1
|
Jun S, Si F, Pugatch R, Scott M. Fundamental principles in bacterial physiology-history, recent progress, and the future with focus on cell size control: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:056601. [PMID: 29313526 PMCID: PMC5897229 DOI: 10.1088/1361-6633/aaa628] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Bacterial physiology is a branch of biology that aims to understand overarching principles of cellular reproduction. Many important issues in bacterial physiology are inherently quantitative, and major contributors to the field have often brought together tools and ways of thinking from multiple disciplines. This article presents a comprehensive overview of major ideas and approaches developed since the early 20th century for anyone who is interested in the fundamental problems in bacterial physiology. This article is divided into two parts. In the first part (sections 1-3), we review the first 'golden era' of bacterial physiology from the 1940s to early 1970s and provide a complete list of major references from that period. In the second part (sections 4-7), we explain how the pioneering work from the first golden era has influenced various rediscoveries of general quantitative principles and significant further development in modern bacterial physiology. Specifically, section 4 presents the history and current progress of the 'adder' principle of cell size homeostasis. Section 5 discusses the implications of coarse-graining the cellular protein composition, and how the coarse-grained proteome 'sectors' re-balance under different growth conditions. Section 6 focuses on physiological invariants, and explains how they are the key to understanding the coordination between growth and the cell cycle underlying cell size control in steady-state growth. Section 7 overviews how the temporal organization of all the internal processes enables balanced growth. In the final section 8, we conclude by discussing the remaining challenges for the future in the field.
Collapse
Affiliation(s)
- Suckjoon Jun
- Department of Physics, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States of America. Section of Molecular Biology, Division of Biology, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States of America
| | | | | | | |
Collapse
|
2
|
Grudniak AM, Markowska K, Wolska KI. Interactions of Escherichia coli molecular chaperone HtpG with DnaA replication initiator DNA. Cell Stress Chaperones 2015; 20:951-7. [PMID: 26246199 PMCID: PMC4595432 DOI: 10.1007/s12192-015-0623-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 06/24/2015] [Accepted: 07/10/2015] [Indexed: 12/31/2022] Open
Abstract
The bacterial chaperone high-temperature protein G (HtpG), a member of the Hsp90 protein family, is involved in the protection of cells against a variety of environmental stresses. The ability of HtpG to form complexes with other bacterial proteins, especially those involved in fundamental functions, is indicative of its cellular role. An interaction between HtpG and DnaA, the main initiator of DNA replication, was studied both in vivo, using a bacterial two-hybrid system, and in vitro with a modified pull-down assay and by chemical cross-linking. In vivo, this interaction was demonstrated only when htpG was expressed from a high copy number plasmid. Both in vitro assays confirmed HtpG-DnaA interactions.
Collapse
Affiliation(s)
- Anna M Grudniak
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| | - Katarzyna Markowska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Krystyna I Wolska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| |
Collapse
|
3
|
Abe Y, Jo T, Matsuda Y, Matsunaga C, Katayama T, Ueda T. Structure and function of DnaA N-terminal domains: specific sites and mechanisms in inter-DnaA interaction and in DnaB helicase loading on oriC. J Biol Chem 2007; 282:17816-27. [PMID: 17420252 DOI: 10.1074/jbc.m701841200] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DnaA forms a homomultimeric complex with the origin of chromosomal replication (oriC) to unwind duplex DNA. The interaction of the DnaA N terminus with the DnaB helicase is crucial for the loading of DnaB onto the unwound region. Here, we determined the DnaA N terminus structure using NMR. This region (residues 1-108) consists of a rigid region (domain I) and a flexible region (domain II). Domain I has an alpha-alpha-beta-beta-alpha-beta motif, similar to that of the K homology (KH) domain, and has weak affinity for oriC single-stranded DNA, consistent with KH domain function. A hydrophobic surface carrying Trp-6 most likely forms the interface for domain I dimerization. Glu-21 is located on the opposite surface of domain I from the Trp-6 site and is crucial for DnaB helicase loading. These findings suggest a model for DnaA homomultimer formation and DnaB helicase loading on oriC.
Collapse
Affiliation(s)
- Yoshito Abe
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | |
Collapse
|
4
|
Kawakami H, Ozaki S, Suzuki S, Nakamura K, Senriuchi T, Su'etsugu M, Fujimitsu K, Katayama T. The exceptionally tight affinity of DnaA for ATP/ADP requires a unique aspartic acid residue in the AAA+ sensor 1 motif. Mol Microbiol 2006; 62:1310-24. [PMID: 17042785 DOI: 10.1111/j.1365-2958.2006.05450.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Escherichia coli DnaA, an AAA+ superfamily protein, initiates chromosomal replication in an ATP-binding-dependent manner. Although DnaA has conserved Walker A/B motifs, it binds adenine nucleotides 10- to 100-fold more tightly than do many other AAA+ proteins. This study shows that the DnaA Asp-269 residue, located in the sensor 1 motif, plays a specific role in supporting high-affinity ATP/ADP binding. The affinity of the DnaA D269A mutant for ATP/ADP is at least 10- to 100-fold reduced compared with that of the wild-type and DnaA R270A proteins. In contrast, the abilities of DnaA D269A to bind a typical DnaA box, unwind oriC duplex in the presence of elevated concentrations of ATP, load DnaB onto DNA and support minichromosomal replication in a reconstituted system are retained. Whereas the acidic Asp residue is highly conserved among eubacterial DnaA homologues, the corresponding residue in many other AAA+ proteins is Asn/Thr and in some AAA+ proteins these neutral residues are essential for ATP hydrolysis but not ATP binding. As the intrinsic ATPase activity of DnaA is extremely weak, this study reveals a novel and specific function for the sensor 1 motif in tight ATP/ADP binding, one that depends on the alternate key residue Asp.
Collapse
Affiliation(s)
- Hironori Kawakami
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
In Escherichia coli, initiation of chromosomal replication is activated by a nucleoprotein complex formed primarily between the DnaA protein and oriC (replication origin) DNA. After replicational initiation, this complex has to be inactivated in order to repress the appearance of initiation events until the next scheduled round of initiation. Studies of the mechanisms responsible for this repression have recently revealed direct coupling between these mechanisms and key elements of the replication process, suggesting that feedback-type regulatory loops exist between the factors implicated in initiation and the elements yielded by the replication process. The loading of the ring-shaped beta-subunit of DNA polymerase III onto DNA plays a key role in the inactivation of the DnaA protein. Duplication of oriC DNA results in hemimethylated DNA, which is inert for reinitiation. Titration of large amounts of DnaA protein to a non-oriC locus can repress untimely initiations, and timely duplication of this locus is required for this repression in rapidly growing cells. All these systems functionally complement one another to ensure the maintenance of the interinitiation interval between two normal DNA replication cycles. The mechanisms that link the replication cycle to the progression of the cell cycle are also discussed.
Collapse
Affiliation(s)
- T Katayama
- Department of Molecular Microbiology, Kyushu University Graduate School of Pharmaceutical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
6
|
Banecki B, Kaguni JM, Marszalek J. Role of adenine nucleotides, molecular chaperones and chaperonins in stabilization of DnaA initiator protein of Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1442:39-48. [PMID: 9767098 DOI: 10.1016/s0167-4781(98)00118-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DnaA protein of Escherichia coli is a sequence-specific DNA binding protein required for the initiation of DNA replication from the chromosomal origin, oriC, and of several E. coli plasmids. At a moderate ionic strength, purified DnaA protein has a strong tendency to aggregate; the self-aggregate form is inactive in DNA replication. Binding of ATP or ADP to DnaA protein protected it from aggregation to maintain its replication activity. AMP or cyclic AMP had no protective effect. The molecular chaperone DnaK protected DnaA protein from aggregation with or without ATP. DnaJ and GrpE were not stimulatory. Chaperonins GroEL and GroES were also able to prevent aggregation but only in the presence of ATP. The studies presented here show that for DnaA protein to be active in the initiation of DNA replication, it must be prevented from forming a self-aggregate by the binding of adenine nucleotides, and/or by the action of molecular chaperones.
Collapse
Affiliation(s)
- B Banecki
- Department of Molecular and Cellular Biology, Faculty of Biotechnology, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
| | | | | |
Collapse
|
7
|
Carr KM, Kaguni JM. The A184V missense mutation of the dnaA5 and dnaA46 alleles confers a defect in ATP binding and thermolability in initiation of Escherichia coli DNA replication. Mol Microbiol 1996; 20:1307-18. [PMID: 8809781 DOI: 10.1111/j.1365-2958.1996.tb02649.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The temperature-sensitive dnaA5 and dnaA46 alleles each contain two missense mutations. These mutations have been separated and the resulting mutant proteins studied with regard to their role in initiation of DNA replication in vitro. Whereas the His-252 to tyrosine substitution (H252Y) unique to the dnaA46 allele did not affect the activities of DnaA protein, the unique substitution of the dnaA5 allele, Gly-426 to serine (G426S), was reduced in its DNA-binding affinity for oriC, the chromosomal origin. This suggests that the C-terminal region of the DnaA protein is involved in DNA binding. The alanine-to-valine substitution at amino acid 184 (A184V) that is common to both of the alleles is responsible for the thermolabile defect and lag in DNA synthesis of these mutants. Mutant proteins bearing the common substitution were defective in ATP binding and were inactive in a replication system reconstituted with purified proteins. DnaK and GrpE protein activated these mutant proteins for replication and ATP binding; the latter was measured indirectly by the ATP-dependent formation of a trypsin-resistant peptide. However, with this assay, the ATP-binding affinity appeared to be reduced relative to wild-type DnaA protein. Activation was by conversion of a self-aggregate to the monomer, and also by a conformational alteration that correlated with ATP binding.
Collapse
Affiliation(s)
- K M Carr
- Department of Biochemistry, Michigan State University, East Lansing 48824-1319, USA
| | | |
Collapse
|
8
|
Pak M, Wickner SH. Pathways of protein remodeling by Escherichia coli molecular chaperones. GENETIC ENGINEERING 1996; 18:203-17. [PMID: 8785122 DOI: 10.1007/978-1-4899-1766-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- M Pak
- Laboratory of Molecular Biology, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | | |
Collapse
|
9
|
Skarstad K, Boye E. The initiator protein DnaA: evolution, properties and function. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1217:111-30. [PMID: 8110826 DOI: 10.1016/0167-4781(94)90025-6] [Citation(s) in RCA: 141] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- K Skarstad
- Department of Biophysics, Institute for Cancer Research, Montebello, Oslo, Norway
| | | |
Collapse
|
10
|
Hupp TR, Keasling JD, Cooper S, Kaguni JM. Synthesis of DnaK protein during the division cycle of Escherichia coli. Res Microbiol 1994; 145:99-109. [PMID: 8090998 DOI: 10.1016/0923-2508(94)90003-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
DnaK protein is involved in the initiation of DNA synthesis from the Escherichia coli chromosome as well as from the replication origins of phage lambda and P1. The synthesis of dnaK mRNA and protein has been reported to vary during the cell cycle of Caulobacter crescentus (Gomes et al., 1990). We have measured the expression of DnaK protein during the E. coli division cycle using the membrane-elution method. Cells labelled with a radioactive amino acid at different times during the division cycle were analysed for radiolabelled DnaK protein by quantitative immunoprecipitation, gel electrophoresis and autoradiography. In contrast to reports of cell-cycle-specific synthesis of DnaK protein in C. crescentus, we find the synthesis of DnaK protein to be invariant during the E. coli division cycle. Its synthesis occurs exponentially, as does the synthesis of total cell protein.
Collapse
Affiliation(s)
- T R Hupp
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor 48109-0620
| | | | | | | |
Collapse
|
11
|
Filutowicz M, Dellis S, Levchenko I, Urh M, Wu F, York D. Regulation of replication of an iteron-containing DNA molecule. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1994; 48:239-73. [PMID: 7938550 DOI: 10.1016/s0079-6603(08)60857-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- M Filutowicz
- Department of Bacteriology, University of Wisconsin-Madison 53706
| | | | | | | | | | | |
Collapse
|
12
|
Hupp T, Kaguni J. DnaA5 protein is thermolabile in initiation of replication from the chromosomal origin of Escherichia coli. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)38628-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
13
|
Hupp T, Kaguni J. Activation of DnaA5 protein by GrpE and DnaK heat shock proteins in initiation of DNA replication in Escherichia coli. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)38629-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
14
|
Hupp T, Kaguni J. Activation of mutant forms of DnaA protein of Escherichia coli by DnaK and GrpE proteins occurs prior to DNA replication. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)38630-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
15
|
Banecki B, Zylicz M, Bertoli E, Tanfani F. Structural and functional relationships in DnaK and DnaK756 heat-shock proteins from Escherichia coli. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)74004-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
16
|
Abstract
The DNA binding activity of p53 is required for its tumor suppressor function; we show here that this activity is cryptic but can be activated by cellular factors acting on a C-terminal regulatory domain of p53. A gel mobility shift assay demonstrated that recombinant wild-type human p53 binds DNA sequence specifically only weakly, but a monoclonal antibody binding near the C terminus activated the cryptic DNA binding activity stoichiometrically. p53 DNA binding could be activated by a C-terminal deletion of p53, mild proteolysis of full-length p53, E. coli dnaK (which disrupts protein-protein complexes), or casein kinase II (and coincident phosphorylation of a C-terminal site on p53). Activation of p53 DNA binding may be critical in regulation of its ability to arrest cell growth and thus its tumor suppressor function.
Collapse
Affiliation(s)
- T R Hupp
- Cancer Research Campaign Laboratories, Department of Biochemistry, University of Dundee, Scotland
| | | | | | | |
Collapse
|
17
|
Opening of the replication origin of Escherichia coli by DnaA protein with protein HU or IHF. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)50059-4] [Citation(s) in RCA: 195] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
18
|
IciA protein, a specific inhibitor of initiation of Escherichia coli chromosomal replication. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)45863-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
19
|
Ang D, Liberek K, Skowyra D, Zylicz M, Georgopoulos C. Biological role and regulation of the universally conserved heat shock proteins. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54216-2] [Citation(s) in RCA: 221] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|