)
- C G Hover
- Florida Toxicology Research Center, Department of Environmental and Occupational Health, College of Public Health, University of South Florida, Tampa 33612-3805, USA
| | | |
Collapse
|
15
|
Richards KM, Moody JS, Marnett LJ. Mechanism of inhibition of porcine leukocyte 12-lipoxygenase by the isoform-specific inhibitor 4-(2-oxapentadeca-4-yne)phenylpropanoic acid. Biochemistry 1999; 38:16529-38. [PMID: 10600114 DOI: 10.1021/bi991336s] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mechanism of inhibition of porcine leukocyte 12-lipoxygenase by 4-(2-oxapentadeca-4-yne)phenylpropanoic acid (OPP) was investigated. This compound is selective for the leukocyte form of the 12-lipoxygenase and inhibits the purified recombinant enzyme with an IC(50) value of approximately 2 microM. OPP induced a concentration-dependent lag phase in the oxygenation of arachidonic acid and decreased the maximal rate of reaction. Addition of the fatty acid hydroperoxide 13(S)-hydroperoxyoctadecadienoic acid (13-HPODE) to the reaction greatly reduced the OPP-induced lag. Lineweaver-Burk analysis of the effect of OPP on 12-lipoxygenase kinetics with arachidonic acid indicated that it was a mixed-type inhibitor. OPP was not metabolized by 12-lipoxygenase as evidenced by its quantitative recovery from incubations with stoichiometric amounts of enzyme and 13-HPODE or arachidonic acid. OPP inhibited the pseudoperoxidase activity of the enzyme with 13-HPODE and the reducing agent, BWA137C. Lineweaver-Burk analysis of the effect of OPP on pseudoperoxidase kinetics suggested that OPP was competitive with 13-HPODE. Single-turnover experiments indicated that OPP inhibited the reduction of 13-HPODE by a stoichiometric amount of ferrous 12-lipoxygenase. Addition of 13-HPODE shortened the OPP-induced lag phase but did not affect the maximal rate of enzyme activity. In addition, OPP had no effect on total product formation in either the presence or the absence of 5 microM 13-HPODE when the reaction was allowed to go to completion. All of these observations are consistent with a model for inhibition of 12-lipoxygenase activity in which OPP slows the oxidation of the inactive ferrous enzyme to the active ferric enzyme and competes with arachidonic acid for the ferric enzyme.
Collapse
Affiliation(s)
- K M Richards
- Department of Biochemistry, The A.B. Hancock, Jr. Memorial Laboratory for Cancer Research, Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | | |
Collapse
|
16
|
|
17
|
Jiang J, Jordan SJ, Barr DP, Gunther MR, Maeda H, Mason RP. In vivo production of nitric oxide in rats after administration of hydroxyurea. Mol Pharmacol 1997; 52:1081-6. [PMID: 9415718 DOI: 10.1124/mol.52.6.1081] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The metabolism of nitrovasodilators such as glyceryl trinitrate and nitroprusside provides the active moiety of these drugs (that is, nitric oxide). This process is not limited to the known nitrovasodilators, but also occurs with nitroaromatic antimicrobials. Here we report that the administration of hydroxyurea, an antitumor drug, to rats at pharmacological doses formed detectable nitrosyl hemoglobin, which increased with dose. At higher doses, nitrosyl hemoprotein complexes could also be detected in liver tissue. [15N]hydroxyurea was synthesized and compared with [14N]hydroxyurea. These observations verified that nitric oxide detected as nitrosyl hemoglobin or nitrosyl hemoprotein complexes in rats was the result of the metabolism of hydroxyurea. The time course and dose-dependence of nitric oxide generation were also investigated. Hydroxyurea's antineoplastic activity is caused by its direct action on ribonucleotide reductase, the rate-limiting enzyme in DNA synthesis. Because nitric oxide also inhibits ribonucleotide reductase, this metabolite may supplement this action of hydroxyurea. In addition, the known ability of hydroxyurea to ease the pain of sickle cell anemia patients may be the result of vasodilation by the drug-derived nitric oxide.
Collapse
Affiliation(s)
- J Jiang
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | |
Collapse
|
18
|
Suzuki H, Miyauchi D, Yamamoto S. A selective inhibitor of arachidonate 5-lipoxygenase scavenging peroxide activator. Biochem Pharmacol 1997; 54:529-32. [PMID: 9313781 DOI: 10.1016/s0006-2952(97)00248-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A novel compound termed YT-18 (2,3-dihydro-2,4,6,7-tetramethyl-2-[(4-phenyl-1-piperazinyl) methyl]-5-benzofuranamine) selectively inhibited 5-lipoxygenases of porcine leukocytes (IC50 value, 7.5 microM), human leukocytes (1.5 microM), and rat basophilic leukemia cells (14 microM), which are responsible for bioactive leukotriene synthesis. In contrast, the compound up to 1 mM had almost no effect on 12-lipoxygenases of leukocytes and platelets, 15-lipoxygenase, and cyclooxygenases-1 and -2. YT-18 also inhibited the leukotriene synthesis in intact rat basophilic leukemia cells. In the 5-lipoxygenase reaction, YT-18 caused a lag phase, thereby delaying the start of the reaction. The lag was abolished by the addition of 13-hydroperoxy-linoleic acid in a dose-dependent manner, and most (but not all) of the reduced 5-lipoxygenase activity was recovered.
Collapse
Affiliation(s)
- H Suzuki
- Department of Biochemistry, Tokushima University School of Medicine, Japan
| | | | | |
Collapse
|
19
|
Desmarais SR, Riendeau D, Gresser MJ. Inhibition of soybean lipoxygenase-1 by a diaryl-N-hydroxyurea by reduction of the ferric enzyme. Biochemistry 1994; 33:13391-400. [PMID: 7947748 DOI: 10.1021/bi00249a027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
It has been proposed that catechols and other antioxidants inhibit lipoxygenase activity by reducing the active Fe3+ form of the enzyme [Kemal et al. (1987) Biochemistry 26, 7064-7072]. In this model, reductively inactivated lipoxygenase can be reactivated by reaction with the hydroperoxide product in a pseudoperoxidase reaction. The contribution of enzyme reduction in the inhibition of the activity of soybean lipoxygenase-1 by the reducing inhibitor N-(4-chlorophenyl)-N-hydroxy-N'-(3-chlorophenyl)-urea (CPHU) has been evaluated quantitatively. The inhibition by CPHU of the oxygenation of linoleic acid to 13-hydroperoxy-9,11-octadecadienoic acid (13-HpODE) was accompanied by an initial lag phase which could be eliminated by the presence of exogenous 13-HpODE at the initiation of the reaction. In addition, both 13-HpODE and CPHU were found to be consumed during the lipoxygenase reaction, indicating occurrence of both oxygenase and pseudoperoxidase reactions. When analyzed individually, both the oxygenase reaction at different linoleic acid and O2 concentrations and the pseudoperoxidase reaction at different 13-HpODE and CPHU concentrations were found to follow ping-pong kinetics. A rate equation for the lipoxygenase-catalyzed reaction in the presence of reducing agent was derived considering that the inhibition of the oxygenase reaction is the combined result of 13-HpODE consumption and formation of inactive Fe2+ enzyme due to occurrence of the pseudoperoxidase reaction. By comparing the experimental data with those predicted by the rate equation, it is concluded that the inactivation of the enzyme by reduction can quantitatively account for the inhibition caused by CPHU.
Collapse
Affiliation(s)
- S R Desmarais
- Merck Frosst Centre for Therapeutic Research, Kirkland, Québec, Canada
| | | | | |
Collapse
|
20
|
Müller K. 5-Lipoxygenase and 12-lipoxygenase: attractive targets for the development of novel antipsoriatic drugs. Arch Pharm (Weinheim) 1994; 327:3-19. [PMID: 8117187 DOI: 10.1002/ardp.19943270103] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- K Müller
- Institut für Pharmazie, Universität Regensburg, Germany
| |
Collapse
|
21
|
Breton J, Keller P, Chabot-Fletcher M, Hillegass L, DeWolf W, Griswold D. Use of a continuous assay of oxygen consumption to evaluate the pharmacology of 5-lipoxygenase inhibitors. Prostaglandins Leukot Essent Fatty Acids 1993; 49:929-37. [PMID: 8140120 DOI: 10.1016/0952-3278(93)90178-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A variety of assay systems have been utilized to evaluate the inhibition of the key enzyme in leukotriene (LT) biosynthesis, 5-lipoxygenase (5-LO). We have developed an assay utilizing a cytosolic preparation of 5-LO from rat basophilic leukemia (RBL-1) cells. Enzyme activity was monitored by continuous measurement of oxygen consumption. High performance liquid chromatography (HPLC) analysis of products showed exclusive generation of 5-LO products. The assay proved useful for the evaluation of a variety of chemical classes of lipoxygenase inhibitors and clearly differentiated those compounds which extended the lag phase (e.g. A-64077) as opposed to the propagation phase of the enzyme activity (e.g. SK & F 105561). The data generated were in reasonable agreement with results from the assay of isolated human monocyte 5-LO and, with the exception of compounds which appear to have a significant effect on 5-LO translocation (e.g. MK-886 and Wy-49 232), inhibition of LT production by intact monocytes. This assay system proved to be a convenient and informative method to analyze inhibition of 5-LO activity.
Collapse
Affiliation(s)
- J Breton
- Department of Respiratory/Inflammation Pharmacology, SmithKline Beecham Pharmaceuticals, King of Prussia, PA 19406-0939
| | | | | | | | | | | |
Collapse
|