1
|
Norris-Mullins B, VanderKolk K, Vacchina P, Joyce MV, Morales MA. LmaPA2G4, a homolog of human Ebp1, is an essential gene and inhibits cell proliferation in L. major. PLoS Negl Trop Dis 2014; 8:e2646. [PMID: 24421916 PMCID: PMC3888471 DOI: 10.1371/journal.pntd.0002646] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 12/03/2013] [Indexed: 11/18/2022] Open
Abstract
We have identified LmaPA2G4, a homolog of the human proliferation-associated 2G4 protein (also termed Ebp1), in a phosphoproteomic screening. Multiple sequence alignment and cluster analysis revealed that LmaPA2G4 is a non-peptidase member of the M24 family of metallopeptidases. This pseudoenzyme is structurally related to methionine aminopeptidases. A null mutant system based on negative selection allowed us to demonstrate that LmaPA2G4 is an essential gene in Leishmania major. Over-expression of LmaPA2G4 did not alter cell morphology or the ability to differentiate into metacyclic and amastigote stages. Interestingly, the over-expression affected cell proliferation and virulence in mouse footpad analysis. LmaPA2G4 binds a synthetic double-stranded RNA polyriboinosinic polyribocytidylic acid [poly(I∶C)] as shown in an electrophoretic mobility shift assay (EMSA). Quantitative proteomics revealed that the over-expression of LmaPA2G4 led to accumulation of factors involved in translation initiation and elongation. Significantly, we found a strong reduction of de novo protein biosynthesis in transgenic parasites using a non-radioactive metabolic labeling assay. In conclusion, LmaPA2G4 is an essential gene and is potentially implicated in fundamental biological mechanisms, such as translation, making it an attractive target for therapeutic intervention.
Collapse
Affiliation(s)
- Brianna Norris-Mullins
- Eck Institute for Global Health. Department of Biological Sciences. University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Kaitlin VanderKolk
- Eck Institute for Global Health. Department of Biological Sciences. University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Paola Vacchina
- Eck Institute for Global Health. Department of Biological Sciences. University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Michelle V. Joyce
- Mass Spectrometry and Proteomics Facility, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Miguel A. Morales
- Eck Institute for Global Health. Department of Biological Sciences. University of Notre Dame, Notre Dame, Indiana, United States of America
- * E-mail:
| |
Collapse
|
2
|
Wu JW, Chen XL. Extracellular metalloproteases from bacteria. Appl Microbiol Biotechnol 2011; 92:253-62. [DOI: 10.1007/s00253-011-3532-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 07/25/2011] [Accepted: 08/04/2011] [Indexed: 10/17/2022]
|
3
|
Fukasawa KM, Hata T, Ono Y, Hirose J. Metal preferences of zinc-binding motif on metalloproteases. JOURNAL OF AMINO ACIDS 2011; 2011:574816. [PMID: 22312463 PMCID: PMC3268031 DOI: 10.4061/2011/574816] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 01/25/2011] [Accepted: 03/07/2011] [Indexed: 11/25/2022]
Abstract
Almost all naturally occurring metalloproteases are monozinc enzymes. The zinc in any number of zinc metalloproteases has been substituted by some other divalent cation. Almost all Co(II)- or Mn(II)-substituted enzymes maintain the catalytic activity of their zinc counterparts. However, in the case of Cu(II) substitution of zinc proteases, a great number of enzymes are not active, for example, thermolysin, carboxypeptidase A, endopeptidase from Lactococcus lactis, or aminopeptidase B, while some do have catalytic activity, for example, astacin (37%) and DPP III (100%). Based on structural studies of various metal-substituted enzymes, for example, thermolysin, astacin, aminopeptidase B, dipeptidyl peptidase (DPP) III, and del-DPP III, the metal coordination geometries of both active and inactive Cu(II)-substituted enzymes are shown to be the same as those of the wild-type Zn(II) enzymes. Therefore, the enzyme activity of a copper-ion-substituted zinc metalloprotease may depend on the flexibility of catalytic domain.
Collapse
Affiliation(s)
- Kayoko M Fukasawa
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Nagano 399-0781, Japan
| | | | | | | |
Collapse
|
4
|
Full activation of Enterococcus faecalis gelatinase by a C-terminal proteolytic cleavage. J Bacteriol 2007; 189:8835-43. [PMID: 17921295 DOI: 10.1128/jb.01311-07] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterococci account for nearly 10% of all nosocomial infections and constitute a significant treatment challenge due to their multidrug resistance properties. One of the well-studied virulence factors of Enterococcus faecalis is a secreted bacterial protease, termed gelatinase, which has been shown to contribute to the process of biofilm formation. Gelatinase belongs to the M4 family of bacterial zinc metalloendopeptidases, typified by thermolysin. Gelatinase is synthesized as a preproenzyme consisting of a signal sequence, a putative propeptide, and then the mature enzyme. We determined that the molecular mass of the mature protein isolated from culture supernatant was 33,030 Da, which differed from the predicted molecular mass, 34,570 Da, by over 1,500 Da. Using N-terminal sequencing, we confirmed that the mature protein begins at the previously identified sequence VGSEV, thus suggesting that the 1,500-Da molecular mass difference resulted from a C-terminal processing event. By using mutants with site-directed mutations within a predicted C-terminal processing site and mutants with C-terminal deletions fused to a hexahistidine tag, we determined that the processing site is likely to be between residues D304 and I305 and that it requires the Q306 residue. The results suggest that the E. faecalis gelatinase requires C-terminal processing for full activation of protease activity, making it a unique enzyme among the members of the M4 family of proteases of gram-positive bacteria.
Collapse
|
5
|
Staats CC, Boldo J, Broetto L, Vainstein M, Schrank A. Comparative genome analysis of proteases, oligopeptide uptake and secretion systems in Mycoplasma spp. Genet Mol Biol 2007. [DOI: 10.1590/s1415-47572007000200009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023] Open
|
6
|
Vitale L, Vukelić B, Krizaj I. Extracellular metalloendopeptidase of Streptomyces rimosus. Arch Microbiol 2006; 185:183-91. [PMID: 16521041 DOI: 10.1007/s00203-006-0084-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Revised: 11/28/2005] [Accepted: 12/21/2005] [Indexed: 10/25/2022]
Abstract
Metalloendopeptidase was isolated from Streptomyces rimosus culture filtrates in a homogeneous form. It was determined to be a 15 kDa basic protein, most active around pH 7.5, and susceptible to inhibition by chelating agents, N-bromosuccinimide, thiorphan, and 10(-4) M zinc. The enzyme was highly specific for phenylalanine at the N-side of endopeptide bonds. Determination of amino acid sequence of the enzyme's NH(2)-part allowed the recognition of its structure homology with isolated and predicted metallopeptidases from several Streptomyces species. The data contribute to the definition of M7 family of metalloendopeptidases in streptomycetes.
Collapse
Affiliation(s)
- Ljubinka Vitale
- Department of Organic Chemistry and Biochemistry, Ruder Bosković Institute, Bijenicka c.54, 10002 Zagreb, Croatia.
| | | | | |
Collapse
|
7
|
Vazeux G, Wang J, Corvol P, Llorens-Cortès C. Identification of glutamate residues essential for catalytic activity and zinc coordination in aminopeptidase A. J Biol Chem 1996; 271:9069-74. [PMID: 8621556 DOI: 10.1074/jbc.271.15.9069] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Aminopeptidase A (EC 3.4.11.7, APA) is a homodimeric membrane-bound glycoprotein that contains the consensus sequence HEXXH(385-389) found in zinc metallopeptidases such as thermolysin. The x-ray structure of the latter enzyme revealed that the two histidines of this motif are two of the three zinc-coordinating ligands and that the glutamate is a crucial amino acid involved in catalysis. Alignment of the sequence of mouse APA with those of the already characterized metallopeptidases showed the presence of several conserved amino acids such as a glutamate residue in position 408 which may constitute the putative third zinc ligand. The functional implication of this residue and the role of glutamate 386 in the HELVH(385-389) motif of APA have been investigated by replacing these residues with an aspartate (Asp-386, Asp-408) or an alanine (Ala-386, Ala-408) by site-directed mutagenesis. Expressed mutated proteins in position 386 showed no APA activity. Ala-408 was also inactive, and Asp-408 had 5% of the wild type enzyme activity and a similar Km. 65Zn incorporation measurements indicated that Ala-386 binds the zinc ion as well as the wild type enzyme, whereas the Ala-408 mutant did not. These results provide evidence that Glu-408 is the third zinc-coordinating residue of APA, confirm the presumed involvement of Glu-386 in the catalytic process of the enzyme, and identify APA as a zinc metallopeptidase functionally similar to thermolysin.
Collapse
Affiliation(s)
- G Vazeux
- INSERM Unit 36, Collège de France, 3, rue d'Ulm, 75005 Paris, France
| | | | | | | |
Collapse
|
8
|
Affiliation(s)
- N D Rawlings
- Department of Biochemistry, Strangeways Research Laboratory, Cambridge, United Kingdom
| | | |
Collapse
|
9
|
Abstract
A scheme based on the zinc binding site [1992, FEBS Lett. 312, 110-114] has been extended to classify zinc metalloproteases into distinct families. The gluzincins, defined by the HEXXH motif and a glutamic acid as the third zinc ligand, include the thermolysin, endopeptidase-24.11, aminopeptidase, angiotensin converting enzyme, endopeptidase-24.15, and tetanus and botulinum neurotoxin families. The metzincins, defined by the HEXXH motif, a histidine as the third zinc ligand and a Met-turn, include the astacin, serralysin, reprolysin and matrixin families. The inverted zincin motif, HXXEH, defines the inverzincin family of insulin-degrading enzymes, the HXXE motif defines the carboxypeptidase family, and the HXH motif DD-carboxypeptidase.
Collapse
Affiliation(s)
- N M Hooper
- Department of Biochemistry and Molecular Biology, University of Leeds, UK
| |
Collapse
|
10
|
Chang S, Chang P, Lee Y. The roles of propeptide in maturation and secretion of Npr protease from Streptomyces. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)41898-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
11
|
Hijikata M, Mizushima H, Akagi T, Mori S, Kakiuchi N, Kato N, Tanaka T, Kimura K, Shimotohno K. Two distinct proteinase activities required for the processing of a putative nonstructural precursor protein of hepatitis C virus. J Virol 1993; 67:4665-75. [PMID: 8392606 PMCID: PMC237852 DOI: 10.1128/jvi.67.8.4665-4675.1993] [Citation(s) in RCA: 349] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Gene products of hepatitis C virus (HCV), a possible major causative agent of posttransfusion non-A, non-B hepatitis, are considered to be produced from a precursor polyprotein via proteolytic processing mediated by either host cell or viral proteinases. The presence of HCV serine proteinase has been proposed from analyses of amino acid sequence homology. To examine the processing mechanism of the HCV precursor polyprotein, the amino-terminal region of the putative nonstructural protein region of the HCV genome, containing the serine proteinase motif, was expressed and analyzed by using an in vitro transcription/translation system and a transient expression system in cultured cells. Two distinct proteinase activities which function in the production of a 70-kDa protein (p70) from the precursor polyprotein were detected. One of these proteinase activities, which cleaved the carboxyl (C)-terminal side of p70, required the presence of the serine proteinase motif, which is located in the amino (N)-terminal region of p70. That suggested that the predicted HCV serine proteinase was functional. The other activity, which was responsible for the cleavage of the N-terminal side of p70, required the expression of the region upstream and downstream of that cleavage site, including the p70 serine proteinase domain. From the results of pulse-chase analysis, using proteinase inhibitors coupled with a point mutation analysis, the latter activity was proposed to be a novel zinc-dependent metalloproteinase.
Collapse
Affiliation(s)
- M Hijikata
- Virology Division, National Cancer Center Research Institute, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|