1
|
Zilio E, Schlegel T, Zaninello M, Rugarli EI. The role of mitochondrial mRNA translation in cellular communication. J Cell Sci 2025; 138:jcs263753. [PMID: 40326563 DOI: 10.1242/jcs.263753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025] Open
Abstract
Mitochondria are dynamic and heterogeneous organelles that rewire their network and metabolic functions in response to changing cellular needs. To this end, mitochondria integrate a plethora of incoming signals to influence cell fate and survival. A crucial and highly regulated node of cell-mitochondria communication is the translation of nuclear-encoded mitochondrial mRNAs. By controlling and monitoring the spatio-temporal translation of these mRNAs, cells can rapidly adjust mitochondrial function to meet metabolic demands, optimise ATP production and regulate organelle biogenesis and turnover. In this Review, we focus on how RNA-binding proteins that recognise nuclear-encoded mitochondrial mRNAs acutely modulate the rate of translation in response to nutrient availability. We further discuss the relevance of localised translation of these mRNAs for subsets of mitochondria in polarised cells. Finally, we highlight quality control mechanisms that monitor the translation process at the mitochondrial surface and their connections to mitophagy and stress responses. We propose that these processes collectively contribute to mitochondrial specialisation and signalling function.
Collapse
Affiliation(s)
- Eleonora Zilio
- Institute for Genetics University of Cologne, Cologne 50931, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne 50931, Germany
| | - Tim Schlegel
- Institute for Genetics University of Cologne, Cologne 50931, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne 50931, Germany
| | - Marta Zaninello
- Institute for Genetics University of Cologne, Cologne 50931, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne 50931, Germany
| | - Elena I Rugarli
- Institute for Genetics University of Cologne, Cologne 50931, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne 50931, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne 50931, Germany
| |
Collapse
|
2
|
Barba-Aliaga M, Bernal V, Rong C, Volfbeyn ME, Zhang K, Zid BM, Alepuz P. eIF5A controls mitoprotein import by relieving ribosome stalling at TIM50 translocase mRNA. J Cell Biol 2024; 223:e202404094. [PMID: 39509053 PMCID: PMC11551009 DOI: 10.1083/jcb.202404094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/29/2024] [Accepted: 09/19/2024] [Indexed: 11/15/2024] Open
Abstract
Efficient import of nuclear-encoded proteins into mitochondria is crucial for proper mitochondrial function. The conserved translation factor eIF5A binds ribosomes, alleviating stalling at polyproline-encoding sequences. eIF5A impacts mitochondrial function across species, though the precise molecular mechanism is unclear. We found that eIF5A depletion in yeast reduces the translation and levels of the TCA cycle and oxidative phosphorylation proteins. Loss of eIF5A causes mitoprotein precursors to accumulate in the cytosol and triggers a mitochondrial import stress response. We identify an essential polyproline protein as a direct target of eIF5A: the mitochondrial inner membrane protein and translocase component Tim50. Thus, eIF5A controls mitochondrial protein import by alleviating ribosome stalling along Tim50 mRNA at the mitochondrial surface. Removal of polyprolines from Tim50 partially rescues the mitochondrial import stress response and translation of oxidative phosphorylation genes. Overall, our findings elucidate how eIF5A impacts the mitochondrial function by promoting efficient translation and reducing ribosome stalling of co-translationally imported proteins, thereby positively impacting the mitochondrial import process.
Collapse
Affiliation(s)
- Marina Barba-Aliaga
- Instituto de Biotecnología y Biomedicina (Biotecmed), Universitat de València, València, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, València, Spain
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Vanessa Bernal
- Instituto de Biotecnología y Biomedicina (Biotecmed), Universitat de València, València, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, València, Spain
| | - Cynthia Rong
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Madeleine E. Volfbeyn
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Keguang Zhang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Brian M. Zid
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Paula Alepuz
- Instituto de Biotecnología y Biomedicina (Biotecmed), Universitat de València, València, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, València, Spain
| |
Collapse
|
3
|
Cohen B, Golani-Armon A, Arava YS. Emerging implications for ribosomes in proximity to mitochondria. Semin Cell Dev Biol 2024; 154:123-130. [PMID: 36642616 DOI: 10.1016/j.semcdb.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 12/11/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023]
Abstract
Synthesis of all proteins in eukaryotic cells, apart from a few organellar proteins, is done by cytosolic ribosomes. Many of these ribosomes are localized in the vicinity of the functional site of their encoded protein, enabling local protein synthesis. Studies in various organisms and tissues revealed that such locally translating ribosomes are also present near mitochondria. Here, we provide a brief summary of evidence for localized translation near mitochondria, then present data suggesting that these localized ribosomes may enable local translational regulatory processes in response to mitochondria needs. Finally, we describe the involvement of such localized ribosomes in the quality control of protein synthesis and mitochondria. These emerging views suggest that ribosomes localized near mitochondria are a hub for a variety of activities with diverse implications on mitochondria physiology.
Collapse
Affiliation(s)
- Bar Cohen
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Adi Golani-Armon
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Yoav S Arava
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
4
|
Barba-Aliaga M, Bernal V, Rong C, Zid BM, Alepuz P. eIF5A controls mitoprotein import by relieving ribosome stalling at the TIM50 translocase mRNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.19.572290. [PMID: 38187585 PMCID: PMC10769225 DOI: 10.1101/2023.12.19.572290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The efficient import of nuclear-encoded proteins into mitochondria is crucial for proper mitochondrial function. The conserved translation factor eIF5A is primarily known as an elongation factor which binds ribosomes to alleviate ribosome stalling at sequences encoding polyprolines or combinations of proline with glycine and charged amino acids. eIF5A is known to impact the mitochondrial function across a variety of species although the precise molecular mechanism underlying this impact remains unclear. We found that depletion of eIF5A in yeast drives reduced translation and levels of TCA cycle and oxidative phosphorylation proteins. We further found that loss of eIF5A leads to the accumulation of mitoprotein precursors in the cytosol as well as to the induction of a mitochondrial import stress response. Here we identify an essential polyproline-containing protein as a direct eIF5A target for translation: the mitochondrial inner membrane protein Tim50, which is the receptor subunit of the TIM23 translocase complex. We show how eIF5A directly controls mitochondrial protein import through the alleviation of ribosome stalling along TIM50 mRNA at the mitochondrial surface. Removal of the polyprolines from Tim50 rescues the mitochondrial import stress response, as well as the translation of oxidative phosphorylation reporter genes in an eIF5A loss of function. Overall, our findings elucidate how eIF5A impacts the mitochondrial function by reducing ribosome stalling and facilitating protein translation, thereby positively impacting the mitochondrial import process.
Collapse
Affiliation(s)
- Marina Barba-Aliaga
- Instituto de Biotecnología y Biomedicina (Biotecmed), Universitat de València, 46100 València, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, 46100 València, Spain
| | - Vanessa Bernal
- Instituto de Biotecnología y Biomedicina (Biotecmed), Universitat de València, 46100 València, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, 46100 València, Spain
| | - Cynthia Rong
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, United States
| | - Brian M Zid
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, United States
| | - Paula Alepuz
- Instituto de Biotecnología y Biomedicina (Biotecmed), Universitat de València, 46100 València, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, 46100 València, Spain
| |
Collapse
|
5
|
Morales-Polanco F, Lee JH, Barbosa NM, Frydman J. Cotranslational Mechanisms of Protein Biogenesis and Complex Assembly in Eukaryotes. Annu Rev Biomed Data Sci 2022; 5:67-94. [PMID: 35472290 PMCID: PMC11040709 DOI: 10.1146/annurev-biodatasci-121721-095858] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The formation of protein complexes is crucial to most biological functions. The cellular mechanisms governing protein complex biogenesis are not yet well understood, but some principles of cotranslational and posttranslational assembly are beginning to emerge. In bacteria, this process is favored by operons encoding subunits of protein complexes. Eukaryotic cells do not have polycistronic mRNAs, raising the question of how they orchestrate the encounter of unassembled subunits. Here we review the constraints and mechanisms governing eukaryotic co- and posttranslational protein folding and assembly, including the influence of elongation rate on nascent chain targeting, folding, and chaperone interactions. Recent evidence shows that mRNAs encoding subunits of oligomeric assemblies can undergo localized translation and form cytoplasmic condensates that might facilitate the assembly of protein complexes. Understanding the interplay between localized mRNA translation and cotranslational proteostasis will be critical to defining protein complex assembly in vivo.
Collapse
Affiliation(s)
| | - Jae Ho Lee
- Department of Biology, Stanford University, Stanford, California, USA;
| | - Natália M Barbosa
- Department of Biology, Stanford University, Stanford, California, USA;
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, California, USA;
- Department of Genetics, Stanford University, Stanford, California, USA
| |
Collapse
|
6
|
Avendaño-Monsalve MC, Mendoza-Martínez AE, Ponce-Rojas JC, Poot-Hernández AC, Rincón-Heredia R, Funes S. Positively charged amino acids at the N terminus of select mitochondrial proteins mediate early recognition by import proteins αβ'-NAC and Sam37. J Biol Chem 2022; 298:101984. [PMID: 35487246 PMCID: PMC9136113 DOI: 10.1016/j.jbc.2022.101984] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 11/04/2022] Open
Abstract
A major challenge in eukaryotic cells is the proper distribution of nuclear-encoded proteins to the correct organelles. For a subset of mitochondrial proteins, a signal sequence at the N terminus (matrix-targeting sequence [MTS]) is recognized by protein complexes to ensure their proper translocation into the organelle. However, the early steps of mitochondrial protein targeting remain undeciphered. The cytosolic chaperone nascent polypeptide–associated complex (NAC), which in yeast is represented as the two different heterodimers αβ-NAC and αβ′-NAC, has been proposed to be involved during the early steps of mitochondrial protein targeting. We have previously described that the mitochondrial outer membrane protein Sam37 interacts with αβ′-NAC and together promote the import of specific mitochondrial precursor proteins. In this work, we aimed to detect the region in the MTS of mitochondrial precursors relevant for their recognition by αβ′-NAC during their sorting to the mitochondria. We used targeting signals of different mitochondrial proteins (αβ′-NAC-dependent Oxa1 and αβ′-NAC-independent Mdm38) and fused them to GFP to study their intracellular localization by biochemical and microscopy methods, and in addition followed their import kinetics in vivo. Our results reveal the presence of a positively charged amino acid cluster in the MTS of select mitochondrial precursors, such as Oxa1 and Fum1, which are crucial for their recognition by αβ′-NAC. Furthermore, we explored the presence of this cluster at the N terminus of the mitochondrial proteome and propose a set of precursors whose proper localization depends on both αβ′-NAC and Sam37.
Collapse
Affiliation(s)
- Maria Clara Avendaño-Monsalve
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Coyoacán, Cd.Mx., Mexico
| | - Ariann E Mendoza-Martínez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Coyoacán, Cd.Mx., Mexico
| | - José Carlos Ponce-Rojas
- Department of Molecular, Cellular, and Developmental Biology, University of California at Santa Barbara, Santa Barbara, California, USA
| | - Augusto César Poot-Hernández
- Unidad de Bioinformática y Manejo de la Información, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Coyoacán, Cd.Mx., Mexico
| | - Ruth Rincón-Heredia
- Unidad de Imagenología, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Coyoacán, Cd.Mx., Mexico
| | - Soledad Funes
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Coyoacán, Cd.Mx., Mexico.
| |
Collapse
|
7
|
Eldeeb MA, Thomas RA, Ragheb MA, Fallahi A, Fon EA. Mitochondrial quality control in health and in Parkinson's disease. Physiol Rev 2022; 102:1721-1755. [PMID: 35466694 DOI: 10.1152/physrev.00041.2021] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
As a central hub for cellular metabolism and intracellular signalling, the mitochondrion is a pivotal organelle, dysfunction of which has been linked to several human diseases including neurodegenerative disorders, and in particular Parkinson's disease. An inherent challenge that mitochondria face is the continuous exposure to diverse stresses which increase their likelihood of dysregulation. In response, eukaryotic cells have evolved sophisticated quality control mechanisms to monitor, identify, repair and/or eliminate abnormal or misfolded proteins within the mitochondrion and/or the dysfunctional mitochondrion itself. Chaperones identify unstable or otherwise abnormal conformations in mitochondrial proteins and can promote their refolding to recover their correct conformation and stability. However, if repair is not possible, the abnormal protein is selectively degraded to prevent potentially damaging interactions with other proteins or its oligomerization into toxic multimeric complexes. The autophagic-lysosomal system and the ubiquitin-proteasome system mediate the selective and targeted degradation of such abnormal or misfolded protein species. Mitophagy (a specific kind of autophagy) mediates the selective elimination of dysfunctional mitochondria, in order to prevent the deleterious effects the dysfunctional organelles within the cell. Despite our increasing understanding of the molecular responses toward dysfunctional mitochondria, many key aspects remain relatively poorly understood. Herein, we review the emerging mechanisms of mitochondrial quality control including quality control strategies coupled to mitochondrial import mechanisms. In addition, we review the molecular mechanisms regulating mitophagy with an emphasis on the regulation of PINK1/PARKIN-mediated mitophagy in cellular physiology and in the context of Parkinson's disease cell biology.
Collapse
Affiliation(s)
- Mohamed A Eldeeb
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Rhalena A Thomas
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Mohamed A Ragheb
- Chemistry Department (Biochemistry Division), Faculty of Science, Cairo University, Giza, Egypt
| | - Armaan Fallahi
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Edward A Fon
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
8
|
Müntjes K, Devan SK, Reichert AS, Feldbrügge M. Linking transport and translation of mRNAs with endosomes and mitochondria. EMBO Rep 2021; 22:e52445. [PMID: 34402186 PMCID: PMC8490996 DOI: 10.15252/embr.202152445] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 07/06/2021] [Accepted: 07/27/2021] [Indexed: 01/01/2023] Open
Abstract
In eukaryotic cells, proteins are targeted to their final subcellular locations with precise timing. A key underlying mechanism is the active transport of cognate mRNAs, which in many systems can be linked intimately to membrane trafficking. A prominent example is the long-distance endosomal transport of mRNAs and their local translation. Here, we describe current highlights of fundamental mechanisms of the underlying transport process as well as of biological functions ranging from endosperm development in plants to fungal pathogenicity and neuronal processes. Translation of endosome-associated mRNAs often occurs at the cytoplasmic surface of endosomes, a process that is needed for membrane-assisted formation of heteromeric protein complexes and for accurate subcellular targeting of proteins. Importantly, endosome-coupled translation of mRNAs encoding mitochondrial proteins, for example, seems to be particularly important for efficient organelle import and for regulating subcellular mitochondrial activity. In essence, these findings reveal a new mechanism of loading newly synthesised proteins onto endocytic membranes enabling intimate crosstalk between organelles. The novel link between endosomes and mitochondria adds an inspiring new level of complexity to trafficking and organelle biology.
Collapse
Affiliation(s)
- Kira Müntjes
- Institute of MicrobiologyCluster of Excellence on Plant SciencesHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Senthil Kumar Devan
- Institute of MicrobiologyCluster of Excellence on Plant SciencesHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology IMedical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Michael Feldbrügge
- Institute of MicrobiologyCluster of Excellence on Plant SciencesHeinrich Heine University DüsseldorfDüsseldorfGermany
| |
Collapse
|
9
|
Lashkevich KA, Dmitriev SE. mRNA Targeting, Transport and Local Translation in Eukaryotic Cells: From the Classical View to a Diversity of New Concepts. Mol Biol 2021; 55:507-537. [PMID: 34092811 PMCID: PMC8164833 DOI: 10.1134/s0026893321030080] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 02/26/2021] [Accepted: 03/12/2021] [Indexed: 12/28/2022]
Abstract
Spatial organization of protein biosynthesis in the eukaryotic cell has been studied for more than fifty years, thus many facts have already been included in textbooks. According to the classical view, mRNA transcripts encoding secreted and transmembrane proteins are translated by ribosomes associated with endoplasmic reticulum membranes, while soluble cytoplasmic proteins are synthesized on free polysomes. However, in the last few years, new data has emerged, revealing selective translation of mRNA on mitochondria and plastids, in proximity to peroxisomes and endosomes, in various granules and at the cytoskeleton (actin network, vimentin intermediate filaments, microtubules and centrosomes). There are also long-standing debates about the possibility of protein synthesis in the nucleus. Localized translation can be determined by targeting signals in the synthesized protein, nucleotide sequences in the mRNA itself, or both. With RNA-binding proteins, many transcripts can be assembled into specific RNA condensates and form RNP particles, which may be transported by molecular motors to the sites of active translation, form granules and provoke liquid-liquid phase separation in the cytoplasm, both under normal conditions and during cell stress. The translation of some mRNAs occurs in specialized "translation factories," assemblysomes, transperons and other structures necessary for the correct folding of proteins, interaction with functional partners and formation of oligomeric complexes. Intracellular localization of mRNA has a significant impact on the efficiency of its translation and presumably determines its response to cellular stress. Compartmentalization of mRNAs and the translation machinery also plays an important role in viral infections. Many viruses provoke the formation of specific intracellular structures, virus factories, for the production of their proteins. Here we review the current concepts of the molecular mechanisms of transport, selective localization and local translation of cellular and viral mRNAs, their effects on protein targeting and topogenesis, and on the regulation of protein biosynthesis in different compartments of the eukaryotic cell. Special attention is paid to new systems biology approaches, providing new cues to the study of localized translation.
Collapse
Affiliation(s)
- Kseniya A Lashkevich
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119234 Moscow, Russia.,Faculty of Bioengineering and Bioinformatics, Moscow State University, 119234 Moscow, Russia
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119234 Moscow, Russia.,Faculty of Bioengineering and Bioinformatics, Moscow State University, 119234 Moscow, Russia.,Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
10
|
Kreimendahl S, Rassow J. The Mitochondrial Outer Membrane Protein Tom70-Mediator in Protein Traffic, Membrane Contact Sites and Innate Immunity. Int J Mol Sci 2020; 21:E7262. [PMID: 33019591 PMCID: PMC7583919 DOI: 10.3390/ijms21197262] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 02/08/2023] Open
Abstract
Tom70 is a versatile adaptor protein of 70 kDa anchored in the outer membrane of mitochondria in metazoa, fungi and amoeba. The tertiary structure was resolved for the Tom70 of yeast, showing 26 α-helices, most of them participating in the formation of 11 tetratricopeptide repeat (TPR) motifs. Tom70 serves as a docking site for cytosolic chaperone proteins and co-chaperones and is thereby involved in the uptake of newly synthesized chaperone-bound proteins in mitochondrial biogenesis. In yeast, Tom70 additionally mediates ER-mitochondria contacts via binding to sterol transporter Lam6/Ltc1. In mammalian cells, TOM70 promotes endoplasmic reticulum (ER) to mitochondria Ca2+ transfer by association with the inositol-1,4,5-triphosphate receptor type 3 (IP3R3). TOM70 is specifically targeted by the Bcl-2-related protein MCL-1 that acts as an anti-apoptotic protein in macrophages infected by intracellular pathogens, but also in many cancer cells. By participating in the recruitment of PINK1 and the E3 ubiquitin ligase Parkin, TOM70 can be implicated in the development of Parkinson's disease. TOM70 acts as receptor of the mitochondrial antiviral-signaling protein (MAVS) and thereby participates in the corresponding system of innate immunity against viral infections. The protein encoded by Orf9b in the genome of SARS-CoV-2 binds to TOM70, probably compromising the synthesis of type I interferons.
Collapse
Affiliation(s)
| | - Joachim Rassow
- Institute for Biochemistry and Pathobiochemistry, Ruhr-University Bochum, 44801 Bochum, Germany;
| |
Collapse
|
11
|
Cytosolic Events in the Biogenesis of Mitochondrial Proteins. Trends Biochem Sci 2020; 45:650-667. [DOI: 10.1016/j.tibs.2020.04.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/18/2020] [Accepted: 04/02/2020] [Indexed: 01/08/2023]
|
12
|
Avendaño-Monsalve MC, Ponce-Rojas JC, Funes S. From cytosol to mitochondria: the beginning of a protein journey. Biol Chem 2020; 401:645-661. [DOI: 10.1515/hsz-2020-0110] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/24/2020] [Indexed: 01/18/2023]
Abstract
AbstractMitochondrial protein import is one of the key processes during mitochondrial biogenesis that involves a series of events necessary for recognition and delivery of nucleus-encoded/cytosol-synthesized mitochondrial proteins into the organelle. The past research efforts have mainly unraveled how membrane translocases ensure the correct protein sorting within the different mitochondrial subcompartments. However, early steps of recognition and delivery remain relatively uncharacterized. In this review, we discuss our current understanding about the signals on mitochondrial proteins, as well as in the mRNAs encoding them, which with the help of cytosolic chaperones and membrane receptors support protein targeting to the organelle in order to avoid improper localization. In addition, we discuss recent findings that illustrate how mistargeting of mitochondrial proteins triggers stress responses, aiming to restore cellular homeostasis.
Collapse
Affiliation(s)
- Maria Clara Avendaño-Monsalve
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n Ciudad Universitaria Coyoacán, México, Cd.Mx. 04510, Mexico
| | - José Carlos Ponce-Rojas
- Department of Molecular, Cellular, and Developmental Biology, University of California at Santa Barbara, Santa Barbara, CA 93106-9625, USA
| | - Soledad Funes
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n Ciudad Universitaria Coyoacán, México, Cd.Mx. 04510, Mexico
| |
Collapse
|
13
|
Vardi-Oknin D, Arava Y. Characterization of Factors Involved in Localized Translation Near Mitochondria by Ribosome-Proximity Labeling. Front Cell Dev Biol 2019; 7:305. [PMID: 31929983 PMCID: PMC6945718 DOI: 10.3389/fcell.2019.00305] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/11/2019] [Indexed: 12/13/2022] Open
Abstract
Mitochondria exert their many functions through a repertoire of hundreds of proteins. The vast majority of these proteins are encoded in the nuclear genome, translated in the cytosol and imported into the mitochondria. Current models, derived mainly from work in yeast, suggest that the translation of many of these proteins can occur in close vicinity to the mitochondria outer membrane by localized ribosomes. Here, we applied ribosome-proximity biotin labeling to address this possibility. A clear biotinylation of ribosomes by mitochondrial Tom20-BirA fusion protein was observed in a human cell line. Isolation of these ribosomes revealed their preferred association with mRNAs encoding mitochondrial proteins. Furthermore, knock down of the mitochondrial protein receptor Tom70 resulted in a decrease in ribosomes translating mRNAs encoding proteins predicted to be recognized by Tom70. Intriguingly, levels of ribosomes translating mRNAs encoding targets of Tom20 were increased. We also knocked down the RNA binding protein CLUH that is implicated in regulation of mRNA encoding mitochondrial proteins, and found an increase in association of CLUH targets with mitochondria-proximal ribosomes. This is consistent with a role for CLUH in maintaining mRNAs encoding mitochondrial proteins in the cytosol. Overall, these data shed light on factors that contribute to association of translating ribosomes with human mitochondria and may suggest a co-translational mode of protein import into this organelle.
Collapse
Affiliation(s)
- Dikla Vardi-Oknin
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel.,Program in Nanotechnology and Nanoscience, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yoav Arava
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
14
|
Translational regulation of mitochondrial biogenesis. Biochem Soc Trans 2016; 44:1717-1724. [DOI: 10.1042/bst20160071c] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 08/30/2016] [Accepted: 09/02/2016] [Indexed: 01/08/2023]
Abstract
Mitochondria are generated by the expression of genes on both nuclear and mitochondrial genome. Mitochondrial biogenesis is highly plastic in response to cellular energy demand, developmental signals and environmental stimuli. Mechanistic target of rapamycin (mTOR) pathway regulates mitochondrial biogenesis to co-ordinate energy homeostasis with cell growth. The local translation of mitochondrial proteins on the outer membrane facilitates their efficient import and thereby allows prodigious mitochondrial biogenesis during rapid cell growth and proliferation. We postulate that the local translation may also allow cells to promote mitochondrial biogenesis selectively based on the fitness of individual organelle. MDI–Larp complex promotes the biogenesis of healthy mitochondria and thereby is essential for the selective transmission of healthy mitochondria. On the other hand, PTEN-induced putative kinase 1 (PINK1)–Pakin activates protein synthesis on damaged mitochondria to maintain the organelle homeostasis and activity. We also summarize some recent progress on miRNAs' regulation on mitochondrial biogenesis.
Collapse
|
15
|
Abstract
Local synthesis of proteins near their activity site has been demonstrated in many biological systems, and has diverse contributions to cellular functions. Studies in recent years have revealed that hundreds of mitochondria-destined proteins are synthesized by cytosolic ribosomes near the mitochondrial outer membrane, indicating that localized translation also occurs at this cellular locus. Furthermore, in the last year central factors that are involved in this process were identified in yeast, Drosophila, and human cells. Herein we review the experimental evidence for localized translation on the cytosolic side of the mitochondrial outer membrane; in addition, we describe the factors that are involved in this process and discuss the conservation of this mechanism among various species. We also describe the relationship between localized translation and import into the mitochondria and suggest avenues of study that look beyond cotranslational import. Finally we discuss future challenges in characterizing the mechanisms for localized translation and its physiological significance.
Collapse
Affiliation(s)
- Chen Lesnik
- a Department of Biology ; Technion - Israel Institute of Technology ; Haifa , Israel
| | | | | |
Collapse
|
16
|
Singer-Krüger B, Jansen RP. Here, there, everywhere. mRNA localization in budding yeast. RNA Biol 2014; 11:1031-9. [PMID: 25482891 DOI: 10.4161/rna.29945] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
mRNA localization and localized translation is a common mechanism that contributes to cell polarity and cellular asymmetry. In metazoan, mRNA transport participates in embryonic axis determination and neuronal plasticity. Since the mRNA localization process and its molecular machinery are rather complex in higher eukaryotes, the unicellular yeast Saccharomyces cerevisiae has become an attractive model to study mRNA localization. Although the focus has so far been on the mechanism of ASH1 mRNA transport, it has become evident that mRNA localization also assists in protein sorting to organelles, as well as in polarity establishment and maintenance. A diversity of different pathways has been identified that targets mRNA to their destination site, ranging from motor protein-dependent trafficking of translationally silenced mRNAs to co-translational targeting, in which mRNAs hitch-hike to organelles on ribosomes during nascent polypeptide chain elongation. The presence of these diverse pathways in yeast allows a systemic analysis of the contribution of mRNA localization to the physiology of a cell.
Collapse
Affiliation(s)
- Birgit Singer-Krüger
- a Interfaculty Institute of Biochemistry ; University of Tübingen ; Tübingen , Germany
| | | |
Collapse
|
17
|
Weis BL, Schleiff E, Zerges W. Protein targeting to subcellular organelles via MRNA localization. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:260-73. [PMID: 23457718 DOI: 10.1016/j.bbamcr.2012.04.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cells have complex membranous organelles for the compartmentalization and the regulation of most intracellular processes. Organelle biogenesis and maintenance requires newly synthesized proteins, each of which needs to go from the ribosome translating its mRNA to the correct membrane for insertion or transclocation to an a organellar subcompartment. Decades of research have revealed how proteins are targeted to the correct organelle and translocated across one or more organelle membranes ro the compartment where they function. The paradigm examples involve interactions between a peptide sequence in the protein, localization factors, and various membrane embedded translocation machineries. Membrane translocation is either cotranslational or posttranslational depending on the protein and target organelle. Meanwhile research in embryos, neurons and yeast revealed an alternative targeting mechanism in which the mRNA is localized and only then translated to synthesize the protein in the correct location. In these cases, the targeting information is coded by the cis-acting sequences in the mRNA ("Zipcodes") that interact with localization factors and, in many cases, are transported by the molecular motors on the cytoskeletal filaments. Recently, evidence has been found for this "mRNA based" mechanism in organelle protein targeting to endoplasmic reticulum, mitochondria, and the photosynthetic membranes within chloroplasts. Here we review known and potential roles of mRNA localization in protein targeting to and within organelles. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.
Collapse
Affiliation(s)
- Benjamin L Weis
- Goether University, Cluster of Excellence Macromolecular Complexes, Institute for Molecular Biosciences, Max-von-Laue Str. 9, D-60438 Frankfort, Germany
| | | | | |
Collapse
|
18
|
Eliyahu E, Lesnik C, Arava Y. The protein chaperone Ssa1 affects mRNA localization to the mitochondria. FEBS Lett 2011; 586:64-9. [PMID: 22138184 DOI: 10.1016/j.febslet.2011.11.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 11/05/2011] [Accepted: 11/16/2011] [Indexed: 11/16/2022]
Abstract
Many nuclear-transcribed mRNAs encoding mitochondrial proteins are localized near the mitochondrial outer membrane. A yet unresolved question is whether protein synthesis is important for transport of these mRNAs to their destination. Herein we present a connection between mRNA localization in yeast and the protein chaperone Ssa1. Ssa1 depletion lowered mRNA association with mitochondria while its overexpression increased it. A genome-wide analysis revealed that Ssa proteins preferentially affect mRNAs encoding hydrophobic proteins, which are expected targets for these protein chaperones. Importantly, deletion of the mitochondrial receptor Tom70 abolished the impact of Ssa1 overexpression on mRNAs encoding Tom70 targets. Taken together, our results suggest a role for Ssa1 in mediating localization of nascent peptide-ribosome-mRNA complexes to the mitochondria, consistent with a co-translational transport process.
Collapse
Affiliation(s)
- Erez Eliyahu
- Department of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | | | | |
Collapse
|
19
|
Eliyahu E, Melamed D, Arava Y. Genome-wide analysis of RNA extracted from isolated mitochondria. Methods Mol Biol 2011; 714:287-299. [PMID: 21431748 DOI: 10.1007/978-1-61779-005-8_18] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Isolating mitochondria by subcellular fractionation is a well-established method for retrieving intact and functional mitochondria. This procedure has been used to identify proteins of the mitochondria and to explore import mechanisms. Using the same method, it was shown that mitochondria can be purified along with cytoplasmic ribosomes and nuclear-encoded mRNAs attached to the outer membrane. Combining this procedure with DNA microarray analysis allows for global identification of the mRNAs associated with mitochondria, and hence a better understanding of the underlying molecular mechanisms. In this chapter, we will describe a procedure for the isolation of mitochondria from yeast and RNA purification. We will then describe the process of labeling and hybridization to DNA microarrays, and comment on a few aspects of the data analysis.
Collapse
Affiliation(s)
- Erez Eliyahu
- Technion–Israel Institute of Technology, Haifa, Israel
| | | | | |
Collapse
|
20
|
Matrosova EV, Masheyka IS, Kudryavtseva OA, Kamzolkina OV. Mitochondrial morphogenesis and ultrastructure of basidiomycetes from genera Agaricus and Pleurotus. ACTA ACUST UNITED AC 2009. [DOI: 10.1134/s1990519x09040099] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Ahmed AU, Fisher PR. Import of nuclear-encoded mitochondrial proteins: a cotranslational perspective. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 273:49-68. [PMID: 19215902 DOI: 10.1016/s1937-6448(08)01802-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A growing amount of evidence suggests that the cytosolic translation of nuclear-encoded mitochondrial proteins and their subsequent import into mitochondria are tightly coupled in a process termed cotranslational import. In addition to the original posttranslational view of mitochondrial protein import, early literature also provides both in vitro and in vivo experimental evidence supporting the simultaneous existence of a cotranslational protein-import mechanism in mitochondria. Recent investigations have started to reveal the cotranslational import mechanism which is initiated by transporting either a translation complex or a translationally competent mRNA encoding a mitochondrial protein to the mitochondrial surface. The intracellular localization of mRNA to the mitochondrial surface has emerged as the latest addition to our understanding of mitochondrial biogenesis. It is mediated by targeting elements within the mRNA molecule in association with potential mRNA-binding proteins.
Collapse
Affiliation(s)
- Afsar U Ahmed
- Department of Microbiology, La Trobe University, Victoria, Australia
| | | |
Collapse
|
22
|
Saint-Georges Y, Garcia M, Delaveau T, Jourdren L, Le Crom S, Lemoine S, Tanty V, Devaux F, Jacq C. Yeast mitochondrial biogenesis: a role for the PUF RNA-binding protein Puf3p in mRNA localization. PLoS One 2008; 3:e2293. [PMID: 18523582 PMCID: PMC2387061 DOI: 10.1371/journal.pone.0002293] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Accepted: 04/17/2008] [Indexed: 01/01/2023] Open
Abstract
The asymmetric localization of mRNA plays an important role in coordinating posttranscriptional events in eukaryotic cells. We investigated the peripheral mitochondrial localization of nuclear-encoded mRNAs (MLR) in various conditions in which the mRNA binding protein context and the translation efficiency were altered. We identified Puf3p, a Pumilio family RNA-binding protein, as the first trans-acting factor controlling the MLR phenomenon. This allowed the characterization of two classes of genes whose mRNAs are translated to the vicinity of mitochondria. Class I mRNAs (256 genes) have a Puf3p binding motif in their 3'UTR region and many of them have their MLR properties deeply affected by PUF3 deletion. Conversely, mutations in the Puf3p binding motif alter the mitochondrial localization of BCS1 mRNA. Class II mRNAs (224 genes) have no Puf3p binding site and their asymmetric localization is not affected by the absence of PUF3. In agreement with a co-translational import process, we observed that the presence of puromycin loosens the interactions between most of the MLR-mRNAs and mitochondria. Unexpectedly, cycloheximide, supposed to solidify translational complexes, turned out to destabilize a class of mRNA-mitochondria interactions. Classes I and II mRNAs, which are therefore transported to the mitochondria through different pathways, correlated with different functional modules. Indeed, Class I genes code principally for the assembly factors of respiratory chain complexes and the mitochondrial translation machinery (ribosomes and translation regulators). Class II genes encode proteins of the respiratory chain or proteins involved in metabolic pathways. Thus, MLR, which is intimately linked to translation control, and the activity of mRNA-binding proteins like Puf3p, may provide the conditions for a fine spatiotemporal control of mitochondrial protein import and mitochondrial protein complex assembly. This work therefore provides new openings for the global study of mitochondria biogenesis.
Collapse
Affiliation(s)
- Yann Saint-Georges
- Laboratoire de Génétique Moléculaire CNRS-UMR8541, Ecole Normale Supérieure, Paris, France
| | - Mathilde Garcia
- Laboratoire de Génétique Moléculaire CNRS-UMR8541, Ecole Normale Supérieure, Paris, France
| | - Thierry Delaveau
- Laboratoire de Génétique Moléculaire CNRS-UMR8541, Ecole Normale Supérieure, Paris, France
| | - Laurent Jourdren
- Plateforme Transcriptome IFR36, Ecole Normale Supérieure, Paris, France
| | - Stephane Le Crom
- Plateforme Transcriptome IFR36, Ecole Normale Supérieure, Paris, France
| | - Sophie Lemoine
- Plateforme Transcriptome IFR36, Ecole Normale Supérieure, Paris, France
| | - Veronique Tanty
- Plateforme Transcriptome IFR36, Ecole Normale Supérieure, Paris, France
| | - Frederic Devaux
- Laboratoire de Génétique Moléculaire CNRS-UMR8541, Ecole Normale Supérieure, Paris, France
- * E-mail: (FD); (CJ)
| | - Claude Jacq
- Laboratoire de Génétique Moléculaire CNRS-UMR8541, Ecole Normale Supérieure, Paris, France
- Plateforme Transcriptome IFR36, Ecole Normale Supérieure, Paris, France
- * E-mail: (FD); (CJ)
| |
Collapse
|
23
|
Zarnack K, Feldbrügge M. mRNA trafficking in fungi. Mol Genet Genomics 2007; 278:347-59. [PMID: 17768642 DOI: 10.1007/s00438-007-0271-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 06/21/2007] [Accepted: 06/25/2007] [Indexed: 12/19/2022]
Abstract
Fungal growth depends on active transport of macromolecules along the actin and/or microtubule cytoskeleton. Thereby, molecular cargo such as proteins, lipids, and mRNAs is targeted to defined subcellular regions. Active transport and localisation of mRNAs mediate localised translation so that protein synthesis occurs where protein function is required. In Saccharomyces cerevisiae, actomyosin-dependent mRNA trafficking participates in polar growth, asymmetric cell division, targeting of membrane proteins and import of mitochondrial proteins. The best-understood example is transport of ASH1 mRNA to the distal pole of the incipient daughter cell. cis-acting RNA sequences are recognised by the RNA-binding protein She2p that is connected via the adaptor She3p to the molecular motor Myo4p. Local translation at the poles of daughter cells causes Ash1p to accumulate predominantly in nuclei of daughter cells, where this transcription factor inhibits mating-type switching. Recently, it was also shown that actomyosin-dependent ASH1 mRNA transport directs tip cell-specific gene expression in filaments of the human pathogen Candida albicans. Furthermore, in the plant pathogen Ustilago maydis microtubule-dependent shuttling of the RNA-binding protein Rrm4 is essential to determine the axis of polarity in infectious filaments. Thus, mRNA trafficking appears to be universally required for polar growth of fungi.
Collapse
Affiliation(s)
- Kathi Zarnack
- Department for Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse, 35043, Marburg, Germany
| | | |
Collapse
|
24
|
Ahmed AU, Beech PL, Lay ST, Gilson PR, Fisher PR. Import-associated translational inhibition: novel in vivo evidence for cotranslational protein import into Dictyostelium discoideum mitochondria. EUKARYOTIC CELL 2006; 5:1314-27. [PMID: 16896215 PMCID: PMC1539133 DOI: 10.1128/ec.00386-05] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2005] [Accepted: 05/29/2006] [Indexed: 11/20/2022]
Abstract
To investigate protein import into the mitochondria of Dictyostelium discoideum, green fluorescent protein (GFP) was fused as a reporter protein either to variable lengths of the N-terminal region of chaperonin 60 (the first 23, 40, 80, 97, and 150 amino acids) or to the mitochondrial targeting sequence of DNA topoisomerase II. The fusion proteins were expressed in AX2 cells under the actin-15 promoter. Fluorescence images of GFP transformants confirmed that Dictyostelium chaperonin 60 is a mitochondrial protein. The level of the mitochondrially targeted GFP fusion proteins was unexpectedly much lower than the nontargeted (cytoplasmic) forms. The distinction between targeted and nontargeted protein activities was investigated at both the transcriptional and translational levels in vivo. We found that targeting GFP to the mitochondria results in reduced levels of the fusion protein even though transcription of the fusion gene and the stability of the protein are unaffected. [(35)S]methionine labeling and GFP immunoprecipitation confirmed that mitochondrially targeted GFP is translated at much slower rates than nontargeted GFP. The results indicate a novel phenomenon, import-associated translational inhibition, whereby protein import into the mitochondria limits the rate of translation. The simplest explanation for this is that import of the GFP fusion proteins occurs cotranslationally, i.e., protein synthesis and import into mitochondria are coupled events. Consistent with cotranslational import, Northern analysis showed that the GFP mRNA is associated with isolated mitochondria. This association occurred regardless of whether the GFP was fused to a mitochondrial leader peptide. However, the presence of an import-competent leader peptide stabilized the mRNA-mitochondria association, rendering it more resistant to extensive EDTA washing. In contrast with GFP, the mRNA of another test protein, aequorin, did not associate with the mitochondria, and its translation was unaffected by import of the encoded polypeptide into the mitochondria.
Collapse
Affiliation(s)
- Afsar U Ahmed
- Department of Microbiology, La Trobe University, Bundoora, Victoria 3086, Australia
| | | | | | | | | |
Collapse
|
25
|
Rassow J, Pfanner N. Molecular chaperones and intracellular protein translocation. Rev Physiol Biochem Pharmacol 2006; 126:199-264. [PMID: 7886379 DOI: 10.1007/bfb0049777] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- J Rassow
- Biochemisches Institut, Universität Freiburg, Germany
| | | |
Collapse
|
26
|
MacKenzie JA, Payne RM. Preparation of ribosomes loaded with truncated nascent proteins to study ribosome binding to mammalian mitochondria. Mitochondrion 2006; 6:64-70. [PMID: 16513430 DOI: 10.1016/j.mito.2006.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2005] [Revised: 12/13/2005] [Accepted: 01/11/2006] [Indexed: 11/23/2022]
Abstract
Supporting a co-translational model of protein import into mitochondria, we have previously shown that ribosome-nascent chain complexes (RNCs) specifically bind to mitochondria. When producing RNCs using the rabbit reticulocyte lysate in vitro translation system, it was necessary to maximize ribosome loading with truncated nascent proteins because it had a direct impact on RNC binding. We describe here the optimal conditions for preparing RNCs. We show that translation temperature and reaction time are two critical factors, with 30 degrees Celsius and 15min being optimal, respectively. We also show that transcription reactions can be used directly in the translation reaction to create RNCs.
Collapse
Affiliation(s)
- James A MacKenzie
- Department of Biological Sciences, Oswego State University of New York, Oswego, NY 13126, USA
| | | |
Collapse
|
27
|
Margeot A, Garcia M, Wang W, Tetaud E, di Rago JP, Jacq C. Why are many mRNAs translated to the vicinity of mitochondria: A role in protein complex assembly? Gene 2005; 354:64-71. [PMID: 15979254 DOI: 10.1016/j.gene.2005.04.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Accepted: 04/15/2005] [Indexed: 11/28/2022]
Abstract
The longstanding question of the presence of mitochondria-bound polysomes has been recently revisited using new approaches. Genome-wide analyses provided evidence that many genes are actually translated on mitochondria-bound polysomes and GFP-labeling techniques have shown that, in vivo, the 3'UTR sequence of these genes contains signals which can target hybrid RNA molecules to the proximity of mitochondria. Evolutionary conservation of some of these signals will be presented. Interestingly, class I mRNA which are translated on free polysomes and class II mRNA which are translated on mitochondria-bound polysomes have, mostly, eukaryotic and prokaryotic origins respectively. Using ATP2, a typical prokaryotic-derived gene, as a model for class II mRNA, we showed that its 3'UTR sequence is essential both for a correct addressing of mRNA to mitochondria proximity and to a proper production of functional ATP synthases. These different observations suggest that prokaryotic-derived genes are, like the contemporary mitochondrial genes, translated near mitochondrial membranes. In both cases this locus specific translation process might be connected to a correct complex assembly program and the cases of ATP synthase and cytochrome c oxidase complexes will be considered in this respect.
Collapse
Affiliation(s)
- A Margeot
- Laboratoire de Génétique Moléculaire CNRS, UMR 8541, Ecole Normale Supérieure, 46 rue d'Ulm. 75230 Paris Cedex 05, France
| | | | | | | | | | | |
Collapse
|
28
|
MacKenzie JA, Payne RM. Ribosomes specifically bind to mammalian mitochondria via protease-sensitive proteins on the outer membrane. J Biol Chem 2003; 279:9803-10. [PMID: 14668341 DOI: 10.1074/jbc.m307167200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interaction of ribosomes with specific components of membranes is one of the central themes to the co-translational targeting and import of proteins. To examine ribosome binding to mammalian mitochondria, we used ribosome-nascent chain complexes (RNCs) to follow the in vitro binding of ribosomes that correspond to the initial targeting stage of proteins. Mitochondria were found to contain a limited number of RNC binding sites on the outer membrane. It required more than twice the amount of non-translating ribosomes to inhibit RNC binding by one-half, indicating that RNCs have a competitive binding advantage. In addition, we found that RNCs bind mainly through the ribosomal component and not the nascent chain. RNCs bind via protease-sensitive proteins on the outer membrane, as well as by protease-insensitive components suggesting that two classes of receptors exist. We also show that binding is sensitive to cation conditions. Nearly all of the binding was inhibited in 0.5 m KCl, indicating that they interact with the membrane primarily through electrostatic interactions. In addition, disruption of RNC structure by removing magnesium causes the complete inhibition of binding under normal binding conditions indicating that it is the intact ribosome that is crucial for binding and not the nascent chain. These findings support the hypothesis that the outer mitochondrial membrane contains receptors specific for ribosomes, which would support the conditions necessary for co-translational import.
Collapse
Affiliation(s)
- James A MacKenzie
- Section on Cardiology, Department of Pediatrics, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1081, USA
| | | |
Collapse
|
29
|
George R, Walsh P, Beddoe T, Lithgow T. The nascent polypeptide-associated complex (NAC) promotes interaction of ribosomes with the mitochondrial surface in vivo. FEBS Lett 2002; 516:213-6. [PMID: 11959135 DOI: 10.1016/s0014-5793(02)02528-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The nascent polypeptide-associated complex (NAC) is a peripheral component of cytoplasmic ribosomes, and interacts with nascent chains as they leave the ribosome. Yeast mutants lacking NAC translate polypeptides normally, but have fewer ribosomes associated with the mitochondrial surface. The mutants lacking NAC suffer mitochondrial defects and have decreased levels of proteins like fumarase, normally targeted to mitochondria co-translationally. NAC might contribute to a ribosomal environment in which amino-terminal, mitochondrial targeting sequences can effectively adopt their appropriate conformation.
Collapse
Affiliation(s)
- Rebecca George
- Department of Biochemistry, La Trobe University, 3083, Bundoora, Australia
| | | | | | | |
Collapse
|
30
|
Voos W, Martin H, Krimmer T, Pfanner N. Mechanisms of protein translocation into mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1422:235-54. [PMID: 10548718 DOI: 10.1016/s0304-4157(99)00007-6] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mitochondrial biogenesis utilizes a complex proteinaceous machinery for the import of cytosolically synthesized preproteins. At least three large multisubunit protein complexes, one in the outer membrane and two in the inner membrane, have been identified. These translocase complexes cooperate with soluble proteins from the cytosol, the intermembrane space and the matrix. The translocation of presequence-containing preproteins through the outer membrane channel includes successive electrostatic interactions of the charged mitochondrial targeting sequence with a chain of import components. Translocation across the inner mitochondrial membrane utilizes the energy of the proton motive force of the inner membrane and the hydrolysis of ATP. The matrix chaperone system of the mitochondrial heat shock protein 70 forms an ATP-dependent import motor by interaction with the polypeptide chain in transit and components of the inner membrane translocase. The precursors of integral inner membrane proteins of the metabolite carrier family interact with newly identified import components of the intermembrane space and are inserted into the inner membrane by a second translocase complex. A comparison of the full set of import components between the yeast Sacccharomyces cerevisiae and the nematode Caenorhabditis elegans demonstrates an evolutionary conservation of most components of the mitochondrial import machinery with a possible greater divergence for the import pathway of the inner membrane carrier proteins.
Collapse
Affiliation(s)
- W Voos
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Hermann-Herder-Str. 7, D-79104, Freiburg, Germany.
| | | | | | | |
Collapse
|
31
|
Crowley KS, Payne RM. Ribosome binding to mitochondria is regulated by GTP and the transit peptide. J Biol Chem 1998; 273:17278-85. [PMID: 9642299 DOI: 10.1074/jbc.273.27.17278] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The association between ribosomes and the pore proteins at the endoplasmic reticulum membrane is important to co-translational translocation. To determine if a similar association occurs between the ribosome and mitochondrial membrane protein(s) during protein import in higher eukaryotes, we examined ribosome-mitochondria binding. By using spectral measurements, analysis of mitochondrial associated RNA, and electron microscopy, we demonstrated that ribosomes stably bind to purified rat liver mitochondria in vitro. Binding of ribosomes to mitochondria was markedly reduced by GTP and nearly abolished by the non-hydrolyzable GTP analogue, guanosine-5'-[thio]-triphosphate (GTPgammaS), but was only modestly reduced by GDP or ATP and unaffected by CTP. The initial rate of GTP hydrolysis by mitochondria was increased by ribosomes, whereas the rate of ATP hydrolysis by mitochondria was not affected. Ribosomes programmed with mRNA for 92 amino acids of the N terminus of mitochondrial malate dehydrogenase bound to mitochondria, but unlike unprogrammed rat liver ribosomes, neither GTP nor GDP disrupted binding; however, GTPgammaS did. These data show that receptors specific for ribosomes are present on the mitochondrial membrane, and a GTP-dependent process mediates this binding. The presence of a nascent chain alters these binding characteristics. These findings support the hypothesis that a co-translational translocation pathway exists for import of proteins into mitochondria.
Collapse
Affiliation(s)
- K S Crowley
- Department of Pediatrics, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1081, USA
| | | |
Collapse
|
32
|
Ryan MT, Naylor DJ, Høj PB, Clark MS, Hoogenraad NJ. The role of molecular chaperones in mitochondrial protein import and folding. INTERNATIONAL REVIEW OF CYTOLOGY 1997; 174:127-93. [PMID: 9161007 DOI: 10.1016/s0074-7696(08)62117-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Molecular chaperones play a critical role in many cellular processes. This review concentrates on their role in targeting of proteins to the mitochondria and the subsequent folding of the imported protein. It also reviews the role of molecular chaperons in protein degradation, a process that not only regulates the turnover of proteins but also eliminates proteins that have folded incorrectly or have aggregated as a result of cell stress. Finally, the role of molecular chaperones, in particular to mitochondrial chaperonins, in disease is reviewed. In support of the endosymbiont theory on the origin of mitochondria, the chaperones of the mitochondrial compartment show a high degree of similarity to bacterial molecular chaperones. Thus, studies of protein folding in bacteria such as Escherichia coli have proved to be instructive in understanding the process in the eukaryotic cell. As in bacteria, the molecular chaperone genes of eukaryotes are activated by a variety of stresses. The regulation of stress genes involved in mitochondrial chaperone function is reviewed and major unsolved questions regarding the regulation, function, and involvement in disease of the molecular chaperones are identified.
Collapse
Affiliation(s)
- M T Ryan
- School of Biochemistry, La Trobe University, Bundoora, Victoria, Australia
| | | | | | | | | |
Collapse
|
33
|
Abstract
Recent in vitro and in vivo experiments suggest that the synthesis and import of mitochondrial proteins are very tightly coupled and that a co-translational import reaction may be mandatory for some proteins. These results are entirely consistent with early experiments which suggested that import occurs co-translationally and that cytosolic polysomes synthesizing mitochondrial proteins are bound to protein import sites on isolated mitochondria. This article discusses and seemingly contradictory reports concerning the involvement of co-translational and post-translational mechanisms in the import process and examines the impact of recent developments in the field.
Collapse
Affiliation(s)
- K Verner
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey 17033
| |
Collapse
|
34
|
Abstract
Protein import into mitochondria involves a number of complex steps occurring in the cytosol, on the mitochondrial surface, and inside the organelle. Once an initial interaction between mitochondrial proteins and their specific receptors occurs, the proteins are transported into the organelle in a series of reactions involving (in the case of a protein to be translocated into the mitochondrial matrix) the mitochondrial membrane potential, ATP hydrolysis and an undetermined number of membrane components. Inside the organelle, mitochondrial proteins are processed and sorted to their final intramitochondrial destinations. The earliest steps in the import process take place in the cytosol and include the synthesis of the mitochondrial proteins themselves, their interaction with cytosolic factors, and perhaps the establishment of cotranslational import complexes on the mitochondrial surface. These early events are important because it is during this phase that the system as a whole is most sensitive to cytosolic conditions that may exert control over the entire import process.
Collapse
Affiliation(s)
- K Verner
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey 17033
| |
Collapse
|
35
|
Rings EH, Büller HA, de Boer PA, Grand RJ, Montgomery RK, Lamers WH, Charles R, Moorman AF. Messenger RNA sorting in enterocytes. Co-localization with encoded proteins. FEBS Lett 1992; 300:183-7. [PMID: 1563519 DOI: 10.1016/0014-5793(92)80192-j] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This study describes the intracellular compartmentalization of three different mRNAs in the polarized rat fetal enterocyte. They encode proteins that are known to be localized within different regions of the epithelial cell namely (i) the apical, membrane-bound glycoprotein, lactase-phlorizin hydrolase (lactase), (ii) the mitochondrially localized enzyme, carbamoylphosphate synthetase (CPS), and (iii) the cytoplasmically localized enzyme, phosphoenolpyruvate carboxykinase (PEPCK). These mRNAs are found in close proximity to their respective protein products, i.e. the apical membrane, mitochondria and cytoplasm, respectively. The significance of these observations is twofold; (i) they indicate that mRNAs are sorted into specific domains of the cytosol of intestinal epithelial cells; and (ii) they imply the presence of two distinct pathways of mRNA targeting one that allows transport of mRNAs that are translated on ribosomes associated with the rough endoplasmic reticulum (lactase mRNA), and the other that allows sorting of mRNAs that are translated on free polysomes (CPS and PEPCK mRNA).
Collapse
Affiliation(s)
- E H Rings
- Center for Liver and Intestinal Research (CLDO), University of Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Loncar D. Immunoelectron microscopical studies on synthesis and localization of uncoupling protein in brown adipocytes: evidence for cotranslational transport of uncoupling protein into mitochondria. J Struct Biol 1990; 105:133-45. [PMID: 2129216 DOI: 10.1016/1047-8477(90)90107-n] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Through the use of the immunoelectron microscopical technique, uncoupling protein (UCP) was analyzed in the brown adipocytes of room temperature- and cold-acclimated rats, in rat brown adipocytes developed in vitro, and in the brown adipocytes of mice, hamsters, and hedgehogs. Using rat anti-UCP-antibody, it is shown that UCP is located in the cristae of brown adipocytes mitochondria (UC-mitochondria) of all analyzed species, whereas mitochondria of nonadipose cells, i.e., C-mitochondria of endothelium, fibrocytes, smooth muscle cells, Schwann cells, axons of neural cells, and white blood cells, do not contain UCP. Cold stress in rats exposed to temperatures of +4 and -20 degrees C caused the amount of UCP per 1 micron 2 of mitochondria to more than double compared with room temperature-acclimated rats. This increase was especially dramatic on the outer mitochondrial membrane: fourfold more UCP molecules compared to the control rats. The ground cytoplasm of adipocytes showed very intensive labeling with RNase-gold complex, indicating that cytoplasm was an active site for protein synthesis, while the absence of UCP-labeling in ground cytoplasm was interpreted to mean that ground cytoplasm did not serve as a site for UCP synthesis. On the other hand, the protrusions of the outer mitochondrial membrane covered with ribosomes, clusters of UCP molecules, and clusters of RNase-gold particles supported the idea that UCP was one of the mitochondrial proteins synthesized on the ribosomes which were in contact with the outer mitochondrial membrane. After being synthesized there, UCP, which could be either extruded into intermembranous space or directed by lateral movement to intermembranous contact sites, was incorporated into inner mitochondrial membrane. Thus, UCP is imported using the so-called "cotranslational transport system."
Collapse
Affiliation(s)
- D Loncar
- Wenner-Gren Institute, University of Stockholm, Sweden
| |
Collapse
|
37
|
Hartl FU, Pfanner N, Nicholson DW, Neupert W. Mitochondrial protein import. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 988:1-45. [PMID: 2642391 DOI: 10.1016/0304-4157(89)90002-6] [Citation(s) in RCA: 531] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Most mitochondrial proteins are synthesized as precursor proteins on cytosolic polysomes and are subsequently imported into mitochondria. Many precursors carry amino-terminal presequences which contain information for their targeting to mitochondria. In several cases, targeting and sorting information is also contained in non-amino-terminal portions of the precursor protein. Nucleoside triphosphates are required to keep precursors in an import-competent (unfolded) conformation. The precursors bind to specific receptor proteins on the mitochondrial surface and interact with a general insertion protein (GIP) in the outer membrane. The initial interaction of the precursor with the inner membrane requires the mitochondrial membrane potential (delta psi) and occurs at contact sites between outer and inner membranes. Completion of translocation into the inner membrane or matrix is independent of delta psi. The presequences are cleaved off by the processing peptidase in the mitochondrial matrix. In several cases, a second proteolytic processing event is performed in either the matrix or in the intermembrane space. Other modifications can occur such as the addition of prosthetic groups (e.g., heme or Fe/S clusters). Some precursors of proteins of the intermembrane space or the outer surface of the inner membrane are retranslocated from the matrix space across the inner membrane to their functional destination ('conservative sorting'). Finally, many proteins are assembled in multi-subunit complexes. Exceptions to this general import pathway are known. Precursors of outer membrane proteins are transported directly into the outer membrane in a receptor-dependent manner. The precursor of cytochrome c is directly translocated across the outer membrane and thereby reaches the intermembrane space. In addition to the general sequence of events which occurs during mitochondrial protein import, current research focuses on the molecules themselves that are involved in these processes.
Collapse
Affiliation(s)
- F U Hartl
- Institut für Physiologische Chemie, Universität München, F.R.G
| | | | | | | |
Collapse
|
38
|
PFANNER NIKOLAUS, NEUPERT WALTER. Biogenesis of Mitochondrial Energy Transducing Complexes. ACTA ACUST UNITED AC 1987. [DOI: 10.1016/b978-0-12-152515-6.50011-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
39
|
|
40
|
Rapoport TA. Protein translocation across and integration into membranes. CRC CRITICAL REVIEWS IN BIOCHEMISTRY 1986; 20:73-137. [PMID: 3007024 DOI: 10.3109/10409238609115901] [Citation(s) in RCA: 75] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This review concentrates mainly on the translocation of proteins across the endoplasmic reticulum membrane and cytoplasmic membrane in bacteria. It will start with a short historical review and will pinpoint the crucial questions in the field. Special emphasis will be given to the present knowledge on the molecular details of the first steps, i.e., on the function of the signal recognition particle and its receptor. The knowledge on the signal peptidase and the ribosome receptor(s) will also be summarized. The various models for the translocation of proteins across and the integration of proteins into membranes will be critically discussed. In particular, the function of signal, stop-transfer, and insertion sequences will be dealt with and molecular differences discussed. The cotranslational mode of membrane transfer will be compared with the post-translational transport found for mitochondria and chloroplasts. This review will conclude with open questions and an outlook.
Collapse
|
41
|
Alziari S, Berthier F, Touraille S, Stepien G, Durand R. Mitochondrial DNA expression in Drosophila melanogaster: neosynthesized polypeptides in isolated mitochondria. Biochimie 1985; 67:1023-34. [PMID: 3936549 DOI: 10.1016/s0300-9084(85)80297-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The expression of mitochondrial genome of D. melanogaster in isolated mitochondria was followed by incorporation of 35S methionine in neosynthesized polypeptides. A high level of protein synthesis was obtained after optimization of all the incubation parameters. Two kinds of energy-generating systems were used: an endogenous system where an oxidizable substrate were added for ATP synthesis; an exogenous system with an energy-rich compound for ATP regeneration, the latter proved to be the most effective. The effect of the oxidative phosphorylation uncoupler (Clccp), and an ATPase inhibitor (oligomycine) allow us to postulate the role of the electrochemical potential in the expression of the mitochondrial genome. Electrophoresis and autoradiography of neosynthesized mitochondrial proteins exhibits 18 to 24 protein bands, ranging from 6.5 to 65 Kd; incubation of KC 0% drosophila cells with 35S methionine and cycloheximide gave similar results. Both our results and those published elsewhere suggest that the expression of mitochondrial genome in higher organisms could be more complex than simple translation of the 13 genes presents on these genomes.
Collapse
|
42
|
Reid GA. Chapter 7 Transport of Proteins into Mitochondria. ACTA ACUST UNITED AC 1985. [DOI: 10.1016/s0070-2161(08)60329-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
43
|
Benz R. Porin from bacterial and mitochondrial outer membranes. CRC CRITICAL REVIEWS IN BIOCHEMISTRY 1985; 19:145-90. [PMID: 2415299 DOI: 10.3109/10409238509082542] [Citation(s) in RCA: 189] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The outer membrane of gram-negative bacteria acts as a molecular filter with defined exclusion limit for hydrophilic substances. The exclusion limit is dependent on the type of bacteria and has for enteric bacteria like Escherichia coli and Salmonella typhimurium a value between 600 and 800 Daltons, whereas molecules with molecular weights up to 6000 can penetrate the outer membrane of Pseudomonas aeruginosa. The molecular sieving properties result from the presence of a class of major proteins called porins which form trimers of identical subunits in the outer membrane. The porin trimers most likely contain only one large but well-defined pore with a diameter between 1.2 and 2 nm. Mitochondria are presumably descendents of gram-negative bacteria. The outer membrane of mitochondria contains in agreement with this hypothesis large pores which are permeable for hydrophilic substances with molecular weights up to 6000. The mitochondrial porins are processed by the cell and have molecular weights around 30,000 Daltons. There exists some evidence that the pore is controlled by electric fields and metabolic processes.
Collapse
|
44
|
|
45
|
Felipo V, Grisolía S. Transport and regulation of polypeptide precursors of mature mitochondrial proteins. CURRENT TOPICS IN CELLULAR REGULATION 1984; 23:217-49. [PMID: 6373163 DOI: 10.1016/b978-0-12-152823-2.50010-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
46
|
Doonan S, Marra E, Passarella S, Saccone C, Quagliariello E. Transport of proteins into mitochondria. INTERNATIONAL REVIEW OF CYTOLOGY 1984; 91:141-86. [PMID: 6094381 DOI: 10.1016/s0074-7696(08)61316-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
There is still much that is obscure concerning the transport of proteins into or through the mitochondrial membrane systems. In addition, as pointed out previously, it is unlikely that the details of the process are the same for proteins destined for different compartments of the organelle. A brief summary of the process for matrix proteins might be as follows: The proteins are synthesized on free polysomes as precursors of higher molecular weight than the native forms. These precursors are liberated into the cell cytosol and subsequently translocated into the mitochondria. This timing might be different in yeast under some circumstances, synthesis being completed in association with the mitochondria. The precursors interact with a receptor in the outer mitochondrial membrane interaction being mediated by the presequences of the precursors. The presequences therefore act as addressing signals as well as possibly playing a role in one or all of (a) solubilization of precursors, (b) prevention of premature assembly into multimeric structures, or (c) maintenance of nonnative configurations required for transport. Interaction occurs with a second receptor, this time in the inner membrane of the mitochondria, interaction being with multiple sites in the polypeptide chain. Transport across the inner membrane then occurs, this transport depending on a transmembrane electrochemical gradient of which the proton component is the essential part. Transport is accompanied or followed by proteolysis of the prepiece, and formation of the native structure. While steps 1 and 2 of this sequence can be considered well established, the remaining steps are still poorly understood or purely hypothetical. Nevertheless, this sequence of events is consistent with known facts about the process and provides a framework for future investigations.
Collapse
|
47
|
|
48
|
Import of proteins into mitochondria. Translatable mRNAs for imported mitochondrial proteins are present in free as well as mitochondria-bound cytoplasmic polysomes. J Biol Chem 1982. [DOI: 10.1016/s0021-9258(18)33620-2] [Citation(s) in RCA: 104] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
49
|
Goltz S, Kaput J, Blobel G. Isolation of the yeast nuclear gene encoding the mitochondrial protein, cytochrome c peroxidase. J Biol Chem 1982. [DOI: 10.1016/s0021-9258(18)33950-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
50
|
Abstract
This review examines the mechanism of translocation of cytoplasmically synthesized proteins into mitochondria. Approximately 10% of the mitochondrial proteins are synthesized within the organelles while most mitochondrial proteins are coded for by nuclear genes and synthesized on cytoplasmic ribosomes. Those mitochondrial proteins synthesized on cytoplasmic ribosomes have to be transferred at some point into one of the mitochondrial compartments, a process which would require their insertion through one or both mitochondrial membranes. Data accumulated during the past five years indicate that the cytoplasmically synthesized mitochondrial proteins are synthesized on free polysomes then released into the cytoplasm. Most of the proteins examined so far are synthesized in the cytoplasm as larger precursors whose conformations may differ from the conformations of their respective mature forms. These precursor proteins become translocated into mitochondrial post-translationally and processed to their mature forms either during or immediately following translocation into the organelles. The translocation step appears to require mitochondrial ATP. Some processing activities have been localized in the matrix fractions of mitochondria from liver and yeast and they appear to be associated with soluble endopeptidases which act selectively on precursors of mitochondrial proteins. Although it is not clear how the precursor proteins interact with or recognize mitochondrial membranes, studies in yeast indicate that the interactions occur at specific regions on the other mitochondrial membranes.
Collapse
|