1
|
Rinaldi S, Di Giovanni S, Palocci G, Contò M, Steri R, Tripaldi C. Impact of Milk Storage and Heat Treatments on In Vitro Protein Digestibility of Soft Cheese. Foods 2023; 12:foods12081735. [PMID: 37107530 PMCID: PMC10137698 DOI: 10.3390/foods12081735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/22/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Cheese is an important source of protein in the human diet, and its digestibility depends on its macro and microstructure. This study investigated the effect of milk heat pre-treatment and pasteurization level on the protein digestibility of produced cheese. An in vitro digestion method was used considering cheeses after 4 and 21 days of storage. The peptide profile and amino acids (AAs) released in digestion were analyzed to evaluate the level of protein degradation following in vitro digestion. The results showed the presence of shorter peptides in the digested cheese from pre-treated milk and 4-day ripening while this trend was not observed after 21 days of storage, showing the effect of storage period. A significantly higher content of AAs was found in digested cheese produced from milk subjected to a higher temperature of pasteurization, and there was a significant increase in total AA content in the cheese after 21 days of storage, confirming the positive effect of ripening on protein digestibility. From these results emerges the importance of the management of heat treatments on the digestion of proteins in soft cheese.
Collapse
Affiliation(s)
- Simona Rinaldi
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Centro di Ricerca Zootecnia e Acquacoltura, Via Salaria, 31, 00015 Rome, Italy
| | - Sabrina Di Giovanni
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Centro di Ricerca Zootecnia e Acquacoltura, Via Salaria, 31, 00015 Rome, Italy
| | - Giuliano Palocci
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Centro di Ricerca Zootecnia e Acquacoltura, Via Salaria, 31, 00015 Rome, Italy
| | - Michela Contò
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Centro di Ricerca Zootecnia e Acquacoltura, Via Salaria, 31, 00015 Rome, Italy
| | - Roberto Steri
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Centro di Ricerca Zootecnia e Acquacoltura, Via Salaria, 31, 00015 Rome, Italy
| | - Carmela Tripaldi
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Centro di Ricerca Zootecnia e Acquacoltura, Via Salaria, 31, 00015 Rome, Italy
| |
Collapse
|
2
|
Singh Y, Regmi D, Ormaza D, Ayyalasomayajula R, Vela N, Mundim G, Du D, Minond D, Cudic M. Mucin-Type O-Glycosylation Proximal to β-Secretase Cleavage Site Affects APP Processing and Aggregation Fate. Front Chem 2022; 10:859822. [PMID: 35464218 PMCID: PMC9023740 DOI: 10.3389/fchem.2022.859822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/07/2022] [Indexed: 12/04/2022] Open
Abstract
The amyloid-β precursor protein (APP) undergoes proteolysis by β- and γ-secretases to form amyloid-β peptides (Aβ), which is a hallmark of Alzheimer's disease (AD). Recent findings suggest a possible role of O-glycosylation on APP's proteolytic processing and subsequent fate for AD-related pathology. We have previously reported that Tyr681-O-glycosylation and the Swedish mutation accelerate cleavage of APP model glycopeptides by β-secretase (amyloidogenic pathway) more than α-secretase (non-amyloidogenic pathway). Therefore, to further our studies, we have synthesized additional native and Swedish-mutated (glyco)peptides with O-GalNAc moiety on Thr663 and/or Ser667 to explore the role of glycosylation on conformation, secretase activity, and aggregation kinetics of Aβ40. Our results show that conformation is strongly dependent on external conditions such as buffer ions and solvent polarity as well as internal modifications of (glyco)peptides such as length, O-glycosylation, and Swedish mutation. Furthermore, the level of β-secretase activity significantly increases for the glycopeptides containing the Swedish mutation compared to their nonglycosylated and native counterparts. Lastly, the glycopeptides impact the kinetics of Aβ40 aggregation by significantly increasing the lag phase and delaying aggregation onset, however, this effect is less pronounced for its Swedish-mutated counterparts. In conclusion, our results confirm that the Swedish mutation and/or O-glycosylation can render APP model glycopeptides more susceptible to cleavage by β-secretase. In addition, this study sheds new light on the possible role of glycosylation and/or glycan density on the rate of Aβ40 aggregation.
Collapse
Affiliation(s)
- YashoNandini Singh
- Department of Chemistry and Biochemistry, Charles E. Schmidt College of Science, Florida Atlantic University, Boca Raton, FL, United States
| | - Deepika Regmi
- Department of Chemistry and Biochemistry, Charles E. Schmidt College of Science, Florida Atlantic University, Boca Raton, FL, United States
| | - David Ormaza
- Department of Chemistry and Biochemistry, Charles E. Schmidt College of Science, Florida Atlantic University, Boca Raton, FL, United States
| | - Ramya Ayyalasomayajula
- Department of Chemistry and Biochemistry, Charles E. Schmidt College of Science, Florida Atlantic University, Boca Raton, FL, United States
| | - Nancy Vela
- Department of Chemistry and Biochemistry, Charles E. Schmidt College of Science, Florida Atlantic University, Boca Raton, FL, United States
| | - Gustavo Mundim
- Department of Chemistry and Biochemistry, Charles E. Schmidt College of Science, Florida Atlantic University, Boca Raton, FL, United States
| | - Deguo Du
- Department of Chemistry and Biochemistry, Charles E. Schmidt College of Science, Florida Atlantic University, Boca Raton, FL, United States
| | - Dmitriy Minond
- College of Pharmacy and Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Maré Cudic
- Department of Chemistry and Biochemistry, Charles E. Schmidt College of Science, Florida Atlantic University, Boca Raton, FL, United States
| |
Collapse
|
3
|
Kavianinia I, Brimble MA, Kasim JK, Bull M, Harris PWR, Smaill JB, Patterson AV. Fourth-Generation Analogues of the Anticancer Peptaibol Culicinin D: Probing the Effects of Hydrophobicity and Halogenation on Cytotoxicity. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/s-0040-1706264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractPreliminary results of the effect of hydrophobicity and halogenation on the cytotoxicity of the anticancer peptaibol culicinin D are reported. Building on previous work, the synthetically challenging (2S,4S,6R)-2-amino-6-hydroxy-4-methyl-8-oxodecanoic acid and (2S,4R)-2-amino-4-methyldecanoic acid building blocks were replaced with derivatives of l-phenylalanine and 2-aminodecanoic acid, respectively. Substitution of (2S,4S,6R)-2-amino-6-hydroxy-4-methyl-8-oxodecanoic acid with l-4,4′-biphenylalanine yielded an analogue that was tenfold more potent than the natural product and was also the most hydrophobic analogue, as judged by an antiproliferative IC50 assay and logD calculations; these results suggest that the potency of culicinin D may be governed by its hydrophobicity. However, the introduction of halogenated moieties into the peptide sequence generated analogues that were similarly potent, although not necessarily hydrophobic. Thus, the parameters regulating the cytotoxicity of culicinin D, and by extension other peptaibols, are multimodal and include both halogenation and hydrophobicity.
Collapse
Affiliation(s)
- Iman Kavianinia
- School of Biological Sciences, The University of Auckland
- School of Chemical Sciences, The University of Auckland
| | - Margaret A. Brimble
- School of Biological Sciences, The University of Auckland
- School of Chemical Sciences, The University of Auckland
| | - Johanes K. Kasim
- School of Biological Sciences, The University of Auckland
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland
| | - Matthew Bull
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland
| | - Paul W. R. Harris
- School of Biological Sciences, The University of Auckland
- School of Chemical Sciences, The University of Auckland
| | - Jeff B. Smaill
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland
| | - Adam V. Patterson
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland
| |
Collapse
|
4
|
Singh Y, Ormaza D, Massetti A, Minond D, Cudic M. Tyrosine O-GalNAc Alters the Conformation and Proteolytic Susceptibility of APP Model Glycopeptides. ACS Chem Neurosci 2021; 12:2974-2980. [PMID: 34324289 PMCID: PMC8378340 DOI: 10.1021/acschemneuro.1c00387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
![]()
The amyloid-β precursor protein (APP) undergoes proteolytic cleavage by α-,
β-, and γ-secretases, to determine its fate in Alzheimer’s disease
(AD) pathogenesis. Recent findings suggest a possible role of
O-glycosylation in APP’s proteolytic processing. Therefore, we
synthesized native and Swedish-double-mutated APP (glyco)peptides with
Tyr681-O-GalNAc. We studied conformational changes and
proteolytic processing using circular dichroism (CD) spectroscopy and enzyme cleavage
assay, respectively. CD analysis was carried out in four solvent systems to evaluate
peptide environment and O-glycosylation induced conformational changes.
The Swedish mutation and Tyr681-O-GalNAc were the key
factors driving conformational changes. Furthermore, the level of α- and
β-secretase activity was increased by the presence of mutation and this effect was
more pronounced for its glycosylated analogues. Our results suggest that
O-glycosylation of Tyr681 can induce a conformational
change in APP and affect its proteolytic processing fate toward the amyloidogenic
pathway.
Collapse
Affiliation(s)
- YashoNandini Singh
- Department of Chemistry and Biochemistry, Charles E, Schmidt College of Science, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida 33431, United States
| | - David Ormaza
- Department of Chemistry and Biochemistry, Charles E, Schmidt College of Science, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida 33431, United States
| | - Alessandra Massetti
- Department of Chemistry and Biochemistry, Charles E, Schmidt College of Science, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida 33431, United States
| | - Dmitriy Minond
- College of Pharmacy and Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, 3301 College Ave, Fort Lauderdale, Florida 33314, United States
| | - Maré Cudic
- Department of Chemistry and Biochemistry, Charles E, Schmidt College of Science, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida 33431, United States
| |
Collapse
|
5
|
Tong JTW, Kavianinia I, Ferguson SA, Cook GM, Harris PWR, Brimble MA. Synthesis of paenipeptin C' analogues employing solution-phase CLipPA chemistry. Org Biomol Chem 2020; 18:4381-4385. [PMID: 32469029 DOI: 10.1039/d0ob00950d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We herein report the synthesis of analogues of the antimicrobial lipopeptide, paenipeptin C', by installing varying lipid moieties using thiol-ene CLipPA (Cysteine Lipidation on a Peptide or Amino Acid) chemistry. Biological evaluation against both Gram-negative and Gram-positive strains indicated that several analogues possessed potent broad-spectrum antimicrobial activity.
Collapse
Affiliation(s)
- Juliana T W Tong
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand. and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, New Zealand
| | - Iman Kavianinia
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand. and School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, New Zealand
| | - Scott A Ferguson
- Department of Microbiology and Immunology, School of Medical Sciences, University of Otago, 720 Cumberland Street, Dunedin 9054, New Zealand
| | - Gregory M Cook
- Department of Microbiology and Immunology, School of Medical Sciences, University of Otago, 720 Cumberland Street, Dunedin 9054, New Zealand
| | - Paul W R Harris
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand. and School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand. and School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, New Zealand
| |
Collapse
|
6
|
Yim V, Kavianinia I, Knottenbelt MK, Ferguson SA, Cook GM, Swift S, Chakraborty A, Allison JR, Cameron AJ, Harris PWR, Brimble MA. "CLipP"ing on lipids to generate antibacterial lipopeptides. Chem Sci 2020; 11:5759-5765. [PMID: 34094080 PMCID: PMC8159387 DOI: 10.1039/d0sc01814g] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022] Open
Abstract
We herein report the synthesis and biological and computational evaluation of 12 linear analogues of the cyclic lipopeptide battacin, enabled by Cysteine Lipidation on a Peptide or Amino Acid (CLipPA) technology. Several of the novel "CLipP"ed lipopeptides exhibited low micromolar MICs and MBCs against both Gram-negative and Gram-positive bacteria. The mechanism of action was then simulated with the MIC data using computational methods.
Collapse
Affiliation(s)
- Victor Yim
- School of Biological Sciences, University of Auckland 3A Symonds Street Auckland 1010 New Zealand
- School of Chemical Sciences, University of Auckland 23 Symonds Street Auckland 1010 New Zealand
| | - Iman Kavianinia
- School of Biological Sciences, University of Auckland 3A Symonds Street Auckland 1010 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland 3A Symonds Street Auckland 1010 New Zealand
- School of Chemical Sciences, University of Auckland 23 Symonds Street Auckland 1010 New Zealand
| | - Melanie K Knottenbelt
- Department of Microbiology and Immunology, School of Medical Sciences, University of Otago 720 Cumberland Street Dunedin 9054 New Zealand
| | - Scott A Ferguson
- Department of Microbiology and Immunology, School of Medical Sciences, University of Otago 720 Cumberland Street Dunedin 9054 New Zealand
| | - Gregory M Cook
- Department of Microbiology and Immunology, School of Medical Sciences, University of Otago 720 Cumberland Street Dunedin 9054 New Zealand
| | - Simon Swift
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland 85 Park Road, Grafton Auckland 1023 New Zealand
| | - Aparajita Chakraborty
- School of Biological Sciences, University of Auckland 3A Symonds Street Auckland 1010 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland 3A Symonds Street Auckland 1010 New Zealand
| | - Jane R Allison
- School of Biological Sciences, University of Auckland 3A Symonds Street Auckland 1010 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland 3A Symonds Street Auckland 1010 New Zealand
| | - Alan J Cameron
- School of Biological Sciences, University of Auckland 3A Symonds Street Auckland 1010 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland 3A Symonds Street Auckland 1010 New Zealand
| | - Paul W R Harris
- School of Biological Sciences, University of Auckland 3A Symonds Street Auckland 1010 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland 3A Symonds Street Auckland 1010 New Zealand
- School of Chemical Sciences, University of Auckland 23 Symonds Street Auckland 1010 New Zealand
| | - Margaret A Brimble
- School of Biological Sciences, University of Auckland 3A Symonds Street Auckland 1010 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland 3A Symonds Street Auckland 1010 New Zealand
- School of Chemical Sciences, University of Auckland 23 Symonds Street Auckland 1010 New Zealand
| |
Collapse
|
7
|
Wang Q, Zhou X, Li Q, Zhao P, Ren Y, Jiang T, Shen S. Fabrication of a ferrocene-based monolithic column with a network structure and its application in separation of protein and small molecules. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1114-1115:71-75. [PMID: 30933878 DOI: 10.1016/j.jchromb.2019.03.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 03/09/2019] [Accepted: 03/14/2019] [Indexed: 10/27/2022]
Abstract
A novel ferrocene-based monolith with a network structure was fabricated via in situ free radical polymerization using vinyl ferrocene as the co-monomer within a stainless-steel column (50 × 4.6 mm i.d.) for the separation of proteins from complex bio-samples, taking merit of the specific absorption of ferrocene to protein, including human plasma, egg white, and standard proteins. The morphology and pore size distribution indicate that the optimized monolith has a relatively uniform structure with the network. The results showed that 26 fractions were separated from human plasma, and the column efficiency of the aromatic small molecule, naphthalene, was up to 30,560 plates m-1. The homemade monolith showed excellent selectivity for intact proteins, mainly depending on the hydrophobic chromatography mechanism of ferrocene. In addition, the electrostatic interaction and hydrogen-bond interaction were the additional interactions in the chromatographic separation owing to the sandwich structure of ferrocene present in the monolithic column.
Collapse
Affiliation(s)
- Quan Wang
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China; College of Life Science, Agricultural University of Hebei, Baoding, Hebei 071001, China
| | - Xinyue Zhou
- College of Life Science, Agricultural University of Hebei, Baoding, Hebei 071001, China
| | - Qian Li
- College of Life Science, Agricultural University of Hebei, Baoding, Hebei 071001, China
| | - Pan Zhao
- College of Life Science, Agricultural University of Hebei, Baoding, Hebei 071001, China
| | - Yanxia Ren
- College of Life Science, Agricultural University of Hebei, Baoding, Hebei 071001, China
| | - Tong Jiang
- College of Life Science, Agricultural University of Hebei, Baoding, Hebei 071001, China
| | - Shigang Shen
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China.
| |
Collapse
|
8
|
Lan D, Bai L, Liu H, Guo H, Yan H. Fabrication of a monolithic, macroporous diallyl maleate-based material and its application for fast separation of intact proteins from human plasma with reversed-phase chromatography. J Chromatogr A 2019; 1592:197-201. [DOI: 10.1016/j.chroma.2019.01.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 12/18/2022]
|
9
|
Lan D, Bai L, Pang X, Liu H, Yan H, Guo H. In situ synthesis of a monolithic material with multi-sized pores and its chromatographic properties for the separation of intact proteins from human plasma. Talanta 2019; 194:406-414. [DOI: 10.1016/j.talanta.2018.10.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 10/09/2018] [Accepted: 10/17/2018] [Indexed: 12/14/2022]
|
10
|
Lan D, Bai L, Li M, Peng S, Liu H, Guo H. Preparation of a hydroxyethyl-based monolithic column and its application in the isolation of intact proteins from complex bio-samples. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1104:89-93. [DOI: 10.1016/j.jchromb.2018.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 10/23/2018] [Accepted: 11/08/2018] [Indexed: 10/27/2022]
|
11
|
Tarasova IA, Masselon CD, Gorshkov AV, Gorshkov MV. Predictive chromatography of peptides and proteins as a complementary tool for proteomics. Analyst 2018; 141:4816-4832. [PMID: 27419248 DOI: 10.1039/c6an00919k] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In the last couple of decades, considerable effort has been focused on developing methods for quantitative and qualitative proteome characterization. The method of choice in this characterization is mass spectrometry used in combination with sample separation. One of the most widely used separation techniques at the front end of a mass spectrometer is high performance liquid chromatography (HPLC). A unique feature of HPLC is its specificity to the amino acid sequence of separated peptides and proteins. This specificity may provide additional information about the peptides or proteins under study which is complementary to the mass spectrometry data. The value of this information for proteomics has been recognized in the past few decades, which has stimulated significant effort in the development and implementation of computational and theoretical models for the prediction of peptide retention time for a given sequence. Here we review the advances in this area and the utility of predicted retention times for proteomic applications.
Collapse
Affiliation(s)
- Irina A Tarasova
- Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, Moscow 119334, Russia.
| | - Christophe D Masselon
- CEA, iRTSV-BGE, Laboratoire d'Etude de la Dynamique des Protéomes, Grenoble, F-38000, France and INSERM, U1038-BGE, F-38000, Grenoble, France
| | - Alexander V Gorshkov
- N.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Mikhail V Gorshkov
- Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, Moscow 119334, Russia. and Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow region 141700, Russia
| |
Collapse
|
12
|
Wang Z, Ma H, Smith K, Wu S. Two-Dimensional Separation Using High-pH and Low-pH Reversed Phase Liquid Chromatography for Top-down Proteomics. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2018; 427:43-51. [PMID: 31097918 PMCID: PMC6516780 DOI: 10.1016/j.ijms.2017.09.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Advancements in chromatographic separation are critical to in-depth top-down proteomics of complex intact protein samples. Reversed-phase liquid chromatography is the most prevalent technique for top-down proteomics. However, in cases of high complexities and large dynamic ranges, 1D-RPLC may not provide sufficient coverage of the proteome. To address these challenges, orthogonal separation techniques are often combined to improve the coverage and the dynamic range of detection. In this study, a "salt-free" high-pH RPLC was evaluated as an orthogonal dimension of separation to conventional low-pH RPLC with top-down MS. The RPLC separations with low-pH conditions (pH=2) and high-pH conditions (pH=10) were compared to confirm the good orthogonality between high-pH and low-pH RPLC's. The offline 2D RPLC-RPLC-MS/MS analyses of intact E. coli samples were evaluated for the improvement of intact protein identifications as well as intact proteoform characterizations. Compared to the 163 proteins and 328 proteoforms identified using a 1D RPLC-MS approach, 365 proteins and 886 proteoforms were identified using the 2D RPLC-RPLC top-down MS approach. Our results demonstrate that the 2D RPLC-RPLC top-down approach holds great potential for in-depth top-down proteomics studies by utilizing the high resolving power of RPLC separations and by using mass spectrometry compatible buffers for easy sample handling for online MS analysis.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Chemistry and Biochemistry, University of Oklahoma,
101 Stephenson Parkway, Norman, OK 73019
| | - Hongyan Ma
- Department of Chemistry and Biochemistry, University of Oklahoma,
101 Stephenson Parkway, Norman, OK 73019
| | - Kenneth Smith
- Arthritis & Clinical Immunology Research Program, Oklahoma
Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, OK 73104
| | - Si Wu
- Department of Chemistry and Biochemistry, University of Oklahoma,
101 Stephenson Parkway, Norman, OK 73019
- To whom correspondence should be addressed: Si
Wu, Ph.D., Department of Chemistry and Biochemistry, 101 Stephenson
Parkway, Room 2210, Norman, Oklahoma 73019-5251, United States, Phone: (405)
325-6931, , Fax: (405) 325-6111
| |
Collapse
|
13
|
Badgett MJ, Boyes B, Orlando R. Peptide retention prediction using hydrophilic interaction liquid chromatography coupled to mass spectrometry. J Chromatogr A 2018; 1537:58-65. [PMID: 29338870 PMCID: PMC5805588 DOI: 10.1016/j.chroma.2017.12.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/12/2017] [Accepted: 12/20/2017] [Indexed: 10/18/2022]
Abstract
A model that predicts retention for peptides using a HALO® penta-HILIC column and gradient elution was created. Coefficients for each amino acid were derived using linear regression analysis and these coefficients can be summed to predict the retention of peptides. This model has a high correlation between experimental and predicted retention times (0.946), which is on par with previous RP and HILIC models. External validation of the model was performed using a set of H. pylori samples on the same LC-MS system used to create the model, and the deviation from actual to predicted times was low. Apart from amino acid composition, length and location of amino acid residues on a peptide were examined and two site-specific corrections for hydrophobic residues at the N-terminus as well as hydrophobic residues one spot over from the N-terminus were created.
Collapse
Affiliation(s)
- Majors J Badgett
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 United States
| | - Barry Boyes
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 United States; Advanced Materials Technology, Wilmington, DE 19810 United States
| | - Ron Orlando
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 United States.
| |
Collapse
|
14
|
Spicer V, Krokhin OV. Peptide retention time prediction in hydrophilic interaction liquid chromatography. Comparison of separation selectivity between bare silica and bonded stationary phases. J Chromatogr A 2018; 1534:75-84. [DOI: 10.1016/j.chroma.2017.12.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/14/2017] [Accepted: 12/16/2017] [Indexed: 01/01/2023]
|
15
|
Mong SK, Cochran FV, Yu H, Graziano Z, Lin YS, Cochran JR, Pentelute BL. Heterochiral Knottin Protein: Folding and Solution Structure. Biochemistry 2017; 56:5720-5725. [PMID: 28952732 DOI: 10.1021/acs.biochem.7b00722] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Homochirality is a general feature of biological macromolecules, and Nature includes few examples of heterochiral proteins. Herein, we report on the design, chemical synthesis, and structural characterization of heterochiral proteins possessing loops of amino acids of chirality opposite to that of the rest of a protein scaffold. Using the protein Ecballium elaterium trypsin inhibitor II, we discover that selective β-alanine substitution favors the efficient folding of our heterochiral constructs. Solution nuclear magnetic resonance spectroscopy of one such heterochiral protein reveals a homogeneous global fold. Additionally, steered molecular dynamics simulation indicate β-alanine reduces the free energy required to fold the protein. We also find these heterochiral proteins to be more resistant to proteolysis than homochiral l-proteins. This work informs the design of heterochiral protein architectures containing stretches of both d- and l-amino acids.
Collapse
Affiliation(s)
- Surin K Mong
- Department of Chemistry, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Frank V Cochran
- Department of Bioengineering, Stanford University , 450 Serra Mall, Stanford, California 94305, United States
| | - Hongtao Yu
- Department of Chemistry, Tufts University , 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - Zachary Graziano
- Department of Chemistry, Tufts University , 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - Yu-Shan Lin
- Department of Chemistry, Tufts University , 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - Jennifer R Cochran
- Department of Bioengineering, Stanford University , 450 Serra Mall, Stanford, California 94305, United States
| | - Bradley L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
16
|
Gorshkov AV, Pridatchenko ML, Perlova TY, Tarasova IA, Gorshkov MV, Evreinov VV. Applicability of the critical chromatography concept to proteomics problems: I. Effect of the stationary phase and the size of the chromatographic column on the dependence of the retention time of peptides and proteins on the amino acid sequence. JOURNAL OF ANALYTICAL CHEMISTRY 2015. [DOI: 10.1134/s1061934816010056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Tarasova IA, Goloborodko AA, Perlova TY, Pridatchenko ML, Gorshkov AV, Evreinov VV, Ivanov AR, Gorshkov MV. Application of Statistical Thermodynamics To Predict the Adsorption Properties of Polypeptides in Reversed-Phase HPLC. Anal Chem 2015; 87:6562-9. [DOI: 10.1021/acs.analchem.5b00595] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Irina A. Tarasova
- Institute
for Energy Problems of Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Anton A. Goloborodko
- Institute
for Energy Problems of Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Tatyana Y. Perlova
- Institute
for Energy Problems of Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Marina L. Pridatchenko
- Institute
for Energy Problems of Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Alexander V. Gorshkov
- N.
N. Semenov’s Institute of Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Victor V. Evreinov
- N.
N. Semenov’s Institute of Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander R. Ivanov
- Barnett
Institute of Chemical and Biological Analysis, Department of Chemistry
and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Mikhail V. Gorshkov
- Institute
for Energy Problems of Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
- Moscow Institute of Physics and Technology (State University), 141707 Dolgoprudny, Moscow Region, Russia
| |
Collapse
|
18
|
Gilar M, Jaworski A, McDonald TS. Solvent selectivity and strength in reversed-phase liquid chromatography separation of peptides. J Chromatogr A 2014; 1337:140-6. [DOI: 10.1016/j.chroma.2014.02.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 02/11/2014] [Accepted: 02/16/2014] [Indexed: 01/29/2023]
|
19
|
Babii O, Afonin S, Berditsch M, Reiβer S, Mykhailiuk PK, Kubyshkin VS, Steinbrecher T, Ulrich AS, Komarov IV. Controlling Biological Activity with Light: Diarylethene-Containing Cyclic Peptidomimetics. Angew Chem Int Ed Engl 2014; 53:3392-5. [DOI: 10.1002/anie.201310019] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/13/2014] [Indexed: 11/10/2022]
|
20
|
Babii O, Afonin S, Berditsch M, Reiβer S, Mykhailiuk PK, Kubyshkin VS, Steinbrecher T, Ulrich AS, Komarov IV. Controlling Biological Activity with Light: Diarylethene-Containing Cyclic Peptidomimetics. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201310019] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Russell JD, Scalf M, Book AJ, Ladror DT, Vierstra RD, Smith LM, Coon JJ. Characterization and quantification of intact 26S proteasome proteins by real-time measurement of intrinsic fluorescence prior to top-down mass spectrometry. PLoS One 2013; 8:e58157. [PMID: 23536786 PMCID: PMC3594244 DOI: 10.1371/journal.pone.0058157] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 02/03/2013] [Indexed: 11/18/2022] Open
Abstract
Quantification of gas-phase intact protein ions by mass spectrometry (MS) is impeded by highly-variable ionization, ion transmission, and ion detection efficiencies. Therefore, quantification of proteins using MS-associated techniques is almost exclusively done after proteolysis where peptides serve as proxies for estimating protein abundance. Advances in instrumentation, protein separations, and informatics have made large-scale sequencing of intact proteins using top-down proteomics accessible to the proteomics community; yet quantification of proteins using a top-down workflow has largely been unaddressed. Here we describe a label-free approach to determine the abundance of intact proteins separated by nanoflow liquid chromatography prior to MS analysis by using solution-phase measurements of ultraviolet light-induced intrinsic fluorescence (UV-IF). UV-IF is measured directly at the electrospray interface just prior to the capillary exit where proteins containing at least one tryptophan residue are readily detected. UV-IF quantification was demonstrated using commercially available protein standards and provided more accurate and precise protein quantification than MS ion current. We evaluated the parallel use of UV-IF and top-down tandem MS for quantification and identification of protein subunits and associated proteins from an affinity-purified 26S proteasome sample from Arabidopsis thaliana. We identified 26 unique proteins and quantified 13 tryptophan-containing species. Our analyses discovered previously unidentified N-terminal processing of the β6 (PBF1) and β7 (PBG1) subunit - such processing of PBG1 may generate a heretofore unknown additional protease active site upon cleavage. In addition, our approach permitted the unambiguous identification and quantification both isoforms of the proteasome-associated protein DSS1.
Collapse
Affiliation(s)
- Jason D. Russell
- Department of Chemistry, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
- Genome Center of Wisconsin, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Mark Scalf
- Department of Chemistry, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Adam J. Book
- Department of Genetics, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Daniel T. Ladror
- Department of Chemistry, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Richard D. Vierstra
- Department of Genetics, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Lloyd M. Smith
- Department of Chemistry, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
- Genome Center of Wisconsin, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Joshua J. Coon
- Department of Chemistry, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
- Department of Biomolecular Chemistry, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
- Department of Genetics, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
- Genome Center of Wisconsin, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
22
|
Mant CT, Hodges RS. Design of peptide standards with the same composition and minimal sequence variation to monitor performance/selectivity of reversed-phase matrices. J Chromatogr A 2012; 1230:30-40. [PMID: 22326185 PMCID: PMC3294100 DOI: 10.1016/j.chroma.2012.01.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 01/13/2012] [Accepted: 01/19/2012] [Indexed: 10/14/2022]
Abstract
The present manuscript extends our de novo peptide design approach to the synthesis and evaluation of a new generation of reversed-phase HPLC peptide standards with the same composition and minimal sequence variation (SCMSV). Thus, we have designed and synthesized four series of peptide standards with the sequences Gly-X-Leu-Gly-Leu-Ala-Leu-Gly-Gly-Leu-Lys-Lys-amide, where the N-terminal is either N(α)-acetylated (Series 1) or contains a free α-amino group (Series 3); and Gly-Gly-Leu-Gly-Gly-Ala-Leu-Gly-X-Leu-Lys-Lys-amide, where the N-terminal is either N(α)-acetylated (Series 2) or contains a free α-amino group (Series 4). In this initial study, the single substitution position, X, was substituted with alkyl side-chains (Ala
Collapse
Affiliation(s)
- Colin T. Mant
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| | - Robert S. Hodges
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
23
|
Gorshkov AV, Evreinov VV, Pridatchenko ML, Tarasova IA, Filatova NN, Rozdina IG, Gorshkov MV. Applicability of the critical-chromatography concept to analysis of proteins: Dependence of retention times on the sequence of amino acid residues in a chain. POLYMER SCIENCE SERIES A 2011. [DOI: 10.1134/s0965545x11120066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
On the utility of predictive chromatography to complement mass spectrometry based intact protein identification. Anal Bioanal Chem 2011; 402:2521-9. [PMID: 21901462 DOI: 10.1007/s00216-011-5350-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 07/22/2011] [Accepted: 08/19/2011] [Indexed: 10/17/2022]
Abstract
The amino acid sequence determines the individual protein three-dimensional structure and its functioning in an organism. Therefore, "reading" a protein sequence and determining its changes due to mutations or post-translational modifications is one of the objectives of proteomic experiments. The commonly utilized approach is gradient high-performance liquid chromatography (HPLC) in combination with tandem mass spectrometry. While serving as a way to simplify the protein mixture, the liquid chromatography may be an additional analytical tool providing complementary information about the protein structure. Previous attempts to develop "predictive" HPLC for large biomacromolecules were limited by empirically derived equations based purely on the adsorption mechanisms of the retention and applicable to relatively small polypeptide molecules. A mechanism of the large biomacromolecule retention in reversed-phase gradient HPLC was described recently in thermodynamics terms by the analytical model of liquid chromatography at critical conditions (BioLCCC). In this work, we applied the BioLCCC model to predict retention of the intact proteins as well as their large proteolytic peptides separated under different HPLC conditions. The specific aim of these proof-of-principle studies was to demonstrate the feasibility of using "predictive" HPLC as a complementary tool to support the analysis of identified intact proteins in top-down, middle-down, and/or targeted selected reaction monitoring (SRM)-based proteomic experiments.
Collapse
|
25
|
Cao W, Ma D, Kapur A, Patankar MS, Ma Y, Li L. RT-SVR+q: a strategy for post-Mascot analysis using retention time and q value metric to improve peptide and protein identifications. J Proteomics 2011; 75:480-90. [PMID: 21888997 DOI: 10.1016/j.jprot.2011.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 07/31/2011] [Accepted: 08/17/2011] [Indexed: 10/17/2022]
Abstract
Shotgun proteomics commonly utilizes database search like Mascot to identify proteins from tandem MS/MS spectra. False discovery rate (FDR) is often used to assess the confidence of peptide identifications. However, a widely accepted FDR of 1% sacrifices the sensitivity of peptide identification while improving the accuracy. This article details a machine learning approach combining retention time based support vector regressor (RT-SVR) with q value based statistical analysis to improve peptide and protein identifications with high sensitivity and accuracy. The use of confident peptide identifications as training examples and careful feature selection ensures high R values (>0.900) for all models. The application of RT-SVR model on Mascot results (p=0.10) increases the sensitivity of peptide identifications. q Value, as a function of deviation between predicted and experimental RTs (ΔRT), is used to assess the significance of peptide identifications. We demonstrate that the peptide and protein identifications increase by up to 89.4% and 83.5%, respectively, for a specified q value of 0.01 when applying the method to proteomic analysis of the natural killer leukemia cell line (NKL). This study establishes an effective methodology and provides a platform for profiling confident proteomes in more relevant species as well as a future investigation of accurate protein quantification.
Collapse
Affiliation(s)
- Weifeng Cao
- Department of Chemistry, University of Wisconsin-Madison, 777 Highland Ave., Madison, WI 53705, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Gilar M, Jaworski A. Retention behavior of peptides in hydrophilic-interaction chromatography. J Chromatogr A 2011; 1218:8890-6. [PMID: 21530976 DOI: 10.1016/j.chroma.2011.04.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 03/30/2011] [Accepted: 04/01/2011] [Indexed: 10/18/2022]
Abstract
Selected hydrophilic interaction chromatography (HILIC) columns packed with bare silica, bridge-ethyl hybrid silica, or an amide sorbent chemistry were utilized for an investigation of chromatographic behavior and separation selectivity of tryptic peptides. Retention model was proposed allowing for retention prediction of peptides with correlation coefficient R(2)~0.92-0.97 for various columns. The values of optimized amino acid retention coefficients were compared to those obtained for reversed-phase liquid chromatography (Gilar et al., Anal. Chem. 2010, 82, 265-275) and used to elucidate the impact of different amino acid on peptide HILIC retention. In contrast to reversed-phase chromatography, where presence of Phe, Trp, Ile, and Leu amino acid residues in sequence strongly promoted, and presence of hydrophilic His, Lys and Arg residues strongly reduced peptide retention, the effects of these amino acid residues in HILIC were opposite (His, Lys and Arg promote, Phe, Trp, Ile and Leu demote peptide retention in HILIC). Retention coefficient optimized for pH experiments illustrated the impact of silanols on HILIC retention.
Collapse
Affiliation(s)
- Martin Gilar
- Waters Corporation, 34 Maple St., Milford, MA 01757, USA. Martin
| | | |
Collapse
|
27
|
Bochet P, Rügheimer F, Guina T, Brooks P, Goodlett D, Clote P, Schwikowski B. Fragmentation-free LC-MS can identify hundreds of proteins. Proteomics 2010; 11:22-32. [DOI: 10.1002/pmic.200900765] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 09/02/2010] [Accepted: 09/20/2010] [Indexed: 11/09/2022]
|
28
|
Liu C, Wang H, Fu Y, Yuan Z, Chi H, Wang L, Sun R, He S. [Prediction of peptide retention time in reversed-phase liquid chromatography and its application in protein identification]. Se Pu 2010; 28:529-34. [PMID: 20873570 DOI: 10.3724/sp.j.1123.2010.00529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Liquid chromatography-mass spectrometry (LC-MS) is the mainstream of high throughput protein identification technology. Peptide retention time in reversed-phase liquid chromatography (RPLC) is mainly determined by the physicochemical properties of the peptide and the LC conditions (stationary phase and mobile phase). Retention time can be predicted by analyzing these properties and quantifying their effects on peptide chromatographic behavior. Prediction of peptide retention time in LC can be used to improve identification of peptides and post translational modifications (PTM). There are mainly two methods to predict retention time: i.e., retention coefficients and machine learning. The coefficient of determination between observed and predicted retention times can reach 0.93. With the development of LC-MS technology, retention time prediction will become an important tool to facilitate protein identification.
Collapse
Affiliation(s)
- Chao Liu
- Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Mant CT, Cepeniene D, Hodges RS. Reversed-phase HPLC of peptides: Assessing column and solvent selectivity on standard, polar-embedded and polar endcapped columns. J Sep Sci 2010; 33:3005-21. [DOI: 10.1002/jssc.201000518] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
30
|
Wujcik CE, Tweed J, Kadar EP. Application of hydrophilic interaction chromatography retention coefficients for predicting peptide elution with TFA and methanesulfonic acid ion-pairing reagents. J Sep Sci 2010; 33:826-33. [PMID: 20087867 DOI: 10.1002/jssc.200900533] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Hydrophilic retention coefficients for 17 peptides were calculated based on retention coefficients previously published for TSKgel silica-60 and were compared with the experimental elution profile on a Waters Atlantis HILIC silica column using TFA and methanesulfonic acid (MSA) as ion-pairing reagents. Relative peptide retention could be accurately determined with both counter-ions. Peptide retention and chromatographic behavior were influenced by the percent acid modifier used with increases in both retention and peak symmetry observed at increasing modifier concentrations. The enhancement of net peptide polarity through MSA pairing shifted retention out by nearly five-fold for the earliest eluting peptide, compared with TFA. Despite improvements in retention and efficiency (N(eff)) for MSA over TFA, a consistent reduction in calculated selectivity (alpha) was observed. This result is believed to be attributed to the stronger polar contribution of MSA masking and diminishing the underlying influence of the amino acid residues of each associated peptide. Finally, post-column infusion of propionic acid and acetic acid was evaluated for their potential to recover signal intensity for TFA and MSA counter-ions for LC-ESI-MS applications. Acetic acid generally yielded more substantial signal improvements over propionic acid on the TFA system while minimal benefits and some further reductions were noted with MSA.
Collapse
|
31
|
Babushok VI, Zenkevich IG. Retention Characteristics of Peptides in RP-LC: Peptide Retention Prediction. Chromatographia 2010. [DOI: 10.1365/s10337-010-1721-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
32
|
The molecular descriptor logSumAA and its alternatives in QSRR models to predict the retention of peptides. J Pharm Biomed Anal 2009; 50:563-9. [DOI: 10.1016/j.jpba.2008.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 09/02/2008] [Accepted: 09/03/2008] [Indexed: 11/17/2022]
|
33
|
Liu A, Tweed J, Wujcik CE. Investigation of an on-line two-dimensional chromatographic approach for peptide analysis in plasma by LC–MS–MS. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:1873-81. [DOI: 10.1016/j.jchromb.2009.05.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 04/24/2009] [Accepted: 05/10/2009] [Indexed: 11/27/2022]
|
34
|
Bączek T, Kaliszan R. Predictions of peptides' retention times in reversed-phase liquid chromatography as a new supportive tool to improve protein identification in proteomics. Proteomics 2009; 9:835-47. [DOI: 10.1002/pmic.200800544] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
35
|
Ren D, Pipes GD, Hambly DM, Bondarenko PV, Treuheit MJ, Brems DN, Gadgil HS. Reversed-phase liquid chromatography of immunoglobulin G molecules and their fragments with the diphenyl column. J Chromatogr A 2007; 1175:63-8. [PMID: 17980377 DOI: 10.1016/j.chroma.2007.10.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2007] [Revised: 10/02/2007] [Accepted: 10/04/2007] [Indexed: 11/17/2022]
Abstract
A diphenyl column was able to resolve two closely related monoclonal IgG2 molecules, while a C8 column failed to separate these IgGs under identical chromatographic conditions. The diphenyl column also showed a better separation of a mixture of two light and two heavy chains than the C8 column. The influence of amino acid side chains from protein sequences in binding to the diphenyl and C8 stationary phases was studied by using a set of synthetic peptides with the sequence GXXLLLKK, where X represents substitution with all of the 20 amino acids. Peptides containing aromatic amino acids showed a greater binding on the diphenyl column than on the C8 column. This increase in retention was attributed to pi-pi interactions between the aromatic amino acid side chains and the diphenyl ligand. Based on the retention of peptides on the diphenyl column, new retention coefficients were assigned for the separation of proteins. A good correlation was observed between the sum of retention coefficients (SigmaRc) for IgGs and their retention time on the diphenyl column. On-column hydrogen-deuterium exchange showed that the diphenyl column had a larger surface of interaction with protein than the C8 column. pi-pi interactions and the large contact surface resulted in improved resolution of IgGs and their fragments on the diphenyl column.
Collapse
Affiliation(s)
- Da Ren
- Department of Pharmaceutics, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Bączek T, Radkowska M, Sparzak B. Predictions of Peptide Retention in HPLC with the use of Amino Acid Retention Data Obtained in a TLC System. J LIQ CHROMATOGR R T 2007. [DOI: 10.1080/10826070701629457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Tomasz Bączek
- a Department of Biopharmaceutics and Pharmacodynamics , Medical University of Gdańsk , Gdańsk, Poland
| | - Marta Radkowska
- a Department of Biopharmaceutics and Pharmacodynamics , Medical University of Gdańsk , Gdańsk, Poland
| | - Barbara Sparzak
- b Department of Pharmacognosy , Medical University of Gdańsk , Gdańsk, Poland
| |
Collapse
|
37
|
Tripet B, Cepeniene D, Kovacs JM, Mant CT, Krokhin OV, Hodges RS. Requirements for prediction of peptide retention time in reversed-phase high-performance liquid chromatography: hydrophilicity/hydrophobicity of side-chains at the N- and C-termini of peptides are dramatically affected by the end-groups and location. J Chromatogr A 2006; 1141:212-25. [PMID: 17187811 PMCID: PMC2722105 DOI: 10.1016/j.chroma.2006.12.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 12/01/2006] [Accepted: 12/05/2006] [Indexed: 11/27/2022]
Abstract
The value of reversed-phase high-performance liquid chromatography (RP-HPLC) and the field of proteomics would be greatly enhanced by accurate prediction of retention times of peptides of known composition. The present study investigates the hydrophilicity/hydrophobicity of amino acid side-chains at the N- and C-termini of peptides while varying the functional end-groups at the termini. We substituted all 20 naturally occurring amino acids at the N- and C-termini of a model peptide sequence, where the functional end-groups were N(alpha)-acetyl-X- and N(alpha)-amino-X- at the N-terminus and -X-C(alpha)-carboxyl and -X-C(alpha)-amide at the C-terminus. Amino acid coefficients were subsequently derived from the RP-HPLC retention behaviour of these peptides and compared to each other as well as to coefficients determined in the centre of the peptide chain (internal coefficients). Coefficients generated from residues substituted at the C-terminus differed most (between the -X-C(alpha)-carboxyl and -X-C(alpha)-amide peptide series) for hydrophobic side-chains. A similar result was seen for the N(alpha)-acetyl-X- and N(alpha)-amino-X- peptide series, where the largest differences in coefficient values were observed for hydrophobic side-chains. Coefficients derived from substitutions at the C-terminus for hydrophobic amino acids were dramatically different compared to internal coefficients for hydrophobic side-chains, ranging from 17.1 min for Trp to 4.8 min for Cys. In contrast, coefficients derived from substitutions at the N-terminus showed relatively small differences from the internal coefficients. Subsequent prediction of peptide retention time, within an error of just 0.4 min, was achieved by a predictive algorithm using a combination of internal coefficients and coefficients for the C-terminal residues. For prediction of peptide retention time, the sum of the coefficients must include internal and terminal coefficients.
Collapse
Affiliation(s)
- Brian Tripet
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denverand Health Sciences Center, Aurora, CO, 80045, USA
| | - Dziuleta Cepeniene
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denverand Health Sciences Center, Aurora, CO, 80045, USA
| | - James M. Kovacs
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denverand Health Sciences Center, Aurora, CO, 80045, USA
| | - Colin T. Mant
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denverand Health Sciences Center, Aurora, CO, 80045, USA
| | - Oleg V. Krokhin
- Manitoba Centre for Proteomic and Systems Biology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Robert S. Hodges
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denverand Health Sciences Center, Aurora, CO, 80045, USA
- Corresponding author. Tel.: +1 303 724 3253; fax: +1 303 724 3249. E-mail address: (R.S. Hodges)
| |
Collapse
|
38
|
Dunlap CJ, Carr PW. The Effect of Mobile Phase on Protein Retention and Recovery Using Carboxymethyl Dextran-Coated Zirconia Stationary Phases. J LIQ CHROMATOGR R T 2006. [DOI: 10.1080/10826079608017141] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- C. J. Dunlap
- a Department of Chemistry , University of Minnesota Kolthoff and Smith Halls , 207 Pleasant St., S.E. Minneapolis, MN, 55455, USA
| | - P. W. Carr
- a Department of Chemistry , University of Minnesota Kolthoff and Smith Halls , 207 Pleasant St., S.E. Minneapolis, MN, 55455, USA
| |
Collapse
|
39
|
Mills JB, Mant CT, Hodges RS. One-step purification of a recombinant protein from a whole cell extract by reversed-phase high-performance liquid chromatography. J Chromatogr A 2006; 1133:248-53. [PMID: 16945380 PMCID: PMC2722115 DOI: 10.1016/j.chroma.2006.08.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Revised: 08/11/2006] [Accepted: 08/15/2006] [Indexed: 11/30/2022]
Abstract
We have developed a one-step facile, flexible and readily scalable purification method for a recombinant protein, TM 1-99 (113 amino acid residues; 12,837 Da) based on reversed-phase high-performance liquid chromatography (RP-HPLC) from an E. coli cell lysate. Following cell lysis, the cell contents were extracted with 0.1% aqueous trifluoroacetic acid (TFA), applied directly under conditions of high sample load to a narrow bore RP-HPLC C(8) column (150 mm x 2.1 mm I.D.) and eluted by a shallow gradient of acetonitrile (0.1%/min). Loads of 23 and 48 mg of lyophilized crude cell extract produced 2.4 and 4.2mg of purified product (>94% pure), respectively, at >94% recovery. Our results show the excellent potential of one-step RP-HPLC for purification of recombinant proteins from cell lysates, where high yields of purified product and greater purity are achieved compared to affinity chromatography. Such an approach was also successful in purifying just trace levels (<0.1% of total contents of crude sample) of TM 1-99 from a cell lysate.
Collapse
Affiliation(s)
| | | | - Robert S. Hodges
- Corresponding author. Tel.: +1 303 724 3253. E-mail address: (R.S. Hodges)
| |
Collapse
|
40
|
Kovacs JM, Mant CT, Kwok SC, Osguthorpe DJ, Hodges RS. Quantitation of the nearest-neighbour effects of amino acid side-chains that restrict conformational freedom of the polypeptide chain using reversed-phase liquid chromatography of synthetic model peptides with L- and D-amino acid substitutions. J Chromatogr A 2006; 1123:212-24. [PMID: 16712857 PMCID: PMC1976429 DOI: 10.1016/j.chroma.2006.04.092] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Revised: 04/18/2006] [Accepted: 04/28/2006] [Indexed: 10/24/2022]
Abstract
Side-chain backbone interactions (or "effects") between nearest neighbours may severely restrict the conformations accessible to a polypeptide chain and thus represent the first step in protein folding. We have quantified nearest-neighbour effects (i to i+1) in peptides through reversed-phase liquid chromatography (RP-HPLC) of model synthetic peptides, where L- and D-amino acids were substituted at the N-terminal end of the peptide sequence, adjacent to a L-Leu residue. These nearest-neighbour effects (expressed as the difference in retention times of L- and D-peptide diastereomers at pHs 2 and 7) were frequently dramatic, depending on the type of side-chain adjacent to the L-Leu residue, albeit such effects were independent of mobile phase conditions. No nearest-neighbour effects were observed when residue i is adjacent to a Gly residue. Calculation of minimum energy conformations of selected peptides supported the view that, whether a L- or D-amino acid is substituted adjacent to L-Leu, its orientation relative to this bulky Leu side-chain represents the most energetically favourable configuration. We believe that such energetically favourable, and different, configurations of L- and D-peptide diastereomers affect their respective interactions with a hydrophobic stationary phase, which are thus quantified by different RP-HPLC retention times. Side-chain hydrophilicity/hydrophobicity coefficients were generated in the presence of these nearest-neighbour effects and, despite the relative difference in such coefficients generated from peptides substituted with L- or D-amino acids, the relative difference in hydrophilicity/hydrophobicity between different amino acids in the L- or D-series is maintained. Overall, our results demonstrate that such nearest-neighbour effects can clearly restrict conformational space of an amino acid side-chain in a polypeptide chain.
Collapse
Affiliation(s)
- James M Kovacs
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045, USA
| | | | | | | | | |
Collapse
|
41
|
|
42
|
Kaliszan R, Baczek T, Cimochowska A, Juszczyk P, Wiśniewska K, Grzonka Z. Prediction of high-performance liquid chromatography retention of peptides with the use of quantitative structure-retention relationships. Proteomics 2005; 5:409-15. [PMID: 15627956 DOI: 10.1002/pmic.200400973] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Quantitative structure retention relationships (QSRR) were derived allowing prediction of reversed-phase high-performance liquid chromatography (HPLC) retention of peptides. To quantitatively characterize the structure of a peptide, and then to predict its gradient retention time under given HPLC conditions, the following descriptors are employed: logarithm of the sum of retention times of the amino acids composing the peptide, log Sum(AA), logarithm of Van der Waals volume of the peptide, log VDW(Vol), and logarithm of its calculated n-octanol-water partition coefficient, clog P. The first descriptor is based on a set of empirical data for 20 natural amino acids. The next two descriptors are easily calculated from a structural formula. The predicted gradient retention times are in excellent agreement with the experimental data, determined for a structurally diversified series of 101 peptides. The QSRR equation obtained predicts in a convenient and reliable manner the retention times for any peptide in a once characterized HPLC system.
Collapse
Affiliation(s)
- Roman Kaliszan
- Medical University of Gdanńsk, Department of Biopharmaceutics and Pharmacodynamics, Gdanńsk, Poland.
| | | | | | | | | | | |
Collapse
|
43
|
Corradini D, Rinalducci S, Timperio AM, Zolla L. Fingerprinting of Antenna Proteins of Photosystem I by Reversed Phase High Performance Liquid Chromatography. Chromatographia 2004. [DOI: 10.1365/s10337-004-0459-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
44
|
Prenner EJ, Kiricsi M, Jelokhani-Niaraki M, Lewis RNAH, Hodges RS, McElhaney RN. Structure-activity relationships of diastereomeric lysine ring size analogs of the antimicrobial peptide gramicidin S: mechanism of action and discrimination between bacterial and animal cell membranes. J Biol Chem 2004; 280:2002-11. [PMID: 15542606 PMCID: PMC3251617 DOI: 10.1074/jbc.m406509200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Structure-activity relationships were examined in seven gramicidin S analogs in which the ring-expanded analog GS14 [cyclo-(VKLKVdYPLKVKLdYP)] is modified by enantiomeric inversions of its lysine residues. The conformation, amphiphilicity, and self-association propensity of these peptides were investigated by circular dichroism spectroscopy and reversed phase high performance liquid chromatography. (31)P nuclear magnetic resonance spectroscopic and dye leakage experiments were performed to evaluate the capacity of these peptides to induce inverse nonlamellar phases in, and to permeabilize phospholipid bilayers; their growth inhibitory activity against the cell wall-less mollicute Acholeplasma laidlawii B was also examined. The amount and stability of beta-sheet structure, effective hydrophobicity, propensity for self-association in water, ability to disrupt the organization of phospholipid bilayers, and ability to inhibit A. laidlawii B growth are strongly correlated with the facial amphiphilicity of these GS14 analogs. Also, the magnitude of the parameters segregate these peptides into three groups, consisting of GS14, the four single inversion analogs, and the two multiple inversion analogs. The capacity of these peptides to differentiate between bacterial and animal cell membranes exhibits a biphasic relationship with peptide amphiphilicity, suggesting that there may only be a narrow range of peptide amphiphilicity within which it is possible to achieve the dual therapeutic requirements of high antibiotic effectiveness and low hemolytic activity. These results were rationalized by considering how the physiochemical properties of these GS14 analogs are likely to be reflected in their partitioning into lipid bilayer membranes.
Collapse
Affiliation(s)
- Elmar J. Prenner
- Department of Biochemistry and Protein Engineering Network of the Centers of Excellence, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Monika Kiricsi
- Department of Biochemistry and Protein Engineering Network of the Centers of Excellence, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Masood Jelokhani-Niaraki
- Department of Biochemistry and Protein Engineering Network of the Centers of Excellence, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Ruthven N. A. H. Lewis
- Department of Biochemistry and Protein Engineering Network of the Centers of Excellence, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Robert S. Hodges
- Department of Biochemistry and Protein Engineering Network of the Centers of Excellence, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center at Fitzsimons, Aurora, Colorado 80045
| | - Ronald N. McElhaney
- Department of Biochemistry and Protein Engineering Network of the Centers of Excellence, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
- To whom correspondence should be addressed: Dept. of Biochemistry, University of Alberta, Medical Sciences Bldg., Alberta T6G 2H7, Canada. Tel.: 780-492-2413; Fax: 780-492-0095,
| |
Collapse
|
45
|
Mant CT, Tripet B, Hodges RS. Temperature profiling of polypeptides in reversed-phase liquid chromatography. II. Monitoring of folding and stability of two-stranded alpha-helical coiled-coils. J Chromatogr A 2004; 1009:45-59. [PMID: 13677644 DOI: 10.1016/s0021-9673(03)00919-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present study extends the utility of reversed-phase high-performance liquid chromatography (RP-HPLC) to monitor folding and stability of de novo designed synthetic two-stranded alpha-helical coiled-coils. Thus, we have compared the effect of temperature on the RP-HPLC retention behaviour of both oxidized (two identical five-heptad alpha-helical peptides linked by a disulfide bridge) and reduced coiled-coil analogues with various amino acids substituted into the hydrophobic core of the coiled-coil. We were able to correlate the RP-HPLC retention behaviour of the oxidized analogues over the temperature range of 10 to 80 degrees C with the stability of the analogues as determined by conventional thermal and chemical denaturation approaches. In addition, the contribution of a disulfide bridge to coiled-coil stability was highlighted by comparing the elution behaviour of the oxidized and reduced analogues. Overall, we demonstrate the excellent potential of "temperature profiling" by RP-HPLC to monitor differences in oligomerization state and protein stability.
Collapse
Affiliation(s)
- Colin T Mant
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | | | |
Collapse
|
46
|
Chen Y, Mant CT, Hodges RS. Temperature selectivity effects in reversed-phase liquid chromatography due to conformation differences between helical and non-helical peptides. J Chromatogr A 2003; 1010:45-61. [PMID: 14503815 DOI: 10.1016/s0021-9673(03)00877-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In order to characterize the effect of temperature on the retention behaviour and selectivity of separation of polypeptides and proteins in reversed-phase high-performance liquid chromatography (RP-HPLC), the chromatographic properties of four series of peptides, with different peptide conformations, have been studied as a function of temperature (5-80 degrees C). The secondary structure of model peptides was based on either the amphipathic alpha-helical peptide sequence Ac-EAEKAAKEX(D/L)EKAAKEAEK-amide, (position X being in the centre of the hydrophobic face of the alpha-helix), or the random coil peptide sequence Ac-X(D/L)LGAKGAGVG-amide, where position X is substituted by the 19 L- or D-amino acids and glycine. We have shown that the helical peptide analogues exhibited a greater effect of varying temperature on elution behaviour compared to the random coil peptide analogues, due to the unfolding of alpha-helical structure with the increase of temperature during RP-HPLC. In addition, temperature generally produced different effects on the separations of peptides with different L- or D-amino acid substitutions within the groups of helical or non-helical peptides. The results demonstrate that variations in temperature can be used to effect significant changes in selectivity among the peptide analogues despite their very high degree of sequence homology. Our results also suggest that a temperature-based approach to RP-HPLC can be used to distinguish varying amino acid substitutions at the same site of the peptide sequence. We believe that the peptide mixtures presented here provide a good model for studying temperature effects on selectivity due to conformational differences of peptides, both for the rational development of peptide separation optimization protocols and a probe to distinguish between peptide conformations.
Collapse
Affiliation(s)
- Yuxin Chen
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
47
|
Mant CT, Chen Y, Hodges RS. Temperature profiling of polypeptides in reversed-phase liquid chromatography. J Chromatogr A 2003; 1009:29-43. [PMID: 13677643 DOI: 10.1016/s0021-9673(03)00621-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The present study sets out to extend the utility of reversed-phase liquid chromatography (RP-HPLC) by demonstrating its ability to monitor dimerization and unfolding of de novo designed synthetic amphipathic alpha-helical peptides on stationary phases of varying hydrophobicity. Thus, we have compared the effect of temperature (5-80 degrees C) on the RP-HPLC (C8 or cyano columns) elution behaviour of mixtures of peptides encompassing amphipathic alpha-helical structure, amphipathic alpha-helical structure with L- or D-substitutions or non-amphipathic alpha-helical structure. By comparing the retention behaviour of the helical peptides to a peptide of negligible secondary structure (a random coil), we rationalize that "temperature profiling" by RP-HPLC can monitor association of peptide molecules, either through oligomerization or aggregation, or monitor unfolding of alpha-helical peptides with increasing temperature. We believe that the conformation-dependent response of peptides to RP-HPLC under changing temperature has implications both for general analysis and purification of peptides but also for the de novo design of peptides and proteins.
Collapse
Affiliation(s)
- Colin T Mant
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | | | |
Collapse
|
48
|
Lee DL, Mant CT, Hodges RS. A novel method to measure self-association of small amphipathic molecules: temperature profiling in reversed-phase chromatography. J Biol Chem 2003; 278:22918-27. [PMID: 12686558 DOI: 10.1074/jbc.m301777200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Biophysical techniques such as size-exclusion chromatography, sedimentation equilibrium analytical ultracentrifugation, and non-denaturing gel electrophoresis are the classical methods for determining the self-association of molecules into dimers, trimers, or other higher order species. However, these techniques usually require high (mg/ml) loading concentrations to detect self-association and also possess a lower size limit that is dependent on the ability of the technique to resolve monomeric from higher order species. Here we describe a novel, sensitive method with no upper or lower molecular size limits that indicates self-association of molecules driven together by the hydrophobic effect under aqueous conditions. "Temperature profiling in reversed-phase chromatography" analyzes the retention behavior of a sample over the temperature range of 5-80 degrees C during gradient elution reversed-phase high-performance liquid chromatography. Because this technique greatly increases the effective concentration of analyte upon adsorption to the column, it is extremely sensitive, requiring very small sample quantities (microgram or less). In contrast, the classical techniques mentioned above decrease the effective analyte concentration during analysis, decreasing sensitivity by requiring larger amounts of analyte to detect molecular self-association. We demonstrate the utility of this technique with 14-residue cyclic and linear cationic peptides (<2000 Da) based on the sequence of the de novo-designed cytolytic peptide, GS14. The only requirements for the analyte molecule when using this technique are its ability to be retained on the reversed-phase column and to be subsequently removed from the column during gradient elution.
Collapse
Affiliation(s)
- Darin L Lee
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | |
Collapse
|
49
|
Biswas KM, DeVido DR, Dorsey JG. Evaluation of methods for measuring amino acid hydrophobicities and interactions. J Chromatogr A 2003; 1000:637-55. [PMID: 12877193 DOI: 10.1016/s0021-9673(03)00182-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The concept of hydrophobicity has been addressed by researchers in all aspects of science, particularly in the fields of biology and chemistry. Over the past several decades, the study of the hydrophobicity of biomolecules, particularly amino acids has resulted in the development of a variety of hydrophobicity scales. In this review, we discuss the various methods of measuring amino acid hydrophobicity and provide explanations for the wide range of rankings that exist among these published scales. A discussion of the literature on amino acid interactions is also presented. Only a surprisingly small number of papers exist in this rather important area of research; measuring pairwise amino acid interactions will aid in understanding structural aspects of proteins.
Collapse
Affiliation(s)
- Kallol M Biswas
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | | | | |
Collapse
|
50
|
Sanz-Nebot V, Benavente F, Toro I, Barbosa J. Evaluation of chromatographic versus electrophoretic behaviour of a series of therapeutical peptide hormones. J Chromatogr A 2003; 985:411-23. [PMID: 12580510 DOI: 10.1016/s0021-9673(02)01902-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this work, models describing the effect of pH on chromatographic and electrophoretic behaviour for a series of polyprotic therapeutic peptide hormones were compared. taking into account the species in solution and the activity coefficients. The usefulness of the proposed equations is twofold, they permit the determination of the acidity constants in water and in the hydroorganic mobile phases used in liquid chromatography (LC) and capillary electrophoresis (CE) and can also be used for the selection of the optimum pH for the separation of mixtures of the modelled compounds. The proposed relationships allow an important reduction of the experimental data needed for the development of new separation methods. The accuracy of the proposed equations is verified by modelling the chromatographic and electrophoretic behaviour of a series of polyprotic therapeutic peptide hormones. By calculating the values of predicted resolutions, selection of the optimum pH to perform LC or CE separations of their mixtures becomes a rapid and simple process.
Collapse
Affiliation(s)
- V Sanz-Nebot
- Department de Química Analítica, Universitat de Barcelona, Av. Diagonal 647 08028 Barcelona, Spain.
| | | | | | | |
Collapse
|