1
|
Park SS, Farwa U, Park I, Moon BG, Im SB, Lee BT. In-vivo bone remodeling potential of Sr-d-Ca-P /PLLA-HAp coated biodegradable ZK60 alloy bone plate. Mater Today Bio 2023; 18:100533. [PMID: 36619205 PMCID: PMC9816808 DOI: 10.1016/j.mtbio.2022.100533] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/12/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022] Open
Abstract
Magnesium and its alloys are widely applied biomaterials due to their biodegradability and biocompatibility. However, rapid degradation and hydrogen gas evolution hinder its applicability on a commercial scale. In this study, we developed an Mg alloy bone plate for bone remodeling and support after a fracture. We further coated the Mg alloy plate with Sr-D-Ca-P (Sr dopped Ca-P coating) and Sr-D-Ca-P/PLLA-HAp to evaluate and compare their biodegradability and biocompatibility in both in vitro and in vivo experiments. Chemical immersion and dip coating were employed for the formation of Sr-D-Ca-P and PLLA-HAp layers, respectively. In vitro evaluation depicted that both coatings delayed the degradation process and exhibited excellent biocompatibility. MC3T3-E1cells proliferation and osteogenic markers expression were also promoted. In vivo results showed that both Sr-D-Ca-P and Sr-D-Ca-P/PLLA-HAp coated bone plates had slower degradation rate as compared to Mg alloy. Remarkable bone remodeling was observed around the Sr-D-Ca-P/PLLA-HAp coated bone plate than bare Mg alloy and Sr-D-Ca-P coated bone plate. These results suggest that Sr-D-Ca-P/PLLA-HAp coated Mg alloy bone plate with lower degradation and enhanced biocompatibility can be applied as an orthopedic implant.
Collapse
Affiliation(s)
- Seong-Su Park
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Ume Farwa
- Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, South Korea
| | - Ihho Park
- Korea Institute of Material Science, Changwon, South Korea
| | - Byoung-Gi Moon
- Korea Institute of Material Science, Changwon, South Korea
| | - Soo-Bin Im
- Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, South Korea
- Department of Neuro-surgery, Soonchunhyang University Medical Centre, Bucheon, South Korea
| | - Byong-Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
- Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, South Korea
| |
Collapse
|
2
|
Guduric V, Wieckhusen J, Bernhardt A, Ahlfeld T, Lode A, Wu C, Gelinsky M. Composite Bioinks With Mesoporous Bioactive Glasses-A Critical Evaluation of Results Obtained by In Vitro Experiments. Front Bioeng Biotechnol 2022; 9:767256. [PMID: 35087798 PMCID: PMC8787041 DOI: 10.3389/fbioe.2021.767256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/15/2021] [Indexed: 12/16/2022] Open
Abstract
Besides osteoconductivity and a high degradation rate, mesoporous bioactive glasses (MBGs) are specific for their highly ordered channel structure and high specific surface area, making them suitable as drug and/or growth factor delivery systems. On the other hand, the mesoporous channel structure and MBG composition can have an effect on common cell evaluation assays, leading to inconclusive results. This effect is especially important when MBG is mixed in composite bioinks, together with cells. Additionally, the hydrogel component of the ink can influence the degradation of MBG, leading to different ion releases, which can additionally affect the analyses. Hence, our aim here was to show how the MBG structure and composition influence common cell viability and differentiation assays when calcium (Ca)- or magnesium (Mg)-containing glass is part of an alginate-based composite bioink. We suggested pre-labeling of cells with DiI prior to bioprinting and staining with calcein-AM to allow identification of metabolically active cells expressing signals in both green and red channels, allowing the use of fluorescence imaging for cell viability evaluations in the presence of high amounts (7 wt %) of MBGs. The release and uptake of ions during degradation of CaMBG and MgMBG were significantly changed by alginate in the composite bioinks, as confirmed by higher release and uptake from bulk glasses. Additionally, we detected a burst release of Mg2+ from composites only after 24 h of incubation. Furthermore, we demonstrated that released ions and the mesoporous channel structure affect the measurement of lactate dehydrogenase (LDH) and alkaline phosphatase activity (ALP) in bioprinted composite scaffolds. Measured LDH activity was significantly decreased in the presence of CaMBG. On the other hand, the presence of MgMBG induced increased signal measured for the ALP. Taken together, our findings show how composite bioinks containing MBGs can interfere with common analyses, obtaining misleading results.
Collapse
Affiliation(s)
- Vera Guduric
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität, Dresden, Germany
| | - Johannes Wieckhusen
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität, Dresden, Germany
| | - Anne Bernhardt
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität, Dresden, Germany
| | - Tilman Ahlfeld
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität, Dresden, Germany
| | - Anja Lode
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität, Dresden, Germany
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität, Dresden, Germany
| |
Collapse
|
3
|
Wang X, Schepler H, Neufurth M, Wang S, Schröder HC, Müller WEG. Polyphosphate in Chronic Wound Healing: Restoration of Impaired Metabolic Energy State. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2022; 61:51-82. [PMID: 35697937 DOI: 10.1007/978-3-031-01237-2_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Many pathological conditions are characterized by a deficiency of metabolic energy. A prominent example is nonhealing or difficult-to-heal chronic wounds. Because of their unique ability to serve as a source of metabolic energy, inorganic polyphosphates (polyP) offer the opportunity to develop novel strategies to treat such wounds. The basis is the generation of ATP from the polymer through the joint action of two extracellular or plasma membrane-bound enzymes alkaline phosphatase and adenylate kinase, which enable the transfer of energy-rich phosphate from polyP to AMP with the formation of ADP and finally ATP. Building on these findings, it was possible to develop novel regeneratively active materials for wound therapy, which have already been successfully evaluated in first studies on patients.
Collapse
Affiliation(s)
- Xiaohong Wang
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Hadrian Schepler
- Department of Dermatology, University Clinic Mainz, Mainz, Germany
| | - Meik Neufurth
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Shunfeng Wang
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Heinz C Schröder
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Werner E G Müller
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
4
|
Schröder HC, Wang X, Neufurth M, Wang S, Müller WEG. Biomimetic Polyphosphate Materials: Toward Application in Regenerative Medicine. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2022; 61:83-130. [PMID: 35697938 DOI: 10.1007/978-3-031-01237-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In recent years, inorganic polyphosphate (polyP) has attracted increasing attention as a biomedical polymer or biomaterial with a great potential for application in regenerative medicine, in particular in the fields of tissue engineering and repair. The interest in polyP is based on two properties of this physiological polymer that make polyP stand out from other polymers: polyP has morphogenetic activity by inducing cell differentiation through specific gene expression, and it functions as an energy store and donor of metabolic energy, especially in the extracellular matrix or in the extracellular space. No other biopolymer applicable in tissue regeneration/repair is known that is endowed with this combination of properties. In addition, polyP can be fabricated both in the form of a biologically active coacervate and as biomimetic amorphous polyP nano/microparticles, which are stable and are activated by transformation into the coacervate phase after contact with protein/body fluids. PolyP can be used in the form of various metal salts and in combination with various hydrogel-forming polymers, whereby (even printable) hybrid materials with defined porosities and mechanical and biological properties can be produced, which can even be loaded with cells for 3D cell printing or with drugs and support the growth and differentiation of (stem) cells as well as cell migration/microvascularization. Potential applications in therapy of bone, cartilage and eye disorders/injuries and wound healing are summarized and possible mechanisms are discussed.
Collapse
Affiliation(s)
- Heinz C Schröder
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Meik Neufurth
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Shunfeng Wang
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Werner E G Müller
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
5
|
Müller WEG, Schepler H, Tolba E, Wang S, Ackermann M, Muñoz-Espí R, Xiao S, Tan R, She Z, Neufurth M, Schröder HC, Wang X. A physiologically active interpenetrating collagen network that supports growth and migration of epidermal keratinocytes: zinc-polyP nanoparticles integrated into compressed collagen. J Mater Chem B 2020; 8:5892-5902. [DOI: 10.1039/d0tb01240h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
It is demonstrated that polyphosphate, as a component in wound healing mats together with Zn2+, is essential for growth and migration of skin keratinocytes.
Collapse
|
6
|
Smits EA, Smits CJ, Vromans H. The development of a method to quantify encapsulated and free prednisolone phosphate in liposomal formulations. J Pharm Biomed Anal 2013; 75:47-54. [DOI: 10.1016/j.jpba.2012.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 10/19/2012] [Accepted: 11/05/2012] [Indexed: 11/17/2022]
|
7
|
Singh VP. Mg2+ decreases arrhenius energies of activation for high temperature catalysis of phosphatases in Thermoactinomyces vulgaris. Curr Microbiol 2007; 55:179-84. [PMID: 17657541 DOI: 10.1007/s00284-006-0539-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Accepted: 05/04/2007] [Indexed: 11/24/2022]
Abstract
The nonspecific acid and alkaline phosphatases of Thermoactinomyces vulgaris were found to be optimally active at 65 degrees C and 70 degrees C, respectively, indicating the thermophilic nature of these enzymes in this obligate thermophile. Mg(2+), when added in the assay mixture (in the form of MgCl(2)), increased the specific activities of these enzymes without affecting their respective temperature optima. This divalent cation decreased the Arrhenius energies of activation (E ( A )) of both acid and alkaline phosphatases, as substantiated by Mg(2+)-dependent decrease in the slopes of their Arrhenius plots, which were found to be linear. Thus, Mg(2+)-dependent stimulation of high temperature catalysis of T. vulgaris phosphatases appeared to be accomplished by the decrease in their E ( A )values by this divalent cation, and such unique feature of these enzymes might be associated with their evolutionary adaptation in this thermophilic actinomycete to support its growth at elevated temperatures. The catalytic role of Mg(2+ )in enhancing the phosphatase activities was specified by the fact that this metal ion was able to recover the enzyme activities inhibited by dialysis and EDTA.
Collapse
Affiliation(s)
- Ved Pal Singh
- Applied Microbiology and Biotechnology Laboratory, Department of Botany, University of Delhi, 110 007, Delhi, India.
| |
Collapse
|
8
|
Childers M, Eckel G, Himmel A, Caldwell J. A new model of cystic fibrosis pathology: Lack of transport of glutathione and its thiocyanate conjugates. Med Hypotheses 2007; 68:101-12. [PMID: 16934416 DOI: 10.1016/j.mehy.2006.06.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Accepted: 06/08/2006] [Indexed: 01/22/2023]
Abstract
Many of the symptoms of cystic fibrosis are not explained by the current disease mechanisms. Therefore, the authors conducted an extensive literature review and present a new model of cystic fibrosis pathology, which is the culmination of this research. Understanding that the cystic fibrosis transmembrane conductance regulator (CFTR) is responsible for glutathione (GSH) transport, the authors hypothesize that mutations of the CFTR, which create abnormal GSH transport, will lead to aberrations of GSH levels in both the intracellular as well as the extracellular milieu. These alterations in normal cellular GSH levels affect the redox state of the cell, thereby affecting the intracellular stress protein, metallothionein. The authors describe how this disruption of the redox state caused by excess cellular GSH, will naturally prevent the delivery of zinc as a cofactor for various enzymatic processes, and how these disruptions in normal redox may cause alterations in both humoral and cell-mediated immunity. Moreover, the symptom of thick sticky mucus in these patients might be explained through the understanding that oversulfation of mucus is a direct result of elevated cellular GSH and cysteine. The issues of hyperinflammation, altered pH and the imbalance of fatty acids that are typical in cystic fibrosis are addressed-all of which may also be linked to disruptions in GSH homeostasis. Additionally, this new model of cystic fibrosis pathology, clarifies the relationship between the CFTR and the multi-drug resistance proteins, and the lack of cell-mediated immunity by predicting that the substrate of these proteins is a glutathione adduct of thiocyanate. Finally, a new therapeutic strategy by using isothiocyanates to rectify the GSH imbalance and restore the immune system is suggested for the treatment of cystic fibrosis patients.
Collapse
Affiliation(s)
- Melanie Childers
- Share International Foundation, 1720 205th Pl NE, Sammamish, WA 98074, USA.
| | | | | | | |
Collapse
|
9
|
Togari A, Arakawa S, Arai M, Matsumoto S. Alteration of in vitro bone metabolism and tooth formation by zinc. GENERAL PHARMACOLOGY 1993; 24:1133-40. [PMID: 8270172 DOI: 10.1016/0306-3623(93)90360-a] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
1. The effects of zinc on bone metabolism and tooth formation was examined in organ cultures of calvaria and tooth germ, and in cell cultures of osteoblast-like cells, MC3T3-E1. 2. Treatment of calvaria with zinc (10, 100 microM) for 4 days both increased alkaline phosphatase (ALP) activity in bone and reduced the secretion of N-acetyl beta-glucosaminidase from bone, without affecting bone mineral or collagen content. The increase in ALP activity produced by zinc (10 microM) was inhibited neither by actinomycin D (5 micrograms/ml) nor by cycloheximide (0.5 micrograms/ml). 3. Treatment of MC3T3-E1 cells with zinc (50, 100 microM) for 25 days also increased ALP activity, but reduced calcium content in cells and in the matrix layer. 4. These results indicate that zinc increases ALP activity in osteoblasts without affecting de novo enzyme synthesis, and that it inhibits bone mineralization, in accordance with the inhibition of osteoclastic activity. 5. Treatment of tooth germ with zinc (100 microM) for 7 days also produced an increase in ALP activity and inhibition of mineralization. These results indicate that the increased ALP activity produced by zinc is a common phenomenon in hard tissues, and, further, that zinc inhibits mineralization during tissue formation.
Collapse
Affiliation(s)
- A Togari
- Department of Pharmacology, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | | | | | | |
Collapse
|
10
|
Evidence that the alkaline P-nitrophenylphosphate phosphatase from Halobacterium halobium is a manganese-containing enzyme. ACTA ACUST UNITED AC 1993. [DOI: 10.1016/0020-711x(93)90483-u] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Leone FA, Pizauro JM, Ciancaglini P. Effect of pH on the modulation of rat osseous plate alkaline phosphatase by metal ions. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1992; 24:923-8. [PMID: 1612182 DOI: 10.1016/0020-711x(92)90098-l] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
1. Metal ions other than zinc and magnesium were effective in modulating the activity of rat osseous plate alkaline phosphatase. 2. Increasing pH had remarkable effects on the modulation of rat osseous plate alkaline phosphatase. 3. The modulation of enzyme activity by zinc, manganese and cobalt ions was slightly affected by pH variations. 4. Zinc ions were stimulatory for the enzyme at very low concentrations (50 nM). Above 50 nM zinc ions inhibited the enzyme by displacing magnesium ions. 5. Calcium ions were inhibitors of alkaline phosphatase (Kd = 10 microM) whereas manganese (Kd = 1.3 microM) and cobalt (Kd = 0.2 microM) ions were stimulatory in the pH range 8.0-10.0.
Collapse
Affiliation(s)
- F A Leone
- Departamento de Química, Faculdade de Filosofia Ciências e Letras, USP, Ribeirão Preto, Brazil
| | | | | |
Collapse
|
12
|
Bonet ML, Llorca FI, Cadenas E. Alkaline p-nitrophenylphosphate phosphatase activity from Halobacterium halobium. Selective activation by manganese and effect of other divalent cations. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1992; 24:839-45. [PMID: 1317306 DOI: 10.1016/0020-711x(92)90022-s] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
1. Alkaline p-nitrophenylphosphate phosphatase (pNPPase) activity of Halobacterium halobium is selectively stabilized and stimulated by Mn2+ ions. 2. Mn2+ binding to native pNPPase is characterized by a dissociation constant of 0.35 mM at pH 8.5, 37 degrees C, with a Hill coefficient of 0.988. 3. Mn2+ behaves as a mixed type nonessential activator, increasing the Vmax value (beta = 6.09, pH 8.5) and decreasing the Km value for pNPP (alpha = 0.56, pH 8.5). The Ki value for inorganic phosphate (a competitive inhibitor) was also decreased in the presence of Mn2+. 4. Activation of native pNPPase by preincubation with Mn2+ is a slow temperature-dependent process, which can be described by an exponential relationship vs time. However, a weak but immediate activation was also detected. 5. Zn2+, Cu2+ and Ni2+ were found to inhibit both native and Mn(2+)-stimulated pNPPase, whereas Co2+ and Cd2+ inhibited the Mn(2+)-stimulated pNPPase but had no effect on the native enzyme form.
Collapse
Affiliation(s)
- M L Bonet
- División de Bioquímica, Facultad de Ciencias, Universidad de Alicante, Spain
| | | | | |
Collapse
|
13
|
Ciancaglini P, Pizauro JM, Leone FA. Polyoxyethylene 9-lauryl ether-solubilized alkaline phosphatase: synergistic stimulation by zinc and magnesium ions. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1992; 24:611-5. [PMID: 1516733 DOI: 10.1016/0020-711x(92)90335-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
1. Polidocanol-solubilized apoalkaline phosphatase could be stimulated either by zinc ions (Kd = 8.5 nM) or by magnesium ions alone (Kd = 3.8 microM). 2. Zinc and magnesium ions had synergistic effects on Polidocanol-solubilized apoalkaline phosphatase, leading to a fully active enzyme (700-800 U/mg). 3. Zinc ions inhibited non-competitively the Polidocanol-solubilized apoenzyme (Ki = 7.1 microM) by displacing magnesium ions from their binding sites. 4. A model for the action of zinc and magnesium ions on the modulation of the enzyme activity is proposed.
Collapse
Affiliation(s)
- P Ciancaglini
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras, Ribeirão Preto, Brazil
| | | | | |
Collapse
|
14
|
Sorimachi K, Ieiri T, Kobayashi M, Horiuchi R, Yasumura Y. Inhibitory effect of dibutyryl cyclic adenosine monophosphate on the induction of alkaline phosphatase in human fetal liver cell line. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 1010:72-7. [PMID: 2535785 DOI: 10.1016/0167-4889(89)90186-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
When human fetal liver cells (HuL-1-317), cultured continuously in a serum-free medium, were incubated with a combination of prednisolone, butyrate and a hypertonic concentration of NaCl at 37 degrees C, alkaline phosphatase activity increased. However, the addition of dibutyryl adenosine cyclic monophosphate (Bt2cAMP) to these agents inhibited the increase in alkaline phosphatase activity in a dose-dependent manner: the inhibitory effect of Bt2cAMP was significant at 0.05 mM, but disappeared at 0.01 mM. Both cycloheximide and actinomycin D inhibited the increase in alkaline phosphatase activity with the combination described above. Western blotting showed that this enzyme activity increase was a consequence of greater biosynthesis of enzyme molecules in HuL-1-317 cells, and that Bt2cAMP regulated the synthesis of enzyme molecules. We conclude that the changes in alkaline phosphatase activity under various conditions are based on the changes in the number of enzyme molecules in HuL-1-317 cells.
Collapse
Affiliation(s)
- K Sorimachi
- Department of Microbiology, Dokkyo University School of Medicine, Tochigi, Japan
| | | | | | | | | |
Collapse
|
15
|
Swick AG, Swick RW. Changes in GDP binding to brown adipose tissue mitochondria and the uncoupling protein. THE AMERICAN JOURNAL OF PHYSIOLOGY 1988; 255:E865-70. [PMID: 3202162 DOI: 10.1152/ajpendo.1988.255.6.e865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Incubation in vitro of brown adipose tissue (BAT) mitochondria with divalent cations, spermine, or alkaline phosphatase led to a marked increase in the binding of [3H]GDP. The effect of Mg2+ appeared to be the most specific and led to the largest increase in GDP binding. A simplified method was developed for measuring GDP binding to purified uncoupling protein from rat BAT mitochondria. Application of this method indicates that uncoupling protein from cold-acclimated rats binds twice as much GDP as uncoupling protein from cold-acclimated rats that were briefly returned to thermoneutrality, paralleling changes in GDP binding to the mitochondria. Incubation of BAT mitochondria with Mg2+ led to a smaller increase in GDP binding to the subsequently purified uncoupling protein, suggesting that divalent cations may somehow participate in the regulation of the activity of the uncoupling protein.
Collapse
Affiliation(s)
- A G Swick
- Department of Nutritional Sciences, University of Wisconsin-Madison 53706
| | | |
Collapse
|