1
|
Girel S, Meister I, Glauser G, Rudaz S. Hyphenation of microflow chromatography with electrospray ionization mass spectrometry for bioanalytical applications focusing on low molecular weight compounds: A tutorial review. MASS SPECTROMETRY REVIEWS 2025; 44:491-512. [PMID: 38952056 PMCID: PMC11976378 DOI: 10.1002/mas.21898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/10/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024]
Abstract
Benefits of miniaturized chromatography with various detection modes, such as increased sensitivity, chromatographic efficiency, and speed, were recognized nearly 50 years ago. Over the past two decades, this approach has experienced rapid growth, driven by the emergence of mass spectrometry applications serving -omics sciences and the need for analyzing minute volumes of precious samples with ever higher sensitivity. While nanoscale liquid chromatography (flow rates <1 μL/min) has gained widespread recognition in proteomics, the adoption of microscale setups (flow rates ranging from 1 to 100 μL/min) for low molecular weight compound applications, including metabolomics, has been surprisingly slow, despite the inherent advantages of the approach. Highly heterogeneous matrices and chemical structures accompanied by a relative lack of options for both selective sample preparation and user-friendly equipment are usually reported as major hindrances. To facilitate the wider implementation of microscale analyses, we present here a comprehensive tutorial encompassing important theoretical and practical considerations. We provide fundamental principles in micro-chromatography and guide the reader through the main elements of a microflow workflow, from LC pumps to ionization devices. Finally, based on both our literature overview and experience, illustrated by some in-house data, we highlight the critical importance of the ionization source design and its careful optimization to achieve significant sensitivity improvement.
Collapse
Affiliation(s)
- Sergey Girel
- Institute of Pharmaceutical Sciences of Western SwitzerlandUniversity of GenevaGenevaSwitzerland
| | - Isabel Meister
- Institute of Pharmaceutical Sciences of Western SwitzerlandUniversity of GenevaGenevaSwitzerland
- Swiss Center of Applied Human Toxicology (SCAHT)BaselSwitzerland
| | - Gaetan Glauser
- Neuchâtel Platform of Analytical ChemistryUniversity of NeuchâtelNeuchâtelSwitzerland
| | - Serge Rudaz
- Institute of Pharmaceutical Sciences of Western SwitzerlandUniversity of GenevaGenevaSwitzerland
- Swiss Center of Applied Human Toxicology (SCAHT)BaselSwitzerland
| |
Collapse
|
2
|
Cortés-Bautista S, Molins-Legua C, Campíns-Falcó P. Miniaturized liquid chromatography in environmental analysis. A review. J Chromatogr A 2024; 1730:465101. [PMID: 38941795 DOI: 10.1016/j.chroma.2024.465101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/30/2024]
Abstract
The greater and more widespread use of chemicals, either from industry or daily use, is leading to an increase in the discharge of these substances into the environment. Some of these are known to be hazardous to humans and the environment and are regulated, but there is a large and increasing number of substances which pose a potential risk even at low concentration and are not controlled. In this context, new techniques and methodologies are being developed to deal with this concern. Miniaturized liquid chromatography (LC) emerges as a greener and more sensitive alternative to conventional LC. Furthermore, advances in instrument miniaturization have made possible the development of portable LC instrumentation which may become a promising tool for in-situ monitoring. This work reviews the environmental applications of miniaturized LC over the last 15 years and discusses the different instrumentation, including off- and on-line pretreatment techniques, chromatographic conditions, and contributions to the environmental knowledge.
Collapse
Affiliation(s)
- S Cortés-Bautista
- Department Analytical Chemistry, University of Valencia, 46100, Burjassot, Valencia, Spain
| | - C Molins-Legua
- Department Analytical Chemistry, University of Valencia, 46100, Burjassot, Valencia, Spain.
| | - P Campíns-Falcó
- Department Analytical Chemistry, University of Valencia, 46100, Burjassot, Valencia, Spain.
| |
Collapse
|
3
|
Cardenas Contreras EM, Tanis E, Lanças FM, Vargas Medina DA. Exploring a reversible adaptation of conventional HPLC for capillary-scale operation. J Chromatogr A 2024; 1730:465021. [PMID: 38897112 DOI: 10.1016/j.chroma.2024.465021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024]
Abstract
This study introduces a feasible approach for utilizing a conventional High-Performance Liquid Chromatography (HPLC) instrument at the capillary scale (1 - 10 µL/min). The development of an active flow splitter and an adapted UV-visible (UV-vis) detection cell are described. The system employs an Arduino Uno board to monitor a flow sensor and control a stepper motor that automates a split valve to achieve capillary-scale flow rates from a conventional pump. A capillary UV-vis cell compatible with conventional detectors, featuring an optical path length with a volume of 14 nL, was developed to address the detection challenges at this scale and minimize extra column band broadening. The system performance was assessed by a lab-packed LC capillary column with 0.25 mm x 15 cm dimensions packed with 3.0 µm C18 particles. Model compounds, particularly polycyclic aromatic hydrocarbons (PAHs), were employed to assess the functionality of all developed components in terms of theoretical plates, resolution, and band broadening. The proposed system is a profitable, reliable, and cost-effective tool for miniaturized liquid chromatography.
Collapse
Affiliation(s)
| | - Elton Tanis
- Nano Separations Technologies, São Carlos, Brazil
| | | | | |
Collapse
|
4
|
Medina DAV, Cardoso AT, Borsatto JVB, Lanças FM. Open tubular liquid chromatography: Recent advances and future trends. J Sep Sci 2023; 46:e2300373. [PMID: 37582640 DOI: 10.1002/jssc.202300373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/17/2023]
Abstract
Nano-liquid chromatography (nanoLC) is gaining significant attention as a primary analytical technique across various scientific domains. Unlike conventional high-performance LC, nanoLC utilizes columns with inner diameters (i.ds.) usually ranging from 10 to 150 μm and operates at mobile phase flow rates between 10 and 1000 nl/min, offering improved chromatographic performance and detectability. Currently, most exploration of nanoLC has focused on particle-packed columns. Although open tubular LC (OTLC) can provide superior performance, optimized OTLC columns require very narrow i.ds. (< 10 μm) and demand challenging instrumentation. At the moment, these challenges have limited the success of OTLC. Nevertheless, remarkable progress has been made in developing and utilizing OTLC systems featuring narrow columns (< 2 μm). Additionally, significant efforts have been made to explore larger columns (10-75 μm i.d), demonstrating practical applicability in many situations. Due to their perceived advantages, interest in OTLC has resurged in the last two decades. This review provides an updated outlook on the latest developments in OTLC, focusing on instrumental challenges, achievements, and advancements in column technology. Moreover, it outlines selected applications that illustrate the potential of OTLC for performing targeted and untargeted studies.
Collapse
Affiliation(s)
- Deyber Arley Vargas Medina
- Departamento de Química e Física Molecular, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo, Brazil
| | - Alessandra Timoteo Cardoso
- Departamento de Química e Física Molecular, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo, Brazil
| | - João Victor Basolli Borsatto
- Departamento de Química e Física Molecular, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo, Brazil
| | - Fernando Mauro Lanças
- Departamento de Química e Física Molecular, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo, Brazil
| |
Collapse
|
5
|
Budetić M, Kopf D, Dandić A, Samardžić M. Review of Characteristics and Analytical Methods for Determination of Thiabendazole. Molecules 2023; 28:3926. [PMID: 37175335 PMCID: PMC10179875 DOI: 10.3390/molecules28093926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Thiabendazole (TBZ) is a fungicide and anthelmintic drug commonly found in food products. Due to its toxicity and potential carcinogenicity, its determination in various samples is important for public health. Different analytical methods can be used to determine the presence and concentration of TBZ in samples. Liquid chromatography (LC) and its subtypes, high-performance liquid chromatography (HPLC) and ultra-high-performance liquid chromatography (UHPLC), are the most commonly used methods for TBZ determination representing 19%, 18%, and 18% of the described methods, respectively. Surface-enhanced Raman spectroscopy (SERS) and fluorimetry are two more methods widely used for TBZ determination, representing 13% and 12% of the described methods, respectively. In this review, a number of methods for TBZ determination are described, but due to their limitations, there is a high potential for the further improvement and development of each method in order to obtain a simple, precise, and accurate method that can be used for routine analysis.
Collapse
Affiliation(s)
| | | | | | - Mirela Samardžić
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (M.B.); (A.D.)
| |
Collapse
|
6
|
Lenčo J, Jadeja S, Naplekov DK, Krokhin OV, Khalikova MA, Chocholouš P, Urban J, Broeckhoven K, Nováková L, Švec F. Reversed-Phase Liquid Chromatography of Peptides for Bottom-Up Proteomics: A Tutorial. J Proteome Res 2022; 21:2846-2892. [PMID: 36355445 DOI: 10.1021/acs.jproteome.2c00407] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The performance of the current bottom-up liquid chromatography hyphenated with mass spectrometry (LC-MS) analyses has undoubtedly been fueled by spectacular progress in mass spectrometry. It is thus not surprising that the MS instrument attracts the most attention during LC-MS method development, whereas optimizing conditions for peptide separation using reversed-phase liquid chromatography (RPLC) remains somewhat in its shadow. Consequently, the wisdom of the fundaments of chromatography is slowly vanishing from some laboratories. However, the full potential of advanced MS instruments cannot be achieved without highly efficient RPLC. This is impossible to attain without understanding fundamental processes in the chromatographic system and the properties of peptides important for their chromatographic behavior. We wrote this tutorial intending to give practitioners an overview of critical aspects of peptide separation using RPLC to facilitate setting the LC parameters so that they can leverage the full capabilities of their MS instruments. After briefly introducing the gradient separation of peptides, we discuss their properties that affect the quality of LC-MS chromatograms the most. Next, we address the in-column and extra-column broadening. The last section is devoted to key parameters of LC-MS methods. We also extracted trends in practice from recent bottom-up proteomics studies and correlated them with the current knowledge on peptide RPLC separation.
Collapse
Affiliation(s)
- Juraj Lenčo
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05Hradec Králové, Czech Republic
| | - Siddharth Jadeja
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05Hradec Králové, Czech Republic
| | - Denis K Naplekov
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05Hradec Králové, Czech Republic
| | - Oleg V Krokhin
- Department of Internal Medicine, Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, 799 JBRC, 715 McDermot Avenue, WinnipegR3E 3P4, Manitoba, Canada
| | - Maria A Khalikova
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05Hradec Králové, Czech Republic
| | - Petr Chocholouš
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05Hradec Králové, Czech Republic
| | - Jiří Urban
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00Brno, Czech Republic
| | - Ken Broeckhoven
- Department of Chemical Engineering (CHIS), Faculty of Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050Brussel, Belgium
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05Hradec Králové, Czech Republic
| | - František Švec
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05Hradec Králové, Czech Republic
| |
Collapse
|
7
|
Zhang YT, Wang YP, Zhang X, Zhang YY, Du S, Pantelides ST. Structure of Amorphous Two-Dimensional Materials: Elemental Monolayer Amorphous Carbon versus Binary Monolayer Amorphous Boron Nitride. NANO LETTERS 2022; 22:8018-8024. [PMID: 35959969 DOI: 10.1021/acs.nanolett.2c02542] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The structure of amorphous materials has been debated since the 1930s as a binary question: amorphous materials are either Zachariasen continuous random networks (Z-CRNs) or Z-CRNs containing crystallites. It was recently demonstrated, however, that amorphous diamond can be synthesized in either form. Here we address the question of the structure of single-atom-thick amorphous monolayers. We reanalyze the results of prior simulations for amorphous graphene and report kinetic Monte Carlo simulations based on alternative algorithms. We find that crystallite-containing Z-CRN is the favored structure of elemental amorphous graphene, as recently fabricated, whereas the most likely structure of binary monolayer amorphous BN is altogether different than either of the two long-debated options: it is a compositionally disordered "pseudo-CRN" comprising a mix of B-N and noncanonical B-B and N-N bonds and containing "pseudocrystallites", namely, honeycomb regions made of noncanonical hexagons. Implications for other nonelemental 2D and bulk amorphous materials are discussed.
Collapse
Affiliation(s)
- Yu-Tian Zhang
- University of Chinese Academy of Sciences and Institute of Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yun-Peng Wang
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China
| | - Xianli Zhang
- University of Chinese Academy of Sciences and Institute of Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Yang Zhang
- University of Chinese Academy of Sciences and Institute of Physics, Chinese Academy of Sciences, Beijing 100049, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shixuan Du
- University of Chinese Academy of Sciences and Institute of Physics, Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Sokrates T Pantelides
- University of Chinese Academy of Sciences and Institute of Physics, Chinese Academy of Sciences, Beijing 100049, China
- Department of Physics and Astronomy and Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
8
|
Vargas Medina DA, Pereira dos Santos NG, Maciel EVS, Lanças FM. Current prospects on nano liquid chromatography coupled to electron ionization mass spectrometry (nanoLC-EI-MS). J LIQ CHROMATOGR R T 2022. [DOI: 10.1080/10826076.2022.2110114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
9
|
Britt HM, Cragnolini T, Khatun S, Hatimy A, James J, Page N, Williams JP, Hughes C, Denny R, Thalassinos K, Vissers JPC. Evaluation of acquisition modes for semi-quantitative analysis by targeted and untargeted mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9308. [PMID: 35353398 PMCID: PMC9287043 DOI: 10.1002/rcm.9308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/26/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
RATIONALE Analyte quantitation by mass spectrometry underpins a diverse range of scientific endeavors. The fast-growing field of mass spectrometer development has resulted in several targeted and untargeted acquisition modes suitable for these applications. By characterizing the acquisition methods available on an ion mobility (IM)-enabled orthogonal acceleration time-of-flight (oa-ToF) instrument, the optimum modes for analyte semi-quantitation can be deduced. METHODS Serial dilutions of commercial metabolite, peptide, or cross-linked peptide analytes were prepared in matrices of human urine or Escherichia coli digest. Each analyte dilution was introduced into an IM separation-enabled oa-ToF mass spectrometer by reversed-phase liquid chromatography and electrospray ionization. Data were acquired for each sample in duplicate using nine different acquisition modes, including four IM-enabled acquisitions modes, available on the mass spectrometer. RESULTS Five (metabolite) or seven (peptide/cross-linked peptide) point calibration curves were prepared for analytes across each of the acquisition modes. A nonlinear response was observed at high concentrations for some modes, attributed to saturation effects. Two correction methods, one MS1 isotope-correction and one MS2 ion intensity-correction, were applied to address this observation, resulting in an up to twofold increase in dynamic range. By averaging the semi-quantitative results across analyte classes, two parameters, linear dynamic range (LDR) and lower limit of quantification (LLOQ), were determined to evaluate each mode. CONCLUSION A comparison of the acquisition modes revealed that data-independent acquisition and parallel reaction monitoring methods are most robust for semi-quantitation when considering achievable LDR and LLOQ. IM-enabled modes exhibited sensitivity increases, but a simultaneous reduction in dynamic range required correction methods to recover. These findings will assist users in identifying the optimum acquisition mode for their analyte quantitation needs, supporting a diverse range of applications and providing guidance for future acquisition mode developments.
Collapse
Affiliation(s)
- Hannah M. Britt
- Institute of Structural and Molecular Biology, Division of BiosciencesUniversity College LondonLondonUK
| | - Tristan Cragnolini
- Institute of Structural and Molecular Biology, Division of BiosciencesUniversity College LondonLondonUK
- Institute of Structural and Molecular Biology, Birkbeck CollegeUniversity of LondonLondonUK
| | - Suniya Khatun
- Institute of Structural and Molecular Biology, Division of BiosciencesUniversity College LondonLondonUK
| | - Abubakar Hatimy
- Institute of Structural and Molecular Biology, Division of BiosciencesUniversity College LondonLondonUK
| | - Juliette James
- Institute of Structural and Molecular Biology, Division of BiosciencesUniversity College LondonLondonUK
| | - Nathanael Page
- Institute of Structural and Molecular Biology, Division of BiosciencesUniversity College LondonLondonUK
- LGC GroupTeddingtonUK
| | | | | | | | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Division of BiosciencesUniversity College LondonLondonUK
- Institute of Structural and Molecular Biology, Birkbeck CollegeUniversity of LondonLondonUK
| | | |
Collapse
|
10
|
Enantioseparation of selected chiral agrochemicals by using nano-liquid chromatography and capillary electrochromatography with amylose tris(3‑chloro-5-methylphenylcarbamate) covalently immobilized onto silica. J Chromatogr A 2022; 1673:463128. [DOI: 10.1016/j.chroma.2022.463128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 11/23/2022]
|
11
|
Cruz JC, Souza IDD, Lanças FM, Queiroz MEC. Current advances and applications of online sample preparation techniques for miniaturized liquid chromatography systems. J Chromatogr A 2022; 1668:462925. [DOI: 10.1016/j.chroma.2022.462925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 10/19/2022]
|
12
|
An antibody-free, ultrafiltration-based assay for the detection of growth hormone-releasing hormones in urine at low pg/mL concentrations using nanoLC-HRMS/MS. J Pharm Biomed Anal 2022; 214:114726. [PMID: 35298973 DOI: 10.1016/j.jpba.2022.114726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 11/21/2022]
Abstract
This work presents an ultrafiltration-based, validated method for the screening and confirmation of prohibited growth hormone-releasing hormone (GHRH) analogues (sermorelin/CJC-1293, sermorelin metabolite, CJC-1295 and tesamorelin) in urine by nanoLC-HRMS/MS. Sample preparation avoids the use of laborious antibody-based extraction approaches and consists solely of preconcentration by ultrafiltration. Even in the absence of immuno-affinity purification steps, high sensitivity was still ensured as limits of detection between 5 and 25 pg/mL and limits of identification between 25 and 50 pg/mL were established. The robustness of the miniaturized chromatographic setup was evaluated through the injection of 200 + preconcentrated urinary extracts. In a comparison with immuno-affinity purification, enhanced recoveries (59 - 115%) and similar sensitivity were achieved, yet at lower operational costs. Stability experiments showed the importance of the proper handling of urine samples to avoid degradation of these peptide hormones, especially for sermorelin and its metabolite which were found to rapidly degrade at temperatures > 4 °C and pH values < 7 in accordance with earlier studies. Without the need for specific antibodies, this method may be expanded to cover emerging peptide drugs (≥ ~3 kDa), as well as their metabolites in the future to facilitate coverage for this class of prohibited substances.
Collapse
|
13
|
Shan L, Jones B. Nano liquid chromatography, an updated review. Biomed Chromatogr 2022; 36:e5317. [PMID: 34981550 DOI: 10.1002/bmc.5317] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/04/2021] [Accepted: 12/09/2021] [Indexed: 11/11/2022]
Abstract
Low flow chromatography has a rich history of innovation but has yet to reach widespread implementation in bioanalytical applications. Improvements in pump technology, microfluidic connections, and nano-electrospray sources for mass spectrometry have laid the groundwork for broader application, and innovation in this space has accelerated in recent years. This article reviews the instrumentation used for nano-flow liquid chromatography , the types of columns employed, and strategies for multi-dimensionality of separations, which is key to the future state of the technique to the high-throughput needs of modern bioanalysis. An update of the current applications where nano-LC is widely used, such as proteomics and metabolomics, is discussed. But the trend towards biopharmaceutical development of increasingly complex, targeted, and potent therapeutics for the safe treatment of disease drives the need for ultimate selectivity and sensitivity of our analytical platforms for targeted quantitation in a regulated space. The selectivity needs are best addressed by mass spectrometric detection, especially at high resolutions, and exquisite sensitivity is provided by nano-electrospray ionization as the technology continues to evolve into an accessible, robust, and easy to use platform.
Collapse
|
14
|
Langford JB, Lurie IS. Use of micro, capillary, and nano liquid chromatography for forensic analysis. J Sep Sci 2021; 45:38-50. [PMID: 34626162 DOI: 10.1002/jssc.202100631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 01/03/2023]
Abstract
The use of micro, capillary, and nano liquid chromatography systems for forensic analysis has excellent potential. In a field where sample size is often limited, several studies have presented the viability of capillary columns with microflow and nanoflow, and when using mass spectrometric analysis limits of detection can be improved. Reduction in flow rates result in significant reduction in operating costs. Recent advances in miniaturized liquid chromatography systems also aim at in-laboratory and on-site detection, which have already been applied to forensic drug cases. This critical review will discuss the advantages, disadvantages, and applicability of microflow and nano liquid chromatography. In this regard, included in this article is a discussion of some promising areas not yet applied to forensic research.
Collapse
Affiliation(s)
- Joel B Langford
- Department of Forensic Science, The George Washington University, Washington, DC, 20007, USA
| | - Ira S Lurie
- Department of Forensic Science, The George Washington University, Washington, DC, 20007, USA
| |
Collapse
|
15
|
Fedorenko D, Bartkevics V. Recent Applications of Nano-Liquid Chromatography in Food Safety and Environmental Monitoring: A Review. Crit Rev Anal Chem 2021; 53:98-122. [PMID: 34392753 DOI: 10.1080/10408347.2021.1938968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In recent years, a trend toward instrument miniaturization has led to the development of new and sophisticated analytical systems, such as nano-liquid chromatography (nano-LC), which has enabled improvements of sensitivity, as well as chromatographic resolution. The growing interest in nano-LC methodology has resulted in a variety of innovative and promising applications. In this article, we review the applications of nano-LC separation methods coupled with mass spectrometry in the analysis of food and environmental samples. An assessment of sample preparation methods and analytical performance are provided, along with comparison to other, more established analytical techniques. Three main groups of compounds that are crucial for food safety assessment are considered in this review: pharmaceuticals (including antibiotics), pesticides, and mycotoxins. Recent practical applications of the nano-LC method in the determination of these compounds are discussed. Furthermore, we also focus on methods for the determination of various environmental contaminants using nano-LC methods. Future perspectives for the development of nano-LC methods are discussed.
Collapse
Affiliation(s)
- Deniss Fedorenko
- Institute of Food Safety, Animal Health and Environment "BIOR", Riga, Latvia.,University of Latvia, Faculty of Chemistry, Riga, Latvia
| | - Vadims Bartkevics
- Institute of Food Safety, Animal Health and Environment "BIOR", Riga, Latvia.,University of Latvia, Faculty of Chemistry, Riga, Latvia
| |
Collapse
|
16
|
Coppieters G, Deventer K, Van Eenoo P, Judák P. Combining direct urinary injection with automated filtration and nanoflow LC-MS for the confirmatory analysis of doping-relevant small peptide hormones. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1179:122842. [PMID: 34216910 DOI: 10.1016/j.jchromb.2021.122842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 01/17/2023]
Abstract
Nano-liquid chromatography (nanoLC) has proven itself as a powerful tool and its scope entails various applications in (bio)analytical fields. Operation at low (nL/min) flow rates in combination with reduced inner dimensions (ID < 100 µm), leads to significantly enhanced sensitivity when coupled with electrospray ionization-mass spectrometry (ESI-MS). Challenges that remain for the routine implementation of such miniaturized setups are related to clogging of the system and robustness in general, and thus the application of tedious sample preparation steps. To improve ruggedness, a filter placed upstream in the LC prevents particles from entering and clogging the system. This so-called online automatic filtration and filter back-flush (AFFL) system was combined with nanoLC and the direct injection principle for the sensitive confirmatory analysis of fifty different doping-relevant peptides in urine. The presented assay was fully validated for routine purposes according to selectivity and matrix interference, limit of identification (LOI), carryover, matrix effect, sample extract stability, analysis of educational external quality assessment (EQAS) samples, robustness of the online AFFL-setup and retention time stability. It was also fully compliant with the most recent minimum required performance levels (MRPL) and chromatographic/mass spectrometric identification criteria (IDCR), as imposed by the World Anti-Doping Agency (WADA). In the absence of labor-intensive sample preparation, the application of AFFL allowed for the injection of diluted urine samples without any noticeable pressure buildup in the nanoLC system. Contrary to earlier observations by our group and others, the addition of dimethylsulfoxide (DMSO) to the mobile phase did not enhance sensitivity in the presented nanoflow setup, yet was beneficial to reduce carry over. Although the robustness of the presented setup was evaluated only for the analysis of diluted urine samples, it is entirely conceivable that routine applications employing other matrices and currently running on analytical scale LC instruments could be transferred to micro/nanoLC scale systems to reach lower detection limits.
Collapse
Affiliation(s)
- Gilles Coppieters
- Doping Control Laboratory (DoCoLab), Ghent University, Department Diagnostic Sciences, Ottergemsesteenweg 460, B-9000 Ghent, Belgium.
| | - Koen Deventer
- Doping Control Laboratory (DoCoLab), Ghent University, Department Diagnostic Sciences, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Peter Van Eenoo
- Doping Control Laboratory (DoCoLab), Ghent University, Department Diagnostic Sciences, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Péter Judák
- Doping Control Laboratory (DoCoLab), Ghent University, Department Diagnostic Sciences, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| |
Collapse
|
17
|
Assessing effects of ultra-high-pressure liquid chromatography instrument configuration on dispersion, system pressure, and retention. J Chromatogr A 2020; 1634:461660. [PMID: 33189961 DOI: 10.1016/j.chroma.2020.461660] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/28/2020] [Accepted: 10/22/2020] [Indexed: 11/21/2022]
Abstract
This study involves the systematic assessment of the effects of system configuration on dispersion, pressure, and retention characteristics while operating a 1500 bar UHPLC system with 2.1 mm i.d. × 100 mm long columns packed with 1.5 µm core-shell particles in isocratic and gradient mode. Altering the system configuration by changing the i.d. of connection tubing and flow cells affects the elution time, dispersion characteristics, and the kinetic performance limits of the system. The gain in separation efficiency when decreasing tubing i.d. from 100 to 75 µm was found to contribute more to the decrease in separation impedance and the position of the kinetic performance curve than the loss in available column pressure induced by the narrower tubing. When applying steep gradients, characterized by gradient-to-column dead-time ratio < 7, optimizing instrument configuration leads to either a significant time gain factor of 3.9 without compromising peak capacity, or a gain in peak capacity with a gain factor of 1.3 while maintaining the analysis time constant. Due to the reduced fluidic volume of connection tubing of smaller i.d., a decrease in residence time is obtained. At the same time, an increase in k was observed due to a pressure-induced retention effect, and this effect is significant for late-eluting analytes.
Collapse
|
18
|
Vargas Medina DA, Maciel EVS, de Toffoli AL, Lanças FM. Miniaturization of liquid chromatography coupled to mass spectrometry. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115910] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Abstract
Background::
Nano level chiral separation is necessary and demanding in the development
of the drug, genomic, proteomic, and other chemical and the environmental sciences. Few drugs exist
in human body cells for some days at nano level concentrations, that are out of the jurisdiction of the
detection by standard separation techniques. Likewise, the separation and identification of xenobiotics
and other environmental contaminants (at nano or low levels) are necessary for our healthiness.
Discussion:
Conclusion:
This article will be beneficial for chiral chromatographers, academicians, pharmaceutical
industries, environmental researchers and Government regulation authorities.
Collapse
Affiliation(s)
- Al Arsh Basheer
- State University of New York, Flint Entrance, Amherst, NY 14260, Buffalo, United States
| | - Iqbal Hussain
- Department of General Studies, Jubail Industrial College, Jubail Industrial City, Jubail, Saudi Arabia
| | - Marcus T. Scotti
- Cheminformatics Laboratory - Postgraduate Program in Natural Products and Synthetic Bioactive, Federal University of Paraiba-Campus I, 58051-970, Joao Pessoa, PB, Brazil
| | - Luciana Scotti
- Teaching and Research Management - University Hospital, Cheminformatics Laboratory - Postgraduate Program in Natural Products and Synthetic Bioactive, Federal University of Paraiba-Campus I, 58051-970, Joao Pessoa, PB, Brazil
| | - Imran Ali
- Department of Chemistry, College of Sciences, Taibah University, Al-Medina Al-Munawara - 41477, Saudi Arabia
| |
Collapse
|
20
|
Mejía-Carmona K, Maciel EVS, Lanças FM. Miniaturized liquid chromatography applied to the analysis of residues and contaminants in food: A review. Electrophoresis 2020; 41:1680-1693. [PMID: 32359175 DOI: 10.1002/elps.202000019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 12/21/2022]
Abstract
The humankind is pretty dependent on food to control several biological processes into the organism. As the world population increases, the demand for foodstuffs follows the same trend claiming for a high food production situation. For this reason, a substantial amount of chemicals is used in agriculture and livestock husbandries every year, enhancing the likelihood of contaminated foodstuffs being commercialized. This outlook becomes a public health concern; thus, the governmental regulatory agencies impose laws to control the residues and contaminants in food matrices. Currently, one of the most important analytical techniques to perform it is LC. Despite its already recognized effectiveness, it is often time consuming and requires significant volumes of reagents, which are transformed into toxic waste. In this context, miniaturized LC modes emerge as a greener and more effective analytical technique. They have remarkable advantages, including higher sensitivity, lower sample amount, solvent and stationary phase requirements, and more natural coupling to MS. In this review, most of the critical characteristics of them are discussed, focusing on the benchtop instruments and their related analytical columns. Additionally, a discussion regarding the last 10 years of publications reporting miniaturized LC application for the analysis of natural and industrial food samples is categorized. The main chemical classes as applied in the crops are highlighted, including pesticides, veterinary drugs, and mycotoxins.
Collapse
Affiliation(s)
- Karen Mejía-Carmona
- São Carlos Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
21
|
D'Orazio G, Fanali C, Fanali S, Gentili A, Karchkhadze M, Chankvetadze B. Further study on enantiomer resolving ability of amylose tris(3-chloro-5-methylphenylcarbamate) covalently immobilized onto silica in nano-liquid chromatography and capillary electrochromatography. J Chromatogr A 2020; 1623:461213. [PMID: 32505297 DOI: 10.1016/j.chroma.2020.461213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/02/2020] [Accepted: 05/05/2020] [Indexed: 10/24/2022]
Abstract
In the present study separation of enantiomers of some chiral neutral, basic and weakly acidic analytes was investigated on the chiral stationary phase (CSP) made by covalent immobilization of amylose tris(3-chloro-5-methylphenylcarbamate) onto aminopropylsilanized (APS) silica in nano-liquid chromatography (nano-LC) in aqueous methanol or acetonitrile mixtures. It has been shown that similar to high-performance liquid chromatography (HPLC) and supercritical fluid chromatography (SFC) this chiral selector is useful for separation of enantiomers of neutral, basic and acidic analytes also in nano-LC. In comparison to our previous research, in which the chiral selector (CS) was bonded on native silica, in this study, the CS was immobilized on APS silica in order to improve chromatographic performance towards basic analytes. In fact, some improvement was observed and surprisingly not only for basic but also for neutral and acidic analytes. Again, quite unexpectedly almost no electroosmotic flow (EOF) was observed in capillaries packed with ca. 20% (w/w) amylose tris(3-chloro-5-methylphenylcarbamate) immobilized onto APS silica although the same APS silica before attachment of chiral selector exhibited significant EOF. In order to generate EOF in the capillaries with the CSP and enable capillary electrochromatographic (CEC) experiment on it, the short segment of the capillary column was packed with APS silica without chiral selector. The EOF in such capillary enabled CEC experiment and some preliminary results are reported here.
Collapse
Affiliation(s)
- Giovanni D'Orazio
- Istituto per i Sistemi Biologici (ISB), CNR- Consiglio Nazionale delle Ricerche, Via Salaria Km 29,300 - 00015 Monterotondo (Rome), Italy
| | - Chiara Fanali
- Department of Science and Technology for Humans and the Environment, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Salvatore Fanali
- Teaching Committee of Ph.D. School in Natural Science and Engineering, University of Verona, Strada Le Grazie, 15 - 37129 Verona, Italy.
| | - Alessandra Gentili
- Department of Chemistry "Sapienza" University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Marina Karchkhadze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Iv. Javakhishvili Tbilisi State University, Chavchavadze Ave 3, 0179 Tbilisi, Georgia
| | - Bezhan Chankvetadze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Iv. Javakhishvili Tbilisi State University, Chavchavadze Ave 3, 0179 Tbilisi, Georgia
| |
Collapse
|
22
|
|
23
|
Miniaturized liquid chromatography focusing on analytical columns and mass spectrometry: A review. Anal Chim Acta 2020; 1103:11-31. [DOI: 10.1016/j.aca.2019.12.064] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/17/2022]
|
24
|
Nys G, Cobraiville G, Fillet M. Multidimensional performance assessment of micro pillar array column chromatography combined to ion mobility-mass spectrometry for proteome research. Anal Chim Acta 2019; 1086:1-13. [DOI: 10.1016/j.aca.2019.08.068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/23/2019] [Accepted: 08/27/2019] [Indexed: 01/23/2023]
|
25
|
D'Orazio G, Fanali C, Gentili A, Tagliaro F, Fanali S. Nano-liquid chromatography for enantiomers separation of baclofen by using vancomycin silica stationary phase. J Chromatogr A 2019; 1605:360358. [PMID: 31337499 DOI: 10.1016/j.chroma.2019.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/03/2019] [Accepted: 07/06/2019] [Indexed: 01/06/2023]
Abstract
The chiral separation of baclofen (Bac) was obtained by nano-liquid chromatography tandem mass spectrometry (nano-LC-MS/MS) using a 100 μm I.D. fused silica capillary column packed with silica particles chemically modified with vancomycin. Various experimental parameters, such as composition (buffer concentration, water content, organic modifier) and pH of the mobile phase and sample solvent were investigated for method optimization. In order to increase the sensitivity an on-column focusing procedure was applied. Acceptable separation of Bac enantiomers was obtained in less than 11 min eluting in isocratic mode, with 90:10 MeOH/water (v/v) containing 10 mM ammonium acetate at pH 4.5. These optimized experimental conditions were applied to the analysis of human plasma samples spiked with racemic mixture of Bac. The use of a Buckypaper disc as sorbent membrane allows one to recover both enantiomers with yields ≥ 65%. The method was fully validated, following the identification criteria of the European Commission Decision 2002/657/EC.
Collapse
Affiliation(s)
- Giovanni D'Orazio
- Istituto per i Sistemi Biologici (ISB), CNR-Consiglio Nazionale delle Ricerche, Monterotondo, Rome, Italy
| | - Chiara Fanali
- Department of Medicine, University Campus Bio-Medico of Rome, Rome, Italy
| | | | - Franco Tagliaro
- Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, Verona, Italy; Pharmacokinetics and Metabolomics Laboratory of the I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Salvatore Fanali
- Teaching Committee of Ph.D. School in Natural Science and Engineering, University of Verona, Verona, Italy.
| |
Collapse
|
26
|
Lam SC, Sanz Rodriguez E, Haddad PR, Paull B. Recent advances in open tubular capillary liquid chromatography. Analyst 2019; 144:3464-3482. [DOI: 10.1039/c9an00329k] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review covers advances and applications of open tubular capillary liquid chromatography (OT-LC) over the period 2007–2018.
Collapse
Affiliation(s)
- Shing Chung Lam
- ASTech
- ARC Training Centre for Portable Analytical Separation Technologies (ASTech)
- and Australian Centre for Research on Separation Science (ACROSS)
- School of Natural Sciences
- University of Tasmania
| | - Estrella Sanz Rodriguez
- ASTech
- ARC Training Centre for Portable Analytical Separation Technologies (ASTech)
- and Australian Centre for Research on Separation Science (ACROSS)
- School of Natural Sciences
- University of Tasmania
| | - Paul R. Haddad
- ASTech
- ARC Training Centre for Portable Analytical Separation Technologies (ASTech)
- and Australian Centre for Research on Separation Science (ACROSS)
- School of Natural Sciences
- University of Tasmania
| | - Brett Paull
- ASTech
- ARC Training Centre for Portable Analytical Separation Technologies (ASTech)
- and Australian Centre for Research on Separation Science (ACROSS)
- School of Natural Sciences
- University of Tasmania
| |
Collapse
|
27
|
D' Orazio G, Asensio-Ramos M, Fanali C. Enantiomers separation by capillary electrochromatography using polysaccharide-based stationary phases. J Sep Sci 2018; 42:360-384. [PMID: 30198206 DOI: 10.1002/jssc.201800798] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/03/2018] [Accepted: 09/03/2018] [Indexed: 01/16/2023]
Abstract
The separation of chiral compounds is an interesting and important topic of research because these compounds are involved in some biological processes, fundamentally in human health. Among the various application fields where enantiomers are remarkable, drug analysis has to be considered. Most of the drugs contain enantiomers and very often one of the two isomers could be pharmacologically more active or even dangerous. Therefore, the separation of these compounds is very important. Among the different analytical techniques usually employed, capillary electrochromatography has demonstrated great capability in enantiomers resolution. The great potential of this electromigration technique stands mainly in its high efficiency due to the use of an electrosmotic flow (flat flow profile) and on the high selectivity because of the use of a stationary phase. Chiral separation can be obtained utilizing several chiral stationary phases including a polysaccharide derivative. The aim of this review paper is to summarize the main features of capillary electrochromatography and polysaccharide derivatives of chiral stationary phase. It also report examples of practical applications utilizing this approach.
Collapse
Affiliation(s)
- Giovanni D' Orazio
- Institute of Chemical Methodologies, Italian National Research Council (C.N.R.), Monterotondo, Italy
| | - María Asensio-Ramos
- Instituto Volcanológico de Canarias (INVOLCAN), Puerto de la Cruz, Tenerife, Spain
| | - Chiara Fanali
- Department of Medicine, University Campus Bio-Medico of Rome, Rome, Italy
| |
Collapse
|
28
|
Application of molecularly imprinted polymers in analytical chiral separations and analysis. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.01.011] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
29
|
Roberg-Larsen H, Abele S, Demir D, Dzabijeva D, Amundsen SF, Wilson SR, Bartkevics V, Lundanes E. Rugged Large Volume Injection for Sensitive Capillary LC-MS Environmental Monitoring. Front Chem 2017; 5:62. [PMID: 28894734 PMCID: PMC5581315 DOI: 10.3389/fchem.2017.00062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/10/2017] [Indexed: 11/13/2022] Open
Abstract
A rugged and high throughput capillary column (cLC) LC-MS switching platform using large volume injection and on-line automatic filtration and filter back-flush (AFFL) solid phase extraction (SPE) for analysis of environmental water samples with minimal sample preparation is presented. Although narrow columns and on-line sample preparation are used in the platform, high ruggedness is achieved e.g., injection of 100 non-filtrated water samples did not result in a pressure rise/clogging of the SPE/capillary columns (inner diameter 300 μm). In addition, satisfactory retention time stability and chromatographic resolution were also features of the system. The potential of the platform for environmental water samples was demonstrated with various pharmaceutical products, which had detection limits (LOD) in the 0.05–12.5 ng/L range. Between-day and within-day repeatability of selected analytes were <20% RSD.
Collapse
Affiliation(s)
| | - Silvija Abele
- Department of Chemistry, University of OsloOslo, Norway.,Faculty of Chemistry, University of LatviaRiga, Latvia
| | - Deniz Demir
- Department of Chemistry, University of OsloOslo, Norway
| | | | | | | | | | - Elsa Lundanes
- Department of Chemistry, University of OsloOslo, Norway
| |
Collapse
|
30
|
Komendová M, Metelka R, Urban J. Monolithic capillary column with an integrated electrochemical detector. J Chromatogr A 2017. [DOI: 10.1016/j.chroma.2017.06.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
31
|
D'Orazio G, Kakava R, Volonterio A, Fanali S, Chankvetadze B. An attempt for fast separation of enantiomers in nano-liquid chromatography and capillary electrochromatography. Electrophoresis 2017; 38:1932-1938. [DOI: 10.1002/elps.201700126] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Giovanni D'Orazio
- Institute of Chemical Methodologies; Italian National Research Council (CNR); Monterotondo Italy
| | - Rusudan Kakava
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences; Tbilisi State University; Tbilisi Georgia
| | - Alessandro Volonterio
- Department of Chemistry; Materials and Chemical Engineering “G. Natta” Politecnico di Milano; Milano Italy
- C.N.R. Istituto di Chimica del Riconoscimento Molecolare (ICRM); Milano Italy
| | - Salvatore Fanali
- Institute of Chemical Methodologies; Italian National Research Council (CNR); Monterotondo Italy
| | - Bezhan Chankvetadze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences; Tbilisi State University; Tbilisi Georgia
| |
Collapse
|
32
|
Self-packed core shell nano liquid chromatography columns and silica-based monolithic trap columns for targeted proteomics. J Chromatogr A 2017; 1498:111-119. [DOI: 10.1016/j.chroma.2017.03.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 03/06/2017] [Accepted: 03/19/2017] [Indexed: 01/23/2023]
|
33
|
Fanali S. An overview to nano-scale analytical techniques: Nano-liquid chromatography and capillary electrochromatography. Electrophoresis 2017; 38:1822-1829. [PMID: 28256745 DOI: 10.1002/elps.201600573] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/17/2017] [Accepted: 02/21/2017] [Indexed: 01/04/2023]
Abstract
Nano-liquid chromatography (nano-LC) and CEC are microfluidic techniques mainly used for analytical purposes. They have been applied to the separation and analysis of a large number of compounds, e.g., peptides, proteins, drugs, enantiomers, antibiotics, pesticides, nutraceutical, etc. Analytes separation is carried out into capillaries containing selected stationary phase. The mobile phase is moved either by a pump (nano-LC) or by an EOF, respectively. The two tools can offer some advantages over conventional techniques, e.g., high selectivity, separation efficiency, resolution, short analysis time and consumption of low volumes of mobile phase. Flow rates in the range 50-800 nL/min are usually applied. The low flow rate reduces the chromatographic dilution increasing the mass sensitivity. Special attention must be paid in avoiding peak dispersion selecting the appropriate detector, injector and tube connection. Finally due to the low flow rate these microfluidic techniques can be easily coupled with mass spectrometry.
Collapse
Affiliation(s)
- Salvatore Fanali
- Institute of Chemical Methodologies, Italian National Research Council, Monterotondo, Italy
| |
Collapse
|
34
|
Fanali S. Nano-liquid chromatography applied to enantiomers separation. J Chromatogr A 2017; 1486:20-34. [DOI: 10.1016/j.chroma.2016.10.028] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/01/2016] [Accepted: 10/11/2016] [Indexed: 10/20/2022]
|
35
|
Fanali C, D'Orazio G, Fanali S, Gentili A. Advanced analytical techniques for fat-soluble vitamin analysis. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2016.12.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
36
|
Fanali C, Fanali S. Chiral Separations using Miniaturized Techniques: State of the Art and Perspectives. Isr J Chem 2016. [DOI: 10.1002/ijch.201600061] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Chiara Fanali
- Centro Integrato di Ricerca; Campus Bio-Medico University; Rome (Italy)
| | - Salvatore Fanali
- Institute of Chemical Methodologies; Italian National Research Council (CNR); Area della Ricerca di Roma I; Via Salaria km. 29.300-00015 Monterotondo, Rome (Italy)
| |
Collapse
|
37
|
De Vos J, Broeckhoven K, Eeltink S. Advances in Ultrahigh-Pressure Liquid Chromatography Technology and System Design. Anal Chem 2015; 88:262-78. [DOI: 10.1021/acs.analchem.5b04381] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Jelle De Vos
- Vrije Universiteit Brussel, Department
of Chemical Engineering, Pleinlaan 2, B-1050, Brussels, Belgium
| | - Ken Broeckhoven
- Vrije Universiteit Brussel, Department
of Chemical Engineering, Pleinlaan 2, B-1050, Brussels, Belgium
| | - Sebastiaan Eeltink
- Vrije Universiteit Brussel, Department
of Chemical Engineering, Pleinlaan 2, B-1050, Brussels, Belgium
| |
Collapse
|
38
|
D'Orazio G, Hernández-Borges J, Asensio-Ramos M, Rodríguez-Delgado MÁ, Fanali S. Capillary electrochromatography and nano-liquid chromatography coupled to nano-electrospray ionization interface for the separation and identification of estrogenic compounds. Electrophoresis 2015; 37:356-62. [DOI: 10.1002/elps.201500327] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/27/2015] [Accepted: 10/05/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Giovanni D'Orazio
- Instituto di Metodologie Chimiche; Consiglio Nazionale delle Ricerche (C.N.R.); Monterotondo Roma Italia
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias; Universidad de La Laguna (ULL); La Laguna Tenerife España
| | - Javier Hernández-Borges
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias; Universidad de La Laguna (ULL); La Laguna Tenerife España
| | - María Asensio-Ramos
- Instituto Volcanológico de Canarias (INVOLCAN); Parque Taoro Puerto de la Cruz Tenerife España
| | - Miguel Ángel Rodríguez-Delgado
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias; Universidad de La Laguna (ULL); La Laguna Tenerife España
| | - Salvatore Fanali
- Instituto di Metodologie Chimiche; Consiglio Nazionale delle Ricerche (C.N.R.); Monterotondo Roma Italia
| |
Collapse
|
39
|
Measurement and Modeling of Extra-Column Effects Due to Injection and Connections in Capillary Liquid Chromatography. CHROMATOGRAPHY 2015. [DOI: 10.3390/chromatography2040669] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Šesták J, Moravcová D, Kahle V. Instrument platforms for nano liquid chromatography. J Chromatogr A 2015; 1421:2-17. [DOI: 10.1016/j.chroma.2015.07.090] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/23/2015] [Accepted: 07/24/2015] [Indexed: 11/25/2022]
|
41
|
Nazario CED, Silva MR, Franco MS, Lanças FM. Evolution in miniaturized column liquid chromatography instrumentation and applications: An overview. J Chromatogr A 2015; 1421:18-37. [PMID: 26381569 DOI: 10.1016/j.chroma.2015.08.051] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 08/24/2015] [Accepted: 08/25/2015] [Indexed: 02/01/2023]
Abstract
The purpose of this article is to underline the miniaturized LC instrumental system and describe the evolution of commercially available systems by discussing their advantages and drawbacks. Nowadays, there are already many miniaturized LC systems available with a great variety of pump design, interface and detectors as well as efficient columns technologies and reduced connections devices. The solvent delivery systems are able to drive the mobile phase without flow splitters and promote gradient elution using either dual piston reciprocating or syringe-type pumps. The mass spectrometry as detection system is the most widely used detection system; among many alternative ionization sources direct-EI LC-MS is a promising alternative to APCI. In addition, capillary columns are now available showing many possibilities of stationary phases, inner diameters and hardware materials. This review provides a discussion about miniaturized LC demonstrating fundamentals and instrumentals' aspects of the commercially available miniaturized LC instrumental system mainly nano and micro LC formats. This review also covers the recent developments and trends in instrumentation, capillary and nano columns, and several applications of this very important and promising field.
Collapse
Affiliation(s)
| | - Meire R Silva
- Institute of Chemistry of Sao Carlos, University of Sao Paulo, Sao Carlos, SP, Brazil
| | - Maraíssa S Franco
- Institute of Chemistry of Sao Carlos, University of Sao Paulo, Sao Carlos, SP, Brazil
| | - Fernando M Lanças
- Institute of Chemistry of Sao Carlos, University of Sao Paulo, Sao Carlos, SP, Brazil.
| |
Collapse
|
42
|
Abstract
In proteomics, nano-LC is arguably the most common tool for separating peptides/proteins prior to MS. The main advantage of nano-LC is enhanced sensitivity, as compounds enter the MS in more concentrated bands. This is particularly relevant for determining low abundant compounds in limited samples. Nano-LC columns can produce peak capacities of 1000 or more, and very narrow columns can be used to perform proteomics of 1000 cells or less. Also, nano-LC can be coupled with online add-ons such as selective trap columns or enzymatic reactors, for faster and more automated analysis. Nano-LC is today an established tool for research laboratories; but can nano-LC-based systems soon be ready for more routine settings, such as in clinics?
Collapse
|
43
|
Integration of microfluidic LC with HRMS for the analysis of analytes in biofluids: past, present and future. Bioanalysis 2015; 7:1397-411. [DOI: 10.4155/bio.15.68] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Capillary LC (cLC) coupled to MS has the potential to improve detection limits, address limited sample volumes and allow multiple analyses from one sample. This is particularly attractive in areas where ultrahigh assay sensitivity, low limits of detection and small sample volumes are becoming commonplace. However, implementation of cLC–MS in the bioanalytical–drug metabolism area had been hampered by the lack of commercial instrumentation and the need for experts to operate the system. Recent advances in microfabricated devices such as chip-cube and ion-key technologies offer the potential for true implementation of cLC in the modern laboratory including the benefits of the combination of this type of separation with high-resolution MS.
Collapse
|
44
|
|
45
|
Validation and application of micro flow liquid chromatography–tandem mass spectrometry for the determination of pesticide residues in fruit jams. Talanta 2015; 134:415-424. [DOI: 10.1016/j.talanta.2014.11.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/19/2014] [Accepted: 11/22/2014] [Indexed: 11/20/2022]
|
46
|
|
47
|
Chen A, Lynch KB, Wang X, Lu JJ, Gu C, Liu S. Incorporating high-pressure electroosmotic pump and a nano-flow gradient generator into a miniaturized liquid chromatographic system for peptide analysis. Anal Chim Acta 2014; 844:90-8. [PMID: 25172821 DOI: 10.1016/j.aca.2014.06.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/23/2014] [Accepted: 06/25/2014] [Indexed: 11/16/2022]
Abstract
We integrate a high-pressure electroosmotic pump (EOP), a nanoflow gradient generator, and a capillary column into a miniaturized liquid chromatographic system that can be directly coupled with a mass spectrometer for proteomic analysis. We have recently developed a low-cost high-pressure EOP capable of generating pressure of tens of thousands psi, ideal for uses in miniaturized HPLC. The pump worked smoothly when it was used for isocratic elutions. When it was used for gradient elutions, generating reproducible gradient profiles was challenging; because the pump rate fluctuated when the pump was used to pump high-content organic solvents. This presents an issue for separating proteins/peptides since high-content organic solvents are often utilized. In this work, we solve this problem by incorporating our high-pressure EOP with a nano-flow gradient generator so that the EOP needs only to pump an aqueous solution. With this combination, we develop a capillary-based nano-HPLC system capable of performing nano-flow gradient elution; the pump rate is stable, and the gradient profiles are reproducible and can be conveniently tuned. To demonstrate its utility, we couple it with either a UV absorbance detector or a mass spectrometer for peptide separations.
Collapse
Affiliation(s)
- Apeng Chen
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA.
| | - Kyle B Lynch
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA.
| | - Xiaochun Wang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA.
| | - Joann J Lu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA.
| | - Congying Gu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA; Veritas Laboratories, LLC, Tifton, GA 31793, USA.
| | - Shaorong Liu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA.
| |
Collapse
|
48
|
Collins DA, Nesterenko EP, Paull B. Porous layer open tubular columns in capillary liquid chromatography. Analyst 2014; 139:1292-302. [DOI: 10.1039/c3an01869e] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
49
|
Fanali C, Dugo L, Dugo P, Mondello L. Capillary-liquid chromatography (CLC) and nano-LC in food analysis. Trends Analyt Chem 2013. [DOI: 10.1016/j.trac.2013.05.021] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Influence of a strong sample solvent on analyte dispersion in chromatographic columns. J Chromatogr A 2013; 1297:46-55. [DOI: 10.1016/j.chroma.2013.04.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 04/10/2013] [Accepted: 04/11/2013] [Indexed: 11/19/2022]
|