1
|
Dziadas M, Jeleń H. Comparison of Dip-it-DART-Orbitrap-MS With Nitrogen Plasma to HPLC/Orbitrap-MS in Profiling Aromatic Glycoconjugation in White Grapes. JOURNAL OF MASS SPECTROMETRY : JMS 2025; 60:e5130. [PMID: 40195788 DOI: 10.1002/jms.5130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 03/16/2025] [Accepted: 03/20/2025] [Indexed: 04/09/2025]
Abstract
Direct analysis of aromatic glycosidic precursors in plants has posed an analytical challenge for decades. Traditional techniques, such as SPE-GC/MS, primarily provided information on volatile aglycones released through hydrolysis. However, the application of high-resolution mass spectrometry combined with liquid chromatography has enabled the direct analysis of intact glycosides without the need for derivatization or hydrolysis. Advances in soft ionization methods, such as DART, offer a novel approach to exploring the hidden aromatic potential in grapes without chromatographic separation. In this work, we present a novel and rapid method for screening aromatic glycosidic precursors in white grapes using high-resolution mass spectrometry (Orbitrap) combined with the soft ionization DART method with nitrogen plasma. Optimization of N2-DART ionization parameters, including grid voltage, gas temperature, and Dip-it sampler speed, performed on selected synthetic glycosidic precursors, allowed the establishment of characteristic ionization patterns and evaluation of 15 groups of glycosidic precursors. The results from the profiling analysis using the N2-DART-Orbitrap-MS method are comparable to those obtained by HPLC/Orbitrap-MS method. This new analytical approach, N2-DART-Orbitrap-MS, reduces drastically analysis time by eliminating the need for chromatographic separation when screening glycoside precursors, uses a convenient Dip-it tips for sampling. It also allows for deeper exploration of ionization using nitrogen plasma, applied for the first time in the analysis of glycoside precursors, demonstrating the applicability of this method for the rapid characterization and screening of glycosidically bound aroma compounds in plants.
Collapse
Affiliation(s)
- Mariusz Dziadas
- Faculty of Chemistry, University of Wrocław, Wrocław, Poland
| | - Henryk Jeleń
- Faculty of Food Science and Nutrition, Poznan University of Life Science, Poznań, Poland
| |
Collapse
|
2
|
Wu G, Xin Y, Ren R, Chen H, Yang B, Ge M, Xie S. Comprehensive aroma profiles and the underlying molecular mechanisms in six grape varieties with different flavors. FRONTIERS IN PLANT SCIENCE 2025; 16:1544593. [PMID: 40357150 PMCID: PMC12066448 DOI: 10.3389/fpls.2025.1544593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 04/01/2025] [Indexed: 05/15/2025]
Abstract
Aroma is a critical factor in determining grape quality, develops through complex interactions among various volatile compounds. This study revealed the differences of the six grape varieties with three different aroma types though the HS-SPME/GC-MS and RNA-sequencing technologies. Muscat-type grapes ('Shine 13' and 'Shine Muscat') exhibited the highest monoterpene and C13-norisoprenoid level, correlating with elevated expression of DXS, TPS, and CCD4b genes in the MEP/MVA pathways. Strawberry-type cultivars (particularly 'Hutai 8') accumulated abundant esters linked to high AAT expression, while neutral aromatic varieties showed enriched C6/C9 compounds associated with upregulated LOXA and ADH2. Muscat-type grapes dominated monoterpenes with OAVs >1, which explained the abundant Muscat flavors, while neutral aromatic aroma cultivars had the most abundant C6/C9 compounds OAVs associated with leaf-like scents. Strawberry-type cultivars exhibited the highest esters OAVs with strawberry aroma profiles. WGCNA analysis revealed four specific modules correlated with aroma compound biosynthesis correlated with alcohols (88genes), carbonyl compounds (451genes), fatty acids (110 genes), and monoterpenes (790genes) accumulation in these grapes, respectively. These findings were expected to advance our understanding of the metabolic pathways responsible for grape aroma and could provide valuable recommendations for the enhancement of grape aromatic quality.
Collapse
Affiliation(s)
- Guang Wu
- College of Enology, Northwest A & F University, Yangling, China
| | - Yuchen Xin
- College of Enology, Northwest A & F University, Yangling, China
| | - Ruihua Ren
- College of Enology, Northwest A & F University, Yangling, China
| | - Huawei Chen
- College of Enology, Northwest A & F University, Yangling, China
| | - Bowei Yang
- College of Enology, Northwest A & F University, Yangling, China
| | - Maosheng Ge
- College of Water Resources and Architectural Engineering, Northwest A & F University, Yangling, China
| | - Sha Xie
- College of Enology, Northwest A & F University, Yangling, China
| |
Collapse
|
3
|
Wang S, Xu Y, Wang F, Gao S, Kang H, Ji X, Yao Y. Postharvest changes in the phenolic and free volatile compound contents in Shine Muscat grapes at room temperature. Food Chem 2025; 465:141958. [PMID: 39531964 DOI: 10.1016/j.foodchem.2024.141958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/12/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Herein, we studied changes in the contents of phenolic and free volatile compounds in Shine Muscat grapes stored at room temperature. Berry quality was maintained up to 11 d after harvest, and the levels of 35 phenolic compounds were observed to increase during storage. This increase is attributed to the upregulation of genes, including phenylalanine ammonia-lyases, 4-coumarate-CoA ligases, and stilbene synthases, in the phenylpropanoid pathway. The concentrations of total and rose-flavored volatiles, including terpenes and particularly monoterpenes, decreased in postharvest berries, which was attributed to the downregulation of genes in the mevalonate and 2-C-methyl-D-erythritol 4-phosphate pathways. By contrast, the C6 compound content increased during storage, which might have played a role in the upregulation of lipoxygenase and hydroperoxide. Additionally, the marker compounds rutin and 1-hexanol were identified during storage. Therefore, this study suggested that the health benefits and C6 compound-derived flavor increased, whereas the rose flavor decreased in postharvest berries.
Collapse
Affiliation(s)
- Shengnan Wang
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Yihang Xu
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Fei Wang
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Shiwei Gao
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Hui Kang
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Xinglong Ji
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Yuxin Yao
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China.
| |
Collapse
|
4
|
Martínez L, da Costa BS, Vilanova M. Comparative study of different commercial enzymes on release of glycosylated volatile compounds in white grapes using SPE/GC-MS. Food Chem 2025; 464:141742. [PMID: 39489037 DOI: 10.1016/j.foodchem.2024.141742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/12/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
Glycosides represent a large source of potential flavor in grape must. Commercial preparations enzymes with glycosidase activity are commonly employed to enhance wine aroma. In this study, we conducted an evaluation of twelve commercial enzymes to assess their effectiveness in releasing volatile compounds from their conjugated forms in a white grape must under laboratory conditions by solid-liquid extraction (SPE) and gas chromatography-mass spectrometry (GC-MS). In this laboratory-level experiment, regardless of the enzymes used, the total concentration of volatile compounds was not statistically affected by the treatments. While the total concentration of volatile compounds remained largely unchanged, four specific volatile groups were significantly affected by the enzyme treatments: acids, alcohols, C13-norisoprenoids, and terpenes. The results also revealed a significant effect of commercial enzymes on individual compounds, which led to a notable increase in the concentration of twenty-one aroma compounds, mainly terpenes. Rapidase Revelation Aroma and Enozym Extra Aroma emerged as the most powerful ones on the must's volatile composition with important ability to release higher concentrations of essential varietal aroma compounds, particularly terpenes and C13-norisoprenoids.
Collapse
Affiliation(s)
- Liliana Martínez
- Grupo de Fisiología Vegetal y Microbiología, Instituto de Biología Agrícola de Mendoza y Cátedra de Fisiología Vegetal, Facultad de Ciencias Agrarias, CONICET-Universidad Nacional de Cuyo, Chacras de Coria, M5528AHB Mendoza, Argentina
| | - Bianca S da Costa
- Instituto de Ciencias de la Vid y del Vino-ICVV (CSIC, UR, GR) Finca La Grajera, 26007 Logroño, La Rioja, Spain
| | - Mar Vilanova
- Instituto de Ciencias de la Vid y del Vino-ICVV (CSIC, UR, GR) Finca La Grajera, 26007 Logroño, La Rioja, Spain.
| |
Collapse
|
5
|
VanderWeide J, Pico J, Petersen M, Yan Y, Zandberg WF, Castellarin SD. Free monoterpenoid accumulation in 'Riesling' (Vitis vinifera L.) is light-sensitive and uncoupled from grape hexose accumulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109212. [PMID: 39642439 DOI: 10.1016/j.plaphy.2024.109212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/02/2024] [Accepted: 10/18/2024] [Indexed: 12/09/2024]
Abstract
Monoterpenoid biosynthesis mirrors hexoses accumulation in grape berries during ripening and is affected by environmental factors such as solar radiation. However, no research has confirmed the dependency of monoterpenoid accumulation on grape maturity. Using potted 'Riesling' (Vitis vinifera L.) vines, we girdled (GD) shoots at veraison to halt leaf photoassimilate translocation to berries and also utilized light-impenetrable bags to exclude light exposure (LE) to grape clusters to <2 μmol m-2s-1 during ripening. GD and LE were compared to an untreated control (CT), and a combined (GDxLE) treatment. GD caused leaf photosynthetic assimilation to decline from one-week post-treatment until harvest maturity due to feedback inhibition of photosynthesis. This was coupled to a decrease in hexoses and ABA accumulation in GD berries. Meanwhile, LE did not affect photosynthetic assimilation, or hexoses and ABA accumulation. We hypothesized that the accumulation of free and bound monoterpenoids in 'Riesling' berries would also be reduced by GD, if monoterpenoid accumulation was dependent on grape maturity. LE significantly decreased free monoterpenoids compared to CT. However, GD did not alter total free and bound monoterpenoid concentrations. GD decreased free linalool oxide I and II and bound linalool oxide I compared to CT, and increased citral I and II and α-terpineol. Although exogenous jasmonate applications stimulate monoterpenoid biosynthesis in grapes, we showed that endogenous jasmonate concentrations were not altered by GD or LE; therefore, any monoterpenoid modulation by GD and LE treatments was not mediated by endogenous jasmonate levels. This study indicates that free monoterpenoid biosynthesis during ripening is uncoupled from hexose accumulation and is strongly regulated by solar radiation.
Collapse
Affiliation(s)
- Joshua VanderWeide
- Wine Research Centre, University of British Columbia, 2205 East Mall, Vancouver, BC, V6T 1Z4, Canada; Department of Horticulture, Michigan State University, 1066 Bogue St., East Lansing, MI, USA, 48842.
| | - Joana Pico
- Wine Research Centre, University of British Columbia, 2205 East Mall, Vancouver, BC, V6T 1Z4, Canada.
| | - Malin Petersen
- Wine Research Centre, University of British Columbia, 2205 East Mall, Vancouver, BC, V6T 1Z4, Canada.
| | - Yifan Yan
- Wine Research Centre, University of British Columbia, 2205 East Mall, Vancouver, BC, V6T 1Z4, Canada.
| | - Wesley F Zandberg
- Department of Chemistry, University of British Columbia-Okanagan, 3247 Research Road, Kelowna, BC, V1V 1V7, Canada.
| | - Simone D Castellarin
- Wine Research Centre, University of British Columbia, 2205 East Mall, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
6
|
Gómez HAG, Niederauer GF, Minatel IO, Antunes ERM, Carneiro MJ, Sawaya ACHF, Zanus MC, Ritschel PS, Quecini V, Pereira Lima GP, Marques MOM. Wine metabolome and sensory analyses demonstrate the oenological potential of novel grapevine genotypes for sustainable viticulture in warm climates. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:329-341. [PMID: 39171419 DOI: 10.1002/jsfa.13832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Genetic breeding is essential to develop grapevine genotypes adapted to warm climates and resistant to pathogens. Traditionally cultivated Vitis vinifera is susceptible to biotic and abiotic stresses. Winemakers and consumers, however, perceive wines from non-vinifera or hybrid cultivars as inferior. In this study, sensory analyses and comprehensive metabolite profiling by targeted and untargeted approaches were used to investigate the oenological potential of wines from grapes of genotypes developed throughout four breeding cycles to improve climate adaptation, sugar contents and berry color. RESULTS Novel genotypes had higher yields and the wines exhibited increased contents of polyphenols, including anthocyanins. Volatile monoterpenes in the wines decreased throughout breeding cycles in the absence of selective pressure. Polyphenol contents were higher in intermediate wines, with hydroxytyrosol contents reaching up to three times reported values. Mouthfeel attributes astringency, leafy taste, flavor and body, and persistency showed significant correlation with untargeted features. Supervised model-based analyses of the metabolome effectively discriminate wines from distinct genetic origins. CONCLUSION Taken together, the results demonstrate the potential of novel grapevine genotypes to a more sustainable viticulture and quality wine production in warm climates. Comprehensive metabolite profiling of the wines reveals that genotype clustering is dependent on the chemical class and that traits not submitted to selective pressure are also altered by breeding. Supervised multivariate models were effective to predict the genetic origin of the wines based on the metabolic profile, indicating the potential of the technique to identify biomarkers for wines from sustainable genotypes. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Héctor Alonzo Gómez Gómez
- School of Agriculture, São Paulo State University (Unesp), Botucatu, São Paulo, Brazil
- Plant Genetic Resources Center, Agronomic Institute (IAC), Campinas, São Paulo, Brazil
- Academic Department of Food, Faculty of Technological Sciences, National University of Agriculture, Catacamas, Honduras
| | | | - Igor Otavio Minatel
- Institute of Biosciences, São Paulo State University (Unesp), Botucatu, São Paulo, Brazil
| | | | | | | | | | | | - Vera Quecini
- Embrapa Uva e Vinho, Bento Gonçalves, Rio Grande do Sul, Brazil
| | | | | |
Collapse
|
7
|
Georgiadou EC, Mina M, Valanides N, Taliadorou AM, Koundouras S, D'Onofrio C, Bellincontro A, Mencarelli F, Barbayiannis N, Fotopoulos V, Manganaris GA. The effect of terroir on volatilome fingerprinting and qualitative attributes of non-irrigated grapes reveals differences on glycosylated aroma compounds. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:507-519. [PMID: 39238339 DOI: 10.1002/jsfa.13849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/25/2024] [Accepted: 08/12/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND 'Xynisteri' is considered as the reference white grape cultivar in Cyprus with remarkable adaptation to adverse edaphoclimatic conditions and appreciable oenological properties that renders it as an appropriate cultivar for studies within a global context due to climate change. To this aim, two distinct non-irrigated plots with different climatic conditions, soil properties and levels of rainfall were selected; Koilani [KO, altitude 800 m, 76% calcium carbonate (CaCO3) content, pH 7.97, average temperature: 16.5 °C, rainfall: 229 mm] and Kyperounda (KY, altitude 1200 m, CaCO3-free soil, pH 6.47, average temperature: 14.9 °C, rainfall: 658 mm). An array of physiological, biochemical and qualitative indices during successive developmental stages (BBCH 75-89) were determined. During the advanced on-vine developmental stages (BBCH 85-89), the aromatic profile of grapes was assessed with the employment of gas chromatography-mass spectrometry (GC-MS). Such analysis was complemented with non-destructive chemometric analyses. RESULTS Berry ripening process substantially differed on the examined plots; BBCH 89 stage reached at 267 and 303 Julian days for KO and KY, respectively. Results indicated that berry weight, soluble solids content (SSC) and α-amino nitrogen were higher in KO than in KY, with exception made for ammonium nitrogen content. A total of 75 compounds, including aliphatic alcohols, benzenic compounds, phenols, vanillins, monoterpenes and C13-norisoprenoids were identified and quantified. The variations of mesoclimatic conditions affected the volatile organic compound (VOC) profiles at the fully-ripe stage, showing a considerable rise in glycosylated aroma compounds, especially monoterpenes and benzenic compounds. In particular, the higher amount of glycosylated aroma compounds were obtained in KY berries up to mid-ripe, whereas KO showed higher glycosylated aroma compounds at fully-ripe stage. Results reported herein indicate that aroma profile of 'Xynisteri' grapes varied substantially in the examined terroirs. Interestingly, the limited rainfall in KΟ non-irrigated vine did not compromise qualitative and aromatic properties of berries. CONCLUSIONS The present study aimed at dissecting the impact of terroir on bush-trained, non-irrigated grapevines of a cultivar appropriate for extreme climate change scenarios. The volatilome fingerprint was highly variable among the examined plots; such results can be further exploited at vinification level towards production of single vineyard premium end products. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Egli C Georgiadou
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
- Kyperounda Winery, P. Photiades Group, Limassol, Cyprus
| | - Minas Mina
- Kyperounda Winery, P. Photiades Group, Limassol, Cyprus
| | - Nicolas Valanides
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - Anna-Maria Taliadorou
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - Stefanos Koundouras
- School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Claudio D'Onofrio
- Department of Agriculture, Food and Environment Science, University of Pisa, Pisa, Italy
- Nutraceuticals and Food for Health - Nutrafood, University of Pisa, Pisa, Italy
| | - Andrea Bellincontro
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF) - Postharvest Laboratory, University of Tuscia, Viterbo, Italy
| | - Fabio Mencarelli
- Department of Agriculture, Food and Environment Science, University of Pisa, Pisa, Italy
- Nutraceuticals and Food for Health - Nutrafood, University of Pisa, Pisa, Italy
| | | | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - George A Manganaris
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
8
|
Guo X, Zhu X, Qian Y, Yang Y, Zhu F, Zhao Y, Zhang M, Gao T, Li J, Yan H. Enhancing variety aromatic characteristics of Muscat wine through cold maceration with indigenous cryotolerant Metschnikowia pulcherrima Mp0520. Food Chem 2025; 463:141097. [PMID: 39244997 DOI: 10.1016/j.foodchem.2024.141097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/24/2024] [Accepted: 08/30/2024] [Indexed: 09/10/2024]
Abstract
Cold maceration (CM) is widely applied in winemaking to improve wine aroma and overall quality. However, more efficient CM techniques for industrial-scale winemaking are still needed. This study examined the impact of CM with indigenous cryotolerant Metschnikowia pulcherrima Mp0520 (Mp-CM) on the Muscat wine aromatic characteristics. The results demonstrated a significant divergence in the types and concentrations of aroma compounds between Mp-CM wine and the control. The Mp-CM wine exhibited a significantly higher terpenes content, resulting in a Muscat wine characterized by terpenes, compared to the control predominated by esters. Additionally, the Mp-CM wine demonstrated elevated levels of α-terpineol and terpinolene, potentially enhancing the varietal aroma stability of Muscat wine. Furthermore, Mp-CM gave Muscat wine a heightened fruity aroma and a more complex aroma. These findings suggested that the Mp-CM utilized in this study offered promising avenues for enhancing the variety aroma characteristics of Muscat wine on large scale winemaking.
Collapse
Affiliation(s)
- Xiqing Guo
- College of Food Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei 066004, China
| | - Xueyun Zhu
- College of Horticultural Science & Technology, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei 066004, China
| | - Yunkai Qian
- Technology Center of Qinhuangdao Customs of P. R. China, Qinhuangdao, Hebei 066004, China
| | - Yang Yang
- College of Food Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei 066004, China
| | - Fengmei Zhu
- College of Food Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei 066004, China
| | - Yue Zhao
- College of Food Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei 066004, China
| | - Mingyu Zhang
- College of Food Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei 066004, China
| | - Te Gao
- College of Food Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei 066004, China
| | - Jun Li
- College of Food Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei 066004, China
| | - Hejing Yan
- College of Food Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei 066004, China.
| |
Collapse
|
9
|
Li MY, Pei XX, Shi N, Yang YM, Fan ST, Sun YF, Kong QS, Duan CQ, Yu K, Wang J. Volatomic differences among Vitis amurensis cultivars and its hybrids with V. vinifera revealed the effects of genotype, region, and vintage on grape aroma. Food Res Int 2024; 191:114726. [PMID: 39059919 DOI: 10.1016/j.foodres.2024.114726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
Vitis amurensis grape, an East Asian Vitis species, has excellent cold and disease resistance and exhibits high winemaking potential. In this study, the aroma compounds in grapes from five V. amurensis cultivars ('Beiguohong', 'Beiguolan', 'Shuangfeng', 'Shuanghong', 'Shuangyou') and three interspecific hybrids ('Beibinghong', 'Xuelanhong', 'Zuoyouhong') from two regions (Zuojia and Ji'an, Jilin, China) were identified via HS-SPME-GC/MS. The results showed that V. amurensis grapes had a greater concentration of aroma compounds than the interspecific hybrid berries. 'Beibinghong' was relatively rich in terpenes, although their concentrations were all lower than the threshold. 'Shuangfeng' contained more concentrations of free C6/C9 compounds, alcohols, aromatics and aldehydes/ketones than the other cultivars. The aroma characteristics of 'Beiguolan' and 'Shuanghong' were relatively similar. The grapes from the lower temperature and more fertile soil of Zuojia contained more C6/C9 compounds, norisoprenoids and alcohols, while aromatics were more abundant in the grapes from Ji'an, which was warmer than the Zuojia region. Herbaceous, floral, fruity and sweet were the main aroma series of V. amurensis grapes. Our study could provide a reference for the development and utilization of V. amurensis grapes and lay a foundation for the development of wild grape cultivars and the production of wines with characteristic styles.
Collapse
Affiliation(s)
- Ming-Yu Li
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Xuan-Xuan Pei
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Ning Shi
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Yi-Ming Yang
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Shu-Tian Fan
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Yan-Feng Sun
- Ji'an Ginseng Feature Industry Development Center, Ji'an 134200, China
| | - Qing-Sen Kong
- Ji'an Yajiang Valley Winery Co., Ltd., Ji'an 134202, China
| | - Chang-Qing Duan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Keji Yu
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China.
| | - Jun Wang
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China.
| |
Collapse
|
10
|
Cucinotta L, Cannizzaro F, Paolini M, Roncone A, Camin F, Bontempo L, Larcher R, Sciarrone D, Mondello L. From grape to wine: A thorough compound specific isotopic, enantiomeric and quali-quantitative investigation by means of gas chromatographic analysis. J Chromatogr A 2024; 1730:465149. [PMID: 38991602 DOI: 10.1016/j.chroma.2024.465149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/04/2024] [Accepted: 07/06/2024] [Indexed: 07/13/2024]
Abstract
In this study, multiple analytical approaches, including simultaneous enantiomeric and isotopic analysis, were employed to thoroughly investigate the volatile fraction in Moscato giallo grape berries and wines. For the qualitative and quantitative profiling, a fast GC-QqQ/MS approach was successfully utilized. However, prior to isotopic analysis, the extracts underwent an additional concentration step, necessitating an assessment of isotopic fractionation during the concentration process. Once the absence of carbon isotopic fractionation was confirmed, this research aimed to develop a suitable gas chromatographic method for the simultaneous detection of both enantiomeric and isotopic ratios of target monoterpenoids in Moscato giallo samples. To address the limitations associated with a one-dimensional approach, multidimensional gas chromatography was employed to enhance separation before IRMS and qMS detections. Utilizing a Deans switch transfer device, the coupling of an apolar column in the first dimension and a chiral cyclodextrin-based stationary phase in the second dimension proved effective for this purpose. The data obtained from the analysis of Moscato giallo samples allowed for the assessment of natural isotopic and enantiomeric distributions in grapes and wines for the first time in the literature. Significant enantiomeric excesses were observed for the target terpenoids investigated. Regarding isotopic distribution, a consistent trend was observed for all detected target terpenols, including the linalool enantiomers. To date, this study represents the first investigation of simultaneous δ13C and chiral investigation of the main terpenoids in oenological products in the literature.
Collapse
Affiliation(s)
- Lorenzo Cucinotta
- Messina Institute of Technology c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, former Veterinary School, University of Messina, Viale G. Palatucci snc, Messina 98168, Italy; Fondazione Edmund Mach, via Mach 1, San Michele all'Adige 38010, Italy
| | - Francesca Cannizzaro
- Messina Institute of Technology c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, former Veterinary School, University of Messina, Viale G. Palatucci snc, Messina 98168, Italy
| | - Mauro Paolini
- Fondazione Edmund Mach, via Mach 1, San Michele all'Adige 38010, Italy
| | - Alberto Roncone
- Fondazione Edmund Mach, via Mach 1, San Michele all'Adige 38010, Italy
| | - Federica Camin
- Fondazione Edmund Mach, via Mach 1, San Michele all'Adige 38010, Italy; Center Agriculture Food Environment (C3A), University of Trento, Via Mach 1, San Michele all'Adige, TN 38010, Italy
| | - Luana Bontempo
- Fondazione Edmund Mach, via Mach 1, San Michele all'Adige 38010, Italy
| | - Roberto Larcher
- Fondazione Edmund Mach, via Mach 1, San Michele all'Adige 38010, Italy
| | - Danilo Sciarrone
- Messina Institute of Technology c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, former Veterinary School, University of Messina, Viale G. Palatucci snc, Messina 98168, Italy.
| | - Luigi Mondello
- Messina Institute of Technology c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, former Veterinary School, University of Messina, Viale G. Palatucci snc, Messina 98168, Italy; Chromaleont s.r.l., c/o Messina Institute of Technology c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, former Veterinary School, University of Messina, Viale G. Palatucci snc, Messina 98168, Italy
| |
Collapse
|
11
|
Bao X, Dong J, Niu M, Wang Z, Xu G. Transcriptome and Metabolome Analyses of Aroma Differences between Chardonnay and a Chardonnay Bud Sport. Molecules 2024; 29:3671. [PMID: 39125074 PMCID: PMC11314234 DOI: 10.3390/molecules29153671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/25/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Chardonnay is one of the most popular white grape wine varieties in the world, but this wine lacks typical aroma, considered a sensory defect. Our research group identified a Chardonnay bud sport with typical muscat characteristics. The goal of this work was to discover the key candidate genes related to muscat characteristics in this Chardonnay bud sport to reveal the mechanism of muscat formation and guide molecular design breeding. To this end, HS-SPME-GC-MS and RNA-Seq were used to analyze volatile organic compounds and the differentially expressed genes in Chardonnay and its aromatic bud sport. Forty-nine volatiles were identified as potential biomarkers, which included mainly aldehydes and terpenes. Geraniol, linalool, and phenylacetaldehyde were identified as the main aroma components of the mutant. The GO, KEGG, GSEA, and correlation analysis revealed HMGR, TPS1, TPS2, TPS5, novel.939, and CYP450 as key genes for terpene synthesis. MAO1 and MAO2 were significantly downregulated, but there was an increased content of phenylacetaldehyde. These key candidate genes provide a reference for the development of functional markers for muscat varieties and also provide insight into the formation mechanism of muscat aroma.
Collapse
Affiliation(s)
- Xiaoqin Bao
- College of Wine and Horticulture, Ningxia University, Yinchuan 750021, China; (X.B.); (J.D.); (M.N.)
| | - Jin Dong
- College of Wine and Horticulture, Ningxia University, Yinchuan 750021, China; (X.B.); (J.D.); (M.N.)
| | - Min Niu
- College of Wine and Horticulture, Ningxia University, Yinchuan 750021, China; (X.B.); (J.D.); (M.N.)
| | - Zhilei Wang
- College of Wine and Horticulture, Ningxia University, Yinchuan 750021, China; (X.B.); (J.D.); (M.N.)
- Engineering Research Center of Grape and Wine, Ministry of Education, Yinchuan 750021, China
- Ningxia Grape and Wine Engineering Technology Center, Yinchuan 750021, China
| | - Guoqian Xu
- College of Wine and Horticulture, Ningxia University, Yinchuan 750021, China; (X.B.); (J.D.); (M.N.)
- Engineering Research Center of Grape and Wine, Ministry of Education, Yinchuan 750021, China
- Ningxia Grape and Wine Engineering Technology Center, Yinchuan 750021, China
| |
Collapse
|
12
|
Paolini M, Roncone A, Cucinotta L, Sciarrone D, Mondello L, Camin F, Moser S, Larcher R, Bontempo L. Aromatic Characterisation of Moscato Giallo by GC-MS/MS and Validation of Stable Isotopic Ratio Analysis of the Major Volatile Compounds. Biomolecules 2024; 14:710. [PMID: 38927113 PMCID: PMC11201454 DOI: 10.3390/biom14060710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/09/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Among the Moscato grapes, Moscato Giallo is a winegrape variety characterised by a high content of free and glycosylated monoterpenoids, which gives wines very intense notes of ripe fruit and flowers. The aromatic bouquet of Moscato Giallo is strongly influenced by the high concentration of linalool, geraniol, linalool oxides, limonene, α-terpineol, citronellol, hotrienol, diendiols, trans/cis-8-hydroxy linalool, geranic acid and myrcene, that give citrus, rose, and peach notes. Except for quali-quantitative analysis, no investigations regarding the isotopic values of the target volatile compounds in grapes and wines are documented in the literature. Nevertheless, the analysis of the stable isotope ratio represents a modern and powerful tool used by the laboratories responsible for official consumer protection, for food quality and genuineness assessment. To this aim, the aromatic compounds extracted from grapes and wine were analysed both by GC-MS/MS, to define the aroma profiles, and by GC-C/Py-IRMS, for a preliminary isotope compound-specific investigation. Seventeen samples of Moscato Giallo grapes were collected during the harvest season in 2021 from two Italian regions renowned for the cultivation of this aromatic variety, Trentino Alto Adige and Veneto, and the corresponding wines were produced at micro-winery scale. The GC-MS/MS analysis confirmed the presence of the typical terpenoids both in glycosylated and free forms, responsible for the characteristic aroma of the Moscato Giallo variety, while the compound-specific isotope ratio analysis allowed us to determine the carbon (δ13C) and hydrogen (δ2H) isotopic signatures of the major volatile compounds for the first time.
Collapse
Affiliation(s)
- Mauro Paolini
- Fondazione Edmund Mach, Via Mach 1, 38098 San Michele all’Adige, Italy; (A.R.); (L.C.); (F.C.); (S.M.); (R.L.); (L.B.)
| | - Alberto Roncone
- Fondazione Edmund Mach, Via Mach 1, 38098 San Michele all’Adige, Italy; (A.R.); (L.C.); (F.C.); (S.M.); (R.L.); (L.B.)
| | - Lorenzo Cucinotta
- Fondazione Edmund Mach, Via Mach 1, 38098 San Michele all’Adige, Italy; (A.R.); (L.C.); (F.C.); (S.M.); (R.L.); (L.B.)
- Messina Institute of Technology, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Former Veterinary School, University of Messina, Viale G. Palatucci snc, 98168 Messina, Italy; (D.S.); (L.M.)
| | - Danilo Sciarrone
- Messina Institute of Technology, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Former Veterinary School, University of Messina, Viale G. Palatucci snc, 98168 Messina, Italy; (D.S.); (L.M.)
| | - Luigi Mondello
- Messina Institute of Technology, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Former Veterinary School, University of Messina, Viale G. Palatucci snc, 98168 Messina, Italy; (D.S.); (L.M.)
- Chromaleont s.r.l., Messina Institute of Technology, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Former Veterinary School, University of Messina, Viale G. Palatucci snc, 98168 Messina, Italy
| | - Federica Camin
- Fondazione Edmund Mach, Via Mach 1, 38098 San Michele all’Adige, Italy; (A.R.); (L.C.); (F.C.); (S.M.); (R.L.); (L.B.)
- Center Agriculture Food Environment (C3A), University of Trento, Via Mach 1, 38010 San Michele all’Adige, Italy
| | - Sergio Moser
- Fondazione Edmund Mach, Via Mach 1, 38098 San Michele all’Adige, Italy; (A.R.); (L.C.); (F.C.); (S.M.); (R.L.); (L.B.)
| | - Roberto Larcher
- Fondazione Edmund Mach, Via Mach 1, 38098 San Michele all’Adige, Italy; (A.R.); (L.C.); (F.C.); (S.M.); (R.L.); (L.B.)
| | - Luana Bontempo
- Fondazione Edmund Mach, Via Mach 1, 38098 San Michele all’Adige, Italy; (A.R.); (L.C.); (F.C.); (S.M.); (R.L.); (L.B.)
| |
Collapse
|
13
|
Zhao Y, Zhang B, Gu H, Xu T, Chen Q, Li J, Zhou P, Guan X, He L, Liang Y, Zhang K, Liu S, Shi K. A mutant GH3 family β-glucosidase from Oenococcus oeni exhibits superior adaptation to wine stresses and potential for improving wine aroma and phenolic profiles. Food Microbiol 2024; 119:104458. [PMID: 38225057 DOI: 10.1016/j.fm.2023.104458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/17/2024]
Abstract
In this study, we conducted a comprehensive investigation into a GH3 family β-glucosidase (BGL) from the wild-type strain of Oenococcus oeni and its mutated counterpart from the acid-tolerant mutant strain. Our analysis revealed the mutant BGL's remarkable capacity to adapt to wine-related stress conditions, including heightened tolerance to low pH, elevated ethanol concentrations, and metal ions. Additionally, the mutant BGL exhibited superior hydrolytic activity towards various substrates. Through de novo modeling, we identified specific amino acid mutations responsible for its resilience to low pH and high ethanol environments. In simulated wine conditions, the mutant BGL outperformed both wild-type and commercial BGLs, efficiently releasing terpene and phenolic aglycones from glycosides in wine grapes. These findings not only expand our understanding of O. oeni BGLs but also highlight their potential in enhancing wine production. The mutant BGL's enhanced adaptation to wine stress conditions opens promising avenue for improving wine quality and flavor.
Collapse
Affiliation(s)
- Yuzhu Zhao
- College of Enology, College of Life Sciences, College of Horticulture, Shaanxi Engineering Research Center for Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Heyang Experimental and Demonstrational Stations for Grape, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Life Science Research Core Services, Northwest A&F University, Yangling, Shaanxi, China
| | - Biying Zhang
- College of Enology, College of Life Sciences, College of Horticulture, Shaanxi Engineering Research Center for Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Heyang Experimental and Demonstrational Stations for Grape, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Life Science Research Core Services, Northwest A&F University, Yangling, Shaanxi, China
| | - Huawei Gu
- College of Enology, College of Life Sciences, College of Horticulture, Shaanxi Engineering Research Center for Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Heyang Experimental and Demonstrational Stations for Grape, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Life Science Research Core Services, Northwest A&F University, Yangling, Shaanxi, China
| | - Tongxin Xu
- College of Enology, College of Life Sciences, College of Horticulture, Shaanxi Engineering Research Center for Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Heyang Experimental and Demonstrational Stations for Grape, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Life Science Research Core Services, Northwest A&F University, Yangling, Shaanxi, China
| | - Qiling Chen
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Jin Li
- COFCO GreatWall Wine, Penglai, Shandong, China
| | | | - Xueqiang Guan
- Shandong Academy of Grape / Shandong Technology Innovation Center of Wine Grape and Wine, Jinan, Shandong, China
| | - Ling He
- College of Enology, College of Life Sciences, College of Horticulture, Shaanxi Engineering Research Center for Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Heyang Experimental and Demonstrational Stations for Grape, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Life Science Research Core Services, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanying Liang
- College of Enology, College of Life Sciences, College of Horticulture, Shaanxi Engineering Research Center for Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Heyang Experimental and Demonstrational Stations for Grape, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Life Science Research Core Services, Northwest A&F University, Yangling, Shaanxi, China
| | - Kekun Zhang
- College of Enology, College of Life Sciences, College of Horticulture, Shaanxi Engineering Research Center for Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Heyang Experimental and Demonstrational Stations for Grape, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Life Science Research Core Services, Northwest A&F University, Yangling, Shaanxi, China
| | - Shuwen Liu
- College of Enology, College of Life Sciences, College of Horticulture, Shaanxi Engineering Research Center for Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Heyang Experimental and Demonstrational Stations for Grape, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Life Science Research Core Services, Northwest A&F University, Yangling, Shaanxi, China.
| | - Kan Shi
- College of Enology, College of Life Sciences, College of Horticulture, Shaanxi Engineering Research Center for Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Heyang Experimental and Demonstrational Stations for Grape, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Life Science Research Core Services, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
14
|
Yue X, Wang S, Dong Y, Chen W, Wang Y, Xu H, Zhang Z, Fang Y, Ju Y. Targeted metabolomics analysis based on HS-SPME-GC-MS to discriminate geographical origin of 'Muscat Hamburg' grape and wine. Food Res Int 2024; 181:114120. [PMID: 38448101 DOI: 10.1016/j.foodres.2024.114120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 03/08/2024]
Abstract
Monoterpenes are typical aroma components in muscat grapes and wines, closely related to its geographical origins. However, the mechanism underlying the geographical differences of monoterpenes remains to be elucidated, especially in the Chinese viticulture regions. This study investigated the diversity of six Chinese viticultural vineyards (YT, XF, SS, XX, WW and CL) in the monoterpene composition of Vitis vinifera L. cv.'Muscat Hamburg' grapes and the resulted wines. Monoterpenes were analyzed by HS-SPME- GC-MS. The total amount of free and bound monoterpenes varied dramatically between grapes of different vineyards, and their contents were obviously higher in YT region grapes. The OAVs for 18 monoterpenes of grapes from the YT vineyard were relative higher than those of other regions, and the floral odor could distinguish grapes from different regions. The total free monoterpenes were highest in the YT region wine. Concentrations of total bound monoterpenes ranged from 711.13 μg/L (XF region) to 1078.30 μg/L (CL region). A correlation analysis showed that all monoterpenes showeda positive correlation with mean relative humidity, sum rainfall, and a negative correlation with sum duration of sunshine and mean temperature. This study would provide some new insights to understand the geographical differences of monoterpenes, and the results would facilitate the effective viticultural treatment of grapes to improve the quality of the aroma.
Collapse
Affiliation(s)
- Xiaofeng Yue
- College of Food Science and Engineering, College of Enology, Northwest A&F University, Yangling 712100, PR China.
| | - Shu Wang
- College of Food Science and Engineering, College of Enology, Northwest A&F University, Yangling 712100, PR China.
| | - Yang Dong
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, PR China.
| | - Wei Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, PR China.
| | - Ying Wang
- College of Food Science and Engineering, College of Enology, Northwest A&F University, Yangling 712100, PR China.
| | - Huaide Xu
- College of Food Science and Engineering, College of Enology, Northwest A&F University, Yangling 712100, PR China.
| | - Zhenwen Zhang
- College of Food Science and Engineering, College of Enology, Northwest A&F University, Yangling 712100, PR China.
| | - Yulin Fang
- College of Food Science and Engineering, College of Enology, Northwest A&F University, Yangling 712100, PR China.
| | - Yanlun Ju
- College of Food Science and Engineering, College of Enology, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
15
|
Moriyama K, Kono A, Matsuzaki R, Azuma A, Onoue N, Sekozawa Y, Sato A, Sugaya S. Diversity of flavour characteristics of table grapes and their contributing volatile compounds analysed by the solvent-assisted flavour evaporation method. HORTICULTURE RESEARCH 2024; 11:uhae048. [PMID: 38645682 PMCID: PMC11031413 DOI: 10.1093/hr/uhae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 02/07/2024] [Indexed: 04/23/2024]
Abstract
To identify the compounds that contribute to the diverse flavours of table grapes, the flavours and volatile compounds of 38 grape cultivars harvested over 3 years are evaluated through sensory analysis and solvent-assisted flavour evaporation (SAFE). The cultivars are characterized and grouped into seven clusters by hierarchical cluster analysis (HCA) using sensory evaluation data with a flavour wheel specific to table grapes. These clusters were similar to conventional flavour classifications, except that the foxy and neutral cultivars form multiple clusters, highlighting the flavour diversity of table grapes. The SAFE method provides a comprehensive profile of the volatile compounds, including slightly volatile compounds whose profiles are lacking in hybrid grapes and Vitis rotundifolia. The sensory evaluation is supported by the volatile compound profiles, and relationships between the datasets are clarified by multivariate analysis. Specific accumulations and combinations of compounds (α-pinene, β-pinene, phenylethyl alcohol, furaneol, mesifurane, methyl N-formylanthranilate, and mixed ethyl ester and monoterpenoid) were also identified that contribute to the diversity of flavours (fresh green, floral, fruity, fatty green, sweet, fermented/sour) in table grapes, including linalool and linalool analogues (muscat flavour) along with ethyl ester and hydroxyethyl esters (foxy flavour). The accumulation of these compounds was positively related to a higher flavour intensity. Their specific accumulation and combination supported the flavour diversity of table grapes. This study identified novel flavour-associated compound profiles in table grapes through in-depth volatile compound analysis and non-conventional multivariate analysis.
Collapse
Affiliation(s)
- Kazuki Moriyama
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Atsushi Kono
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO), 301-2 Mitsu, Akitsu, Higashihiroshima, Hiroshima 739-2494, Japan
- Institute of Fruit Tree and Tea Science, NARO, 2-1 Fujimoto, Tsukuba, Ibaraki 305-8605, Japan
| | - Ryusuke Matsuzaki
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO), 301-2 Mitsu, Akitsu, Higashihiroshima, Hiroshima 739-2494, Japan
| | - Akifumi Azuma
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO), 301-2 Mitsu, Akitsu, Higashihiroshima, Hiroshima 739-2494, Japan
- Department of Intellectual Property, NARO, 3-1-1 Kannondai, Tsukuba, Ibaraki 305-8517, Japan
| | - Noriyuki Onoue
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO), 301-2 Mitsu, Akitsu, Higashihiroshima, Hiroshima 739-2494, Japan
| | - Yoshihiko Sekozawa
- Institute of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Akihiko Sato
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO), 301-2 Mitsu, Akitsu, Higashihiroshima, Hiroshima 739-2494, Japan
- Experimental Farm, Kindai University, 2355-2 Yuasa, Yuasa, Wakayama 643-0004, Japan
| | - Sumiko Sugaya
- Institute of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
16
|
Zhou X, Shan B, Liu S, Gao W, Wang X, Wang H, Xu H, Sun L, Zhu B. Sensory omics combined with mathematical modeling for integrated analysis of retronasal Muscat flavor in table grapes. Food Chem X 2024; 21:101198. [PMID: 38370303 PMCID: PMC10869294 DOI: 10.1016/j.fochx.2024.101198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/17/2024] [Accepted: 02/03/2024] [Indexed: 02/20/2024] Open
Abstract
This study focused on analyzing the aroma formation mechanism of retronasal muscat flavor in table grapes. The sensory characteristics and fragrance components of table grape juice with different intensities of Muscat were investigated using GC-Quadrupole-MS, quantitative descriptive analysis and three-alternate forced choice. Free monoterpenoids were the main contributors to the retronasal Muscat flavor. The contribution of Muscat compounds to this flavor was quantified by Stevens coefficient, the most and the least sensitive compounds to concentration changes were citronellol and linalool, respectively. To predict the Muscat flavor intensity by mathematical modeling, established a model between Muscat flavor intensity and monoterpenoids concentration, and an optimal partial least squares regression model with a linear relationship between natural logarithms was obtained. These findings provide reference for understanding the formation mechanism of specific aromas in fruits and provide a basis for the development and quality control of processed products such as Muscat flavor grape juice.
Collapse
Affiliation(s)
- Xiaomiao Zhou
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China
- State Key Laboratory of Tree Genetics and Breeding, Bejing Forestry University, Beijing 100083, China
- Beiing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, Beijing Forestry University, Beijing 100083, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing 100093, China
| | - Bingqi Shan
- Beiing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, Beijing Forestry University, Beijing 100083, China
- Heilongjiang Feihe Dairy Co., Ltd., Beijing 100015, China
| | - Songyu Liu
- Beiing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, Beijing Forestry University, Beijing 100083, China
| | - Wenping Gao
- Beiing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, Beijing Forestry University, Beijing 100083, China
| | - Xiaoyue Wang
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing 100093, China
- Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs, China
| | - Huiling Wang
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing 100093, China
- Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs, China
| | - Haiying Xu
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Lei Sun
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Baoqing Zhu
- State Key Laboratory of Tree Genetics and Breeding, Bejing Forestry University, Beijing 100083, China
- Beiing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
17
|
Hareng L, Kolle SN, Gomes C, Schneider S, Wahl M. Critical assessment of the endocrine potential of Linalool and Linalyl acetate: proactive testing strategy assessing estrogenic and androgenic activity of Lavender oil main components. Arch Toxicol 2024; 98:347-361. [PMID: 37906319 PMCID: PMC10761525 DOI: 10.1007/s00204-023-03623-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/05/2023] [Indexed: 11/02/2023]
Abstract
The acyclic linear monoterpenes Linalool (Lin) and Linalyl acetate (LinAc) occur in nature as major constituents of various essential oils such as lavender oils. A potential endocrine activity of these compounds was discussed in literature including premature thelarche and prepubertal gynecomastia due to lavender product use. This study aims to follow-up on these critical findings reported by testing Lin and LinAc in several studies in line with current guidance and regulatory framework. No relevant anti-/ER and AR-mediated activity was observed in recombinant yeast cell-based screening tests and guideline reporter gene in vitro assays in mammalian cells. Findings in the screening test suggested an anti-androgenic activity, which could not be confirmed in the respective mammalian cell guideline assay. Mechanistic guideline in vivo studies (Uterotrophic and Hershberger assays) with Lin did not show significant dose related changes in estrogen or androgen sensitive organ weights and a guideline reproductive toxicity screening study did not reveal evident effects on sex steroid hormone sensitive organ weights, associated histopathological findings and altered sperm parameters. Estrous cycling and mating/fertility indices were not affected and no evident Lin-related steroid hormone dependent effects were found in the offspring. Overall, the initial concerns from literature were not confirmed. Findings in the yeast screening test were aberrant from follow-up guideline in vitro and in vivo studies, which underlines the need to apply careful interpretation of single in vitro test results to support a respective line of evidence and to establish a biologically plausible link to an adverse outcome.
Collapse
|
18
|
Rodríguez-Nogales JM, Fernández-Fernández E, Ruipérez V, Vila-Crespo J. Selective Wine Aroma Enhancement through Enzyme Hydrolysis of Glycosidic Precursors. Molecules 2023; 29:16. [PMID: 38202600 PMCID: PMC10779532 DOI: 10.3390/molecules29010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
Selective enhancement of wine aroma was achieved using a broad spectrum of exogenous glycosidases. Eight different enzyme preparations were added to Verdejo wine, resulting in an increase in the levels of varietal volatile compounds compared to the control wine after 15 days of treatment. The enzyme preparations studied were robust under winemaking conditions (sulfur dioxide, reducing sugars, and alcohol content), and no inhibition of β-glucosidase activity was observed. Significant differences were detected in four individual terpenes (α-terpineol, terpinen-4-ol, α-pinene, and citronellal) and benzyl alcohol in all the treated wines compared to the control wine, contributing to the final wine to varying degrees. In addition, a significant increase in the other aromatic compounds was observed, which showed different patterns depending on the enzyme preparation that was tested. The principal component analysis of the data revealed the possibility of modulating the different aromatic profiles of the final wines depending on the enzyme preparation used. Taking these results into account, enhancement of the floral, balsamic, and/or fruity notes of wines is possible by using a suitable commercial enzyme preparation.
Collapse
Affiliation(s)
- José Manuel Rodríguez-Nogales
- Food Technology Department, Higher Technical School of Agrarian Engineering of Palencia, University of Valladolid, Av. Madrid 50, 34004 Palencia, Spain;
| | - Encarnación Fernández-Fernández
- Food Technology Department, Higher Technical School of Agrarian Engineering of Palencia, University of Valladolid, Av. Madrid 50, 34004 Palencia, Spain;
| | - Violeta Ruipérez
- Microbiology Department, Higher Technical School of Agrarian Engineering of Palencia, University of Valladolid, Av. Madrid 50, 34004 Palencia, Spain; (V.R.); (J.V.-C.)
| | - Josefina Vila-Crespo
- Microbiology Department, Higher Technical School of Agrarian Engineering of Palencia, University of Valladolid, Av. Madrid 50, 34004 Palencia, Spain; (V.R.); (J.V.-C.)
| |
Collapse
|
19
|
Nicolescu CM, Bumbac M, Radulescu C, Buruleanu CL, Olteanu RL, Stanescu SG, Gorghiu LM, Serban BC, Buiu O. Phytochemical Statistical Mapping of Red Grape Varieties Cultivated in Romanian Organic and Conventional Vineyards. PLANTS (BASEL, SWITZERLAND) 2023; 12:4179. [PMID: 38140506 PMCID: PMC10747049 DOI: 10.3390/plants12244179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
Red grapes are rich in phytochemicals such as phenolics and flavonoids, which are strongly correlated with their antioxidant activity. Thus, grapes as-harvested and grape extracts, especially those obtained from their seeds and pulp, have been reported to have health benefits, and accordingly, grapes and their derivatives are considered potential functional food ingredients. The total phenolic content, total flavonoid content, and the antioxidant activity of skin, pulp, and seeds of four grape varieties grown both in conventional and organic vineyards were examined in this study. Phytochemical characteristics of one native Romanian variety, Feteasca Neagra, were compared with data measured for three red grape varieties more commonly cultivated worldwide (Merlot, Pinot Noir, and Muscat Hamburg). It was found that the seeds of the Pinot Noir variety grown in an organic system contained the highest total phenolics of 169.53 ± 7.32 mg gallic acid equivalents/g and the highest total flavonoid content of 388.25 ± 10.72 mg quercetin equivalents/g, values corresponding to high antioxidant activity (312.84 ± 12.81 mg ascorbic acid equivalents/g). The total flavonoid content in the hydroalcoholic extracts obtained from seeds of Pinot Noir (organic vineyard) was around 24.5-fold higher than that of the skin of Pinot Noir (conventional vineyard). Experiments showed that seeds of all four tested grape varieties are good sources of total flavonoids, not only of total phenolics. When referring to the organic vineyard, the skin and pulp grapes showed good results for the total phenolic content. The antioxidant activities of the hydroalcoholic extracts were well-correlated with the total phenolic content and total flavonoid content. Lower values of these parameters were found for extracts obtained from skin and pulp than for those obtained from seeds of the same grape variety regardless of the culture management system (organic/conventional). Data mining techniques such as regression analysis, principal component analysis, and clustering analysis were applied to establish the potential correlation between the phytochemical content and the antioxidant activities of the red grapes on the one hand, and grape variety, anatomical parts, and vineyard type (organic/conventional) on the other hand.
Collapse
Affiliation(s)
- Cristina Mihaela Nicolescu
- Institute of Multidisciplinary Research for Science Technology, Valahia University of Targoviste, 13 Sinaia Alley, 130004 Targoviste, Romania; (C.M.N.); (C.R.); (R.L.O.); (S.G.S.)
| | - Marius Bumbac
- Institute of Multidisciplinary Research for Science Technology, Valahia University of Targoviste, 13 Sinaia Alley, 130004 Targoviste, Romania; (C.M.N.); (C.R.); (R.L.O.); (S.G.S.)
- Faculty of Sciences and Arts, Valahia University of Targoviste, 13 Sinaia Alley, 130004 Targoviste, Romania;
| | - Cristiana Radulescu
- Institute of Multidisciplinary Research for Science Technology, Valahia University of Targoviste, 13 Sinaia Alley, 130004 Targoviste, Romania; (C.M.N.); (C.R.); (R.L.O.); (S.G.S.)
- Faculty of Sciences and Arts, Valahia University of Targoviste, 13 Sinaia Alley, 130004 Targoviste, Romania;
| | - Claudia Lavinia Buruleanu
- Faculty of Environmental Engineering and Food Science, Valahia University of Targoviste, 13 Sinaia Alley, 130004 Targoviste, Romania
| | - Radu Lucian Olteanu
- Institute of Multidisciplinary Research for Science Technology, Valahia University of Targoviste, 13 Sinaia Alley, 130004 Targoviste, Romania; (C.M.N.); (C.R.); (R.L.O.); (S.G.S.)
- Faculty of Sciences and Arts, Valahia University of Targoviste, 13 Sinaia Alley, 130004 Targoviste, Romania;
| | - Sorina Geanina Stanescu
- Institute of Multidisciplinary Research for Science Technology, Valahia University of Targoviste, 13 Sinaia Alley, 130004 Targoviste, Romania; (C.M.N.); (C.R.); (R.L.O.); (S.G.S.)
| | - Laura Monica Gorghiu
- Faculty of Sciences and Arts, Valahia University of Targoviste, 13 Sinaia Alley, 130004 Targoviste, Romania;
| | - Bogdan Catalin Serban
- Research Centre for Nanotechnologies and Carbon-Based Nanomaterials, National Institute for Research and Development in Microtechnologies—IMT Bucharest, 126 A Erou Iancu Nicolae Str., 077190 Voluntari, Romania; (B.C.S.); (O.B.)
| | - Octavian Buiu
- Research Centre for Nanotechnologies and Carbon-Based Nanomaterials, National Institute for Research and Development in Microtechnologies—IMT Bucharest, 126 A Erou Iancu Nicolae Str., 077190 Voluntari, Romania; (B.C.S.); (O.B.)
| |
Collapse
|
20
|
Wang H, Wang X, Yan A, Liu Z, Ren J, Xu H, Sun L. Metabolomic and transcriptomic integrated analysis revealed the decrease of monoterpenes accumulation in table grapes during long time low temperature storage. Food Res Int 2023; 174:113601. [PMID: 37986463 DOI: 10.1016/j.foodres.2023.113601] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 11/22/2023]
Abstract
Low temperature is the commonly used technique for maintaining the quality of table grapes during postharvest storage. However, this technique could strongly affect the aromatic flavor of fruit. Monoterpenes are the key compounds contributing to the Muscat aromas of grapes. The detailed information and molecular mechanisms underlying the changes in monoterpenes during postharvest low temperature storage have not been thoroughly characterized. In this study, the effects of low temperature storage on the free and bound monoterpene profiles in four cultivars of table grape were determined at both the transcriptomic and metabolomic levels. A total of 27 compounds in both free and bound forms were identified in the four cultivars and showed quantitative differences between the cultivars. Hierarchical cluster and principal component analysis indicated that the free and bound monoterpene profiles were remarkably affected by the low temperature storage. The monoterpenes in the same biosynthesis pathway were clustered together and showed similar evolution trends during low temperature storage. And the content of most of free monoterpenes underwent a rapid decline during low-temperature storage at a certain stage, but the time was different in 4 grape cultivars. Transcriptomic analysis revealed that the expression of DXS, HDR, GPPS and TPS genes involved in the monoterpene synthesis pathway were consistent with the changes in the accumulation of monoterpene compounds. While the expression of HMGS, HMGR genes in MVA pathway and branch genes GGPPS and FPPS were negatively correlated with the accumulation of monoterpenes. The findings provide new insights into the underlying mechanisms of the berry aroma flavor change during low temperature storage.
Collapse
Affiliation(s)
- Huiling Wang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, PR China
| | - Xiaoyue Wang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, PR China
| | - Ailing Yan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, PR China
| | - Zhenhua Liu
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing 100093, PR China
| | - Jiancheng Ren
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, PR China
| | - Haiying Xu
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, PR China; Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing 100093, PR China.
| | - Lei Sun
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, PR China.
| |
Collapse
|
21
|
Ban Z, Zhang S, Niu C, Liu L, Cao K, Li L, Wu Z, Wang L, Chen C, Zhu Y. Potential role of exogenous melatonin involved in postharvest quality maintenance of Vitis labrusca × vinifera 'Kyoho'. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6243-6251. [PMID: 37156727 DOI: 10.1002/jsfa.12694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Melatonin is an endogenous free radical scavenger with antioxidant activity that preserves the commercial value of postharvest fruits and delays fruit senescence. To explore the effect of exogenous melatonin on antioxidants and aroma volatile compounds of grapes (Vitis labrusca × vinifera 'Kyoho'), the grapes were treated with distilled water (control), 50 μmol L-1 of melatonin (M50), and 100 μmol L-1 of melatonin (M100) for 30 min and were then stored at 4 °C for 25 days. RESULTS Exogenous melatonin decreased the rachis browning index, the decay development, the weight loss rate, the berry abscission rate, and the respiration rate, promoted the accumulation of total phenolics and total flavonoids, and delayed the reduction of anthocyanins and total soluble solids. In volatile compounds, the accumulation of esters, aldehydes, and alcohols in grapes was promoted, and the terpenes content was reduced by exogenous melatonin. CONCLUSION Exogenous melatonin had potentially positive effects on the postharvest life and quality maintenance of grapes. These findings provide theoretical support for the application of melatonin in grape storage and preservation. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhaojun Ban
- Zhejiang Provincial Key Laboratory of Chemical and Biological Processing Technology of Farm Products, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Shuang Zhang
- Zhejiang Provincial Key Laboratory of Chemical and Biological Processing Technology of Farm Products, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Chenyu Niu
- Zhejiang Provincial Key Laboratory of Chemical and Biological Processing Technology of Farm Products, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Lingling Liu
- Zhejiang Provincial Key Laboratory of Chemical and Biological Processing Technology of Farm Products, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Kefeng Cao
- Zhejiang Provincial Key Laboratory of Chemical and Biological Processing Technology of Farm Products, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Li Li
- Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Zhengbao Wu
- Economic Forest Research Institute, Xinjiang Academy of Forestry Sciences, Urumqi, China
| | - Luyin Wang
- Aksu Youneng Agricultural Technology Co., Ltd, Aksu, China
| | - Cunkun Chen
- Institute of Agricultural Products Preservation and Processing Technology, National Engineering Technology Research Center for Preservation of Agriculture Product, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Yi Zhu
- Aksu Youneng Agricultural Technology Co., Ltd, Aksu, China
| |
Collapse
|
22
|
Wang WN, Qian YH, Liu RH, Liang T, Ding YT, Xu XL, Huang S, Fang YL, Ju YL. Effects of Table Grape Cultivars on Fruit Quality and Aroma Components. Foods 2023; 12:3371. [PMID: 37761080 PMCID: PMC10530201 DOI: 10.3390/foods12183371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
The basic physical and chemical qualities, nutrition, aroma components, and sensory evaluation of 17 varieties of table grapes were studied. The quality evaluation system of different table grape varieties was preliminarily determined. Our results show that the soluble solid content in Ruby Seedless was 21.17%, which was higher than that of other varieties. The black varieties Aishenmeigui and Sweet Sapphire had the highest total phenol content. Aishenmeigui had high levels of tannin and vitamin C. In addition, the aroma contents in Meixiangbao, Ruby Seedless, and Shine-Muscat were higher than those in other varieties. Manicure Finger and Ruby Seedless had higher levels of C6 compounds. Moreover, the "Kyoho" series of grape Meixiangbao, Sunmmer Black, Jumeigui, Hutai 8 hao, and Black Beet were high in ester content, while Muscat varieties, including Zaoheibao, Aishenmeigui, Jumeigui, and Shine-Muscat were rich in terpene substances. Ruby Seedless, Shine-Muscat, and Heibaladuo had higher comprehensive scores in sensory evaluation. Hence, the comprehensive quality of Shine-Muscat, Ruby Seedless, and Aishenmeigui was better. These results may serve as references for determining the quality differences between table grape varieties.
Collapse
Affiliation(s)
- Wan-Ni Wang
- College of Enology, Northwest A&F University, Yangling 712100, China; (W.-N.W.); (Y.-H.Q.); (R.-H.L.); (T.L.); (Y.-T.D.); (X.-L.X.); (Y.-L.F.)
| | - Yun-Hui Qian
- College of Enology, Northwest A&F University, Yangling 712100, China; (W.-N.W.); (Y.-H.Q.); (R.-H.L.); (T.L.); (Y.-T.D.); (X.-L.X.); (Y.-L.F.)
| | - Ruo-Han Liu
- College of Enology, Northwest A&F University, Yangling 712100, China; (W.-N.W.); (Y.-H.Q.); (R.-H.L.); (T.L.); (Y.-T.D.); (X.-L.X.); (Y.-L.F.)
| | - Tao Liang
- College of Enology, Northwest A&F University, Yangling 712100, China; (W.-N.W.); (Y.-H.Q.); (R.-H.L.); (T.L.); (Y.-T.D.); (X.-L.X.); (Y.-L.F.)
| | - Yin-Ting Ding
- College of Enology, Northwest A&F University, Yangling 712100, China; (W.-N.W.); (Y.-H.Q.); (R.-H.L.); (T.L.); (Y.-T.D.); (X.-L.X.); (Y.-L.F.)
| | - Xue-Lei Xu
- College of Enology, Northwest A&F University, Yangling 712100, China; (W.-N.W.); (Y.-H.Q.); (R.-H.L.); (T.L.); (Y.-T.D.); (X.-L.X.); (Y.-L.F.)
| | - Shan Huang
- Yangling Rural Economic Management Service Station, Yangling 712100, China;
| | - Yu-Lin Fang
- College of Enology, Northwest A&F University, Yangling 712100, China; (W.-N.W.); (Y.-H.Q.); (R.-H.L.); (T.L.); (Y.-T.D.); (X.-L.X.); (Y.-L.F.)
- Heyang Viti-viniculture Station, Northwest A&F University, Yangling 712100, China
| | - Yan-Lun Ju
- College of Enology, Northwest A&F University, Yangling 712100, China; (W.-N.W.); (Y.-H.Q.); (R.-H.L.); (T.L.); (Y.-T.D.); (X.-L.X.); (Y.-L.F.)
| |
Collapse
|
23
|
Zhang Y, Liu C, Liu X, Wang Z, Wang Y, Zhong GY, Li S, Dai Z, Liang Z, Fan P. Basic leucine zipper gene VvbZIP61 is expressed at a quantitative trait locus for high monoterpene content in grape berries. HORTICULTURE RESEARCH 2023; 10:uhad151. [PMID: 37701455 PMCID: PMC10493639 DOI: 10.1093/hr/uhad151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/26/2023] [Indexed: 09/14/2023]
Abstract
The widely appreciated muscat flavor of grapes and wine is mainly attributable to the monoterpenes that accumulate in ripe grape berries. To identify quantitative trait loci (QTL) for grape berry monoterpene content, an F1 mapping population was constructed by a cross between two grapevine genotypes, one with neutral aroma berries (cv. 'Beifeng') and the other with a pronounced muscat aroma (elite Vitis vinifera line '3-34'). A high-density genetic linkage map spanning 1563.7 cM was constructed using 3332 SNP markers that were assigned to 19 linkage groups. Monoterpenes were extracted from the berry of the F1 progeny, then identified and quantified by gas chromatography-mass spectrometry. Twelve stable QTLs associated with the amounts of 11 monoterpenes in berries were thus identified. In parallel, the levels of RNA in berries from 34 diverse cultivars were estimated by RNA sequencing and compared to the monoterpene content of the berries. The expression of five genes mapping to stable QTLs correlated well with the monoterpene content of berries. These genes, including the basic leucine zipper VvbZIP61 gene on chromosome 12, are therefore considered as potentially being involved in monoterpene metabolism. Overexpression of VvbZIP61 in Vitis amurensis callus through Agrobacterium-mediated transformation significantly increased the accumulation of several monoterpenes in the callus, including nerol, linalool, geranial, geraniol, β-myrcene, and D-limonene. It is hypothesized that VvbZIP61 expression acts to increase muscat flavor in grapes. These results advance our understanding of the genetic control of monoterpene biosynthesis in grapes and provide important information for the marker-assisted selection of aroma compounds in grape breeding.
Collapse
Affiliation(s)
- Yuyu Zhang
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cuixia Liu
- Centre for Special Economic Plant Studies, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, Guangxi, China
| | - Xianju Liu
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zemin Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yi Wang
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Gan-yuan Zhong
- Grape Genetics Research Unit, USDA-ARS, Geneva 14456, USA
| | - Shaohua Li
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Zhanwu Dai
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenchang Liang
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peige Fan
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
24
|
Lee SB. Quality Characteristics and Antioxidant Activities of Six Types of Korean White Wine. Foods 2023; 12:3246. [PMID: 37685179 PMCID: PMC10486741 DOI: 10.3390/foods12173246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The cultivation of European grape cultivars suitable for winemaking in Korea presents challenges due to factors such as climate, soil conditions, precipitation, and sunlight. Consequently, Korea has traditionally resorted to adding sugar to its wine production to counteract the low sugar content in Korean grapes, yielding lower-quality wines. However, recent success in the cultivation of five European grape cultivars and the development of the domestic grape cultivar Cheongsoo have increased the possibility of achieving high-quality Korean wines. This study aimed to explore the potential of European grape cultivars and Cheongsoo as wine grapes in Korea. This study also conducted sensory evaluation and analyzed the physicochemical properties of the grapes and wines, including antioxidant capacity and color. Despite originating from the same vineyard, the composition of grapes and wines, including volatile aromatic compounds, significantly differed among the grape cultivars. In particular, Vidal wine exhibited superior antioxidant capacity compared with other wines. Moreover, Cheongsoo wine showed higher levels of essential volatile aromatic compounds, such as monoterpenes, than other wines. Sensory evaluation of these two wines also revealed excellent results. In conclusion, these findings hold promise for enhancing the diversity of Korean white wine and fostering growth in the wine industry.
Collapse
Affiliation(s)
- Sae-Byuk Lee
- School of Food Science and Biotechnology, Kyungpook National University, 80 Daehakro, Daegu 41566, Republic of Korea; ; Tel.: +82-53-950-7749
- Institute of Fermentation Biotechnology, Kyungpook National University, 80 Daehakro, Daegu 41566, Republic of Korea
| |
Collapse
|
25
|
Garde-Cerdán T, González-Lázaro M, Marín-San Román S, Sáenz de Urturi I, Murillo-Peña R, Rubio-Bretón P, Pérez-Álvarez EP. Could foliar applications of methyl jasmonate and methyl jasmonate + urea improve must grape aroma composition? JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4813-4825. [PMID: 36905182 DOI: 10.1002/jsfa.12549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/15/2023] [Accepted: 03/11/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND Grape aromas are formed by a great number of volatile compounds. Methyl jasmonate (MeJ) and urea (Ur) foliar applications have been studied to improve grape quality, but their combined application has never been studied. RESULTS In both seasons, MeJ application enhanced terpenoids and C6 compounds synthesis, though decreased alcohols content. Moreover, MeJ + Ur treatment reduced benzenoids and alcohols and did not affect C13 -norisoprenoids content. However, there was no clear effect of these treatments on the rest of the volatile compounds. Multifactorial analysis showed a season effect on all volatile compounds, except terpenoids. Discriminant analysis showed a good separation among samples under treatment criterion. The great effect of MeJ treatment on terpenoids was probably due to this elicitor influencing their biosynthesis. CONCLUSION Season has a strong influence on grapes aromatic composition since it affects all volatile compound families except terpenoids. MeJ foliar application enhanced terpenoids, C13 -norisoprenoids and C6 compounds synthesis, whereas decreased alcohols content; however, MeJ + Ur foliar treatment did not affect C13 -norisoprenoids and C6 compounds, and decreased benzenoids and alcohols grape compounds. Therefore, no synergistic effect was observed between Ur and MeJ on grape volatile compounds biosynthesis. Foliar application of MeJ seems to be sufficient to improve the aromatic quality of grapes. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Teresa Garde-Cerdán
- Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja), Carretera de Burgos, km. 6, Logroño, La Rioja, 26007, Spain
| | - Miriam González-Lázaro
- Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja), Carretera de Burgos, km. 6, Logroño, La Rioja, 26007, Spain
| | - Sandra Marín-San Román
- Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja), Carretera de Burgos, km. 6, Logroño, La Rioja, 26007, Spain
| | - Itziar Sáenz de Urturi
- Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja), Carretera de Burgos, km. 6, Logroño, La Rioja, 26007, Spain
| | - Rebeca Murillo-Peña
- Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja), Carretera de Burgos, km. 6, Logroño, La Rioja, 26007, Spain
| | - Pilar Rubio-Bretón
- Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja), Carretera de Burgos, km. 6, Logroño, La Rioja, 26007, Spain
| | - Eva Pilar Pérez-Álvarez
- Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja), Carretera de Burgos, km. 6, Logroño, La Rioja, 26007, Spain
| |
Collapse
|
26
|
Guerrini S, Barbato D, Mangani S, Ganucci D, Buscioni G, Galli V, Triossi A, Granchi L. Management of in-Amphora "Trebbiano Toscano" Wine Production: Selection of Indigenous Saccharomyces cerevisiae Strains and Influence on the Phenolic and Sensory Profile. Foods 2023; 12:2372. [PMID: 37372582 DOI: 10.3390/foods12122372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
The use of earthenware amphorae in winemaking can give wines unique attributes enhancing their typicity. Therefore, in this study, spontaneous and inoculated in-amphora fermentations of Trebbiano Toscano grape must were monitored to assess the Saccharomyces cerevisiae strains occurring in each fermentation as well as the chemical characteristics of the wines. Strain typing via Interdelta analyses pointed out that the commercial starters did not dominate, showing 24% and 13% implantation percentages, and that 20 indigenous strains were present at different percentages, ranging from 2 to 20%, in inoculated and spontaneous fermentations. The assessment of the technical characteristics of the indigenous strains via fermentations at lab and pilot scale (20 L amphorae) and the sensory analysis of the experimental wines allowed for the selection of two indigenous strains to be used as starter cultures in comparison to a commercial strain in 300-L-amphorae vinifications in the cellar. The observed fermentative performances and sensory analysis of the experimental wines highlighted that one indigenous S. cerevisiae strain dominated the process and conferred distinctive sensory characteristics to the Trebbiano Toscano wine, demonstrating its effectiveness in managing the in-amphora fermentations. In addition, the results demonstrated the ability of amphorae to protect the polyphenolic compounds from oxidation during wine ageing. Indeed, the concentration of both hydroxycinnamic acids and flavonols decreased, with an average reduction of 30% and 14%, respectively, while hydroxybenzoic acids remained unchanged.
Collapse
Affiliation(s)
- Simona Guerrini
- FoodMicroTeam s.r.l., Academic Spin-Off of the University of Florence, via Santo Spirito, 14-50125 Florence, Italy
| | - Damiano Barbato
- FoodMicroTeam s.r.l., Academic Spin-Off of the University of Florence, via Santo Spirito, 14-50125 Florence, Italy
| | - Silvia Mangani
- FoodMicroTeam s.r.l., Academic Spin-Off of the University of Florence, via Santo Spirito, 14-50125 Florence, Italy
| | - Donatella Ganucci
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Via San Bonaventura, 13-50145 Florence, Italy
| | - Giacomo Buscioni
- FoodMicroTeam s.r.l., Academic Spin-Off of the University of Florence, via Santo Spirito, 14-50125 Florence, Italy
| | - Viola Galli
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Via San Bonaventura, 13-50145 Florence, Italy
| | | | - Lisa Granchi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Via San Bonaventura, 13-50145 Florence, Italy
| |
Collapse
|
27
|
Georgiadou EC, Mina M, Neoptolemou V, Koundouras S, D'Onofrio C, Bellincontro A, Mencarelli F, Fotopoulos V, Manganaris GA. The beneficial effect of leaf removal during fruit set on physiological, biochemical, and qualitative indices and volatile organic compound profile of the Cypriot reference cultivar 'Xynisteri'. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3776-3786. [PMID: 36226589 DOI: 10.1002/jsfa.12268] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND 'Xynisteri' is the reference Cypriot white cultivar that, despite its significant societal and economic impact, is poorly characterized regarding its qualitative properties, while scarce information exists regarding its aroma profile. In the current study, the effect of leaf removal during fruit set (BBCH 71) on 6-year cordon-trained, spur-pruned grapevines was assessed and an array of physiological, biochemical, and qualitative indices were monitored during successive developmental stages (BBCH 75, BBCH 85, BBCH 87, and BBCH 89). Grapes were additionally monitored for the volatile organic compounds (VOCs) profile during the advanced on-vine developmental stages (BBCH 85-BBCH 89) with the employment of gas chromatography-mass spectrometry (GC-MS), Fourier-transform near infrared (FT-NIR) spectra and electronic nose (E-nose) techniques. RESULTS Grape berries from the vines subjected to leaf removal were characterized by higher solid soluble sugars (SSC), titratable acidity (TA), tartaric acid, and ammonium nitrogen contents, while this was not the case for assimilable amino nitrogen (primary amino nitrogen). A total of 75 compounds were identified and quantified, including aliphatic alcohols, benzenic compounds, phenols, vanillins, monoterpenes, and C13 -norisoprenoids. Leaf removal led to enhanced amounts of glycosylated aroma compounds, mainly monoterpenes, and C13 -norisoprenoids. Chemometric analysis, used through FT-NIR and E-nose, showed that the aromatic patterns detected were well associated to the grape ripening trend and differences between leaf removal-treated and control grapes were detectable during fully ripe stage. CONCLUSION Leaf removal at fruit set resulted in an overall induction of secondary metabolism, with special reference to glycosylated aroma compounds, namely monoterpenes and C13 -norisoprenoids. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Egli C Georgiadou
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
- Kyperounda Winery, P. Photiades Group, Limassol, Cyprus
| | - Minas Mina
- Kyperounda Winery, P. Photiades Group, Limassol, Cyprus
| | - Varnavas Neoptolemou
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - Stefanos Koundouras
- Laboratory of Viticulture, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Claudio D'Onofrio
- Department of Agriculture, Food and Environment Science, University of Pisa, Pisa, Italy
- Nutraceuticals and Food for Health - Nutrafood, University of Pisa, Pisa, Italy
| | - Andrea Bellincontro
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF) - Postharvest Laboratory, University of Tuscia, Viterbo, Italy
| | - Fabio Mencarelli
- Department of Agriculture, Food and Environment Science, University of Pisa, Pisa, Italy
- Nutraceuticals and Food for Health - Nutrafood, University of Pisa, Pisa, Italy
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - George A Manganaris
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
28
|
Li J, Ma T, Bao S, Yin D, Ge Q, Li C, Fang Y, Sun X. Suitable crop loading: An effective method to improve "Shine Muscat" grape quality. Food Chem 2023; 424:136451. [PMID: 37267652 DOI: 10.1016/j.foodchem.2023.136451] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/03/2023] [Accepted: 05/21/2023] [Indexed: 06/04/2023]
Abstract
Berry thinning was applied to control crop load of "Shine Muscat" grape variety. Primary and secondary metabolites released during berries development were monitored, and the correlation between physicochemical parameters and core aroma compounds was analyzed. Results revealed a significant increase in single-berry weight and sugar-acid ratio of berries under low crop load conditions. Furthermore, phenolic content and antioxidant activity under low crop load were significantly higher than those of the other groups. Grapes with low crop loads also exhibited better aroma characteristics and higher sensory scores than those of the other groups, chiefly due to significantly increased terpene and C13-norisoprenoid contents and substantially decreased C6 compound and aldehyde contents. Moreover, correlation analysis revealed total soluble solid accumulation was positively correlated to terpene accumulation, while hexanal, 2-hexanal, (E)-2-hexanal, and (E)-2-octenal were positively correlated with titratable acidity content. Thus, better grape quality could be achieved by precisely controlling berry crop load.
Collapse
Affiliation(s)
- Jianing Li
- College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Eastern Foot of Helan Mountain Wine Station, Northwest A&F University, Yangling 712100, China
| | - Tingting Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Shihan Bao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Dingze Yin
- College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Eastern Foot of Helan Mountain Wine Station, Northwest A&F University, Yangling 712100, China
| | - Qian Ge
- College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Eastern Foot of Helan Mountain Wine Station, Northwest A&F University, Yangling 712100, China; Quality Standards and Testing Institute of Agricultural Technology, Ningxia Academy of Agricultural Sciences, Yinchuan 750002, China
| | - Caihong Li
- Quality Standards and Testing Institute of Agricultural Technology, Ningxia Academy of Agricultural Sciences, Yinchuan 750002, China
| | - Yulin Fang
- College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Eastern Foot of Helan Mountain Wine Station, Northwest A&F University, Yangling 712100, China.
| | - Xiangyu Sun
- College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Eastern Foot of Helan Mountain Wine Station, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
29
|
Sun Q, He L, Sun L, Xu HY, Fu YQ, Sun ZY, Zhu BQ, Duan CQ, Pan QH. Identification of SNP loci and candidate genes genetically controlling norisoprenoids in grape berry based on genome-wide association study. FRONTIERS IN PLANT SCIENCE 2023; 14:1142139. [PMID: 36938056 PMCID: PMC10014734 DOI: 10.3389/fpls.2023.1142139] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Obtaining new grapevine varieties with unique aromas has been a long-standing goal of breeders. Norisoprenoids are of particular interest to wine producers and researchers, as these compounds are responsible for the important varietal aromas in wine, characterized by a complex floral and fruity smell, and are likely present in all grape varieties. However, the single-nucleotide polymorphism (SNP) loci and candidate genes genetically controlling the norisoprenoid content in grape berry remain unknown. To this end, in this study, we investigated 13 norisoprenoid traits across two years in an F1 population consisting of 149 individuals from a hybrid of Vitis vinifera L. cv. Muscat Alexandria and V. vinifera L. cv. Christmas Rose. Based on 568,953 SNP markers, genome-wide association analysis revealed that 27 candidate SNP loci belonging to 18 genes were significantly associated with the concentrations of norisoprenoid components in grape berry. Among them, 13 SNPs were confirmed in a grapevine germplasm population comprising 97 varieties, including two non-synonymous mutations SNPs within the VvDXS1 and VvGGPPS genes, respectively in the isoprenoid metabolic pathway. Genotype analysis showed that the grapevine individuals with the heterozygous genotype C/T at chr5:2987350 of VvGGPPS accumulated higher average levels of 6-methyl-5-hepten-2-one and β-cyclocitral than those with the homozygous genotype C/C. Furthermore, VvGGPPS was highly expressed in individuals with high norisoprenoids concentrations. Transient overexpression of VvGGPPS in the leaves of Vitis quinquangularis and tobacco resulted in an increase in norisoprenoid concentrations. These findings indicate the importance of VvGGPPS in the genetic control of norisoprenoids in grape berries, serving as a potential molecular breeding target for aroma.
Collapse
Affiliation(s)
- Qi Sun
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Lei He
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Lei Sun
- Beijing Academy of Forestry and Pomology Sciences, Beijing, China
| | - Hai-Ying Xu
- Beijing Academy of Forestry and Pomology Sciences, Beijing, China
| | - Ya-Qun Fu
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zheng-Yang Sun
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Bao-Qing Zhu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Chang-Qing Duan
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Qiu-Hong Pan
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
30
|
Selli S, Perestrelo R, Kelebek H, Sevindik O, Travaglia F, Coïsson JD, Câmara JS, Bordiga M. Impact of Japanese beetles (Popillia japonica Newman) on the chemical composition of two grape varieties (Nebbiolo and Erbaluce) grown in Italy. Food Res Int 2023; 165:112575. [PMID: 36869554 DOI: 10.1016/j.foodres.2023.112575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/12/2022] [Accepted: 02/01/2023] [Indexed: 02/09/2023]
Abstract
The effect of Japanese beetles (P. japonica) on critical quality indicators of Nebbiolo and Erbaluce grapes, specifically on their phenolic and volatile composition, was assessed. Adult beetle symptoms include extended skeletonization of leaves. Leaves are frequently left with their mid-vein intact but, when severely damaged, quickly turn brown. However, the plant tends to recover by generating a new leaf apparatus and the grapes reach ripeness. It emerged that the phenolic content of grapes produced by plants attacked by P. japonica (396 and 550 mg/kg, Nebbiolo and Erbaluce respectively) was generally higher when compared to healthy plants (266 and 188 mg/kg, Nebbiolo and Erbaluce respectively). Similarly, in the (red) Nebbiolo cultivar, the anthocyanin content was significantly lower in grapes produced with healthy plants. The influence of P. japonica on the volatile composition of Nebbiolo and Erbaluce grapes showed a total volatile fraction of affected grapes (433 and 439 µg/kg, respectively) significantly higher than the one related to healthy grapes (391 and 386 µg/kg, respectively). In response to the attack by P. japonica the plant significantly increases the content of some volatile compounds such as hexanal, (E)-2-hexenal, 1-hexanol, (E)-2-hexen-1-ol and phenyl ethyl alcohol.
Collapse
Affiliation(s)
- Serkan Selli
- Department of Food Engineering, Faculty of Agriculture, Cukurova University, 01330 Adana, Turkey
| | - Rosa Perestrelo
- CQM-UMa, Centro de Química da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Hasim Kelebek
- Department of Food Engineering, Faculty of Engineering, Adana AlparslanTurkes Science and Technology University, Adana, Turkey
| | - Onur Sevindik
- Department of Food Engineering, Faculty of Engineering, Adana AlparslanTurkes Science and Technology University, Adana, Turkey; Cukurova University Central Research Laboratory (CUMERLAB), 01330 Adana, Turkey
| | - Fabiano Travaglia
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale "A. Avogadro". Largo Donegani 2, 28100 Novara, Italy
| | - Jean Daniel Coïsson
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale "A. Avogadro". Largo Donegani 2, 28100 Novara, Italy
| | - José S Câmara
- CQM-UMa, Centro de Química da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Matteo Bordiga
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale "A. Avogadro". Largo Donegani 2, 28100 Novara, Italy.
| |
Collapse
|
31
|
Picard M, Oulieu C, Nonier MF, Vivas N, Vivas N. The role of oak wood in the mint and floral notes of whisky: identification of common terpenoids by aromatic fractionation. JOURNAL OF THE INSTITUTE OF BREWING 2023. [DOI: 10.58430/jib.v129i1.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Understanding the development of the whisky aroma during maturation in oak casks provides a rational basis for improvements in product quality. While oak wood is an important contributor to the spicy, toasted, and smoky aromatic notes, limited studies have focused on its role in floral and mint notes of matured whiskies. However, achieving consistent flavour profiles remains difficult since the odorant molecules are mostly present in low concentration. A semi-preparative ultra-high-performance liquid chromatography (UHPLC) method was applied to whisky and oak wood extracts and used to isolate fractions characterised by floral and mint aromas. To investigate the contribution of terpenoids in these floral and fresh fragrances, a similar analytical process was applied on solutions of targeted reference compounds. This approach, coupled to gas-chromatography/mass-spectrometry analyses, indicated the presence of terpenoids in the fractions of interest as well as selective separation according to chemical structure (i.e., monoterpenes, monoterpenols, ketone monoterpenes, and C13-norisoprenoids). This approach resulted in the detection of respectively, ten and seven new terpenoids in whisky and oak wood. To the best of our knowledge, piperitone, mintlactones, and
Collapse
|
32
|
Bosman RN, Lashbrooke JG. Grapevine mono- and sesquiterpenes: Genetics, metabolism, and ecophysiology. FRONTIERS IN PLANT SCIENCE 2023; 14:1111392. [PMID: 36818850 PMCID: PMC9936147 DOI: 10.3389/fpls.2023.1111392] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Mono- and sesquiterpenes are volatile organic compounds which play crucial roles in human perception of table grape and wine flavour and aroma, and as such their biosynthesis has received significant attention. Here, the biosynthesis of mono- and sesquiterpenes in grapevine is reviewed, with a specific focus on the metabolic pathways which lead to formation of these compounds, and the characterised genetic variation underlying modulation of this metabolism. The bottlenecks for terpene precursor formation in the cytosol and plastid are understood to be the HMG-CoA reductase (HMGR) and 1-deoxy-D-xylylose-5-phosphate synthase (DXS) enzymes, respectively, and lead to the formation of prenyldiphosphate precursors. The functional plasticity of the terpene synthase enzymes which act on the prenyldiphosphate precursors allows for the massive variation in observed terpene product accumulation. This diversity is further enhanced in grapevine by significant duplication of genes coding for structurally diverse terpene synthases. Relatively minor nucleotide variations are sufficient to influence both product and substrate specificity of terpene synthase genes, with these variations impacting cultivar-specific aroma profiles. While the importance of these compounds in terms of grape quality is well documented, they also play several interesting roles in the grapevine's ecophysiological interaction with its environment. Mono- and sesquiterpenes are involved in attraction of pollinators, agents of seed dispersal and herbivores, defence against fungal infection, promotion of mutualistic rhizobacteria interaction, and are elevated in conditions of high light radiation. The ever-increasing grapevine genome sequence data will potentially allow for future breeders and biotechnologists to tailor the aroma profiles of novel grapevine cultivars through exploitation of the significant genetic variation observed in terpene synthase genes.
Collapse
|
33
|
Yang Y, Frank S, Wei X, Wang X, Li Y, Steinhaus M, Tao Y. Molecular Rearrangement of Four Typical Grape Free Terpenes in the Wine Environment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:721-728. [PMID: 36592095 DOI: 10.1021/acs.jafc.2c07576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In order to analyze the molecular rearrangement of terpenes in wine during aging, the changes in linalool, α-terpineol, nerol, and geraniol in model wine were investigated in the dark at low temperature for 90 days. Headspace-gas chromatograph-mass spectrometer/olfactometry was used for qualitative and relative quantitation of terpenes. Quantum mechanical calculation was used to analyze the Gibbs free energy. The results showed that nerol was converted into d-limonene, terpinolene, linalool, and α-terpineol. Geraniol was converted into β-ocimene, terpinolene, and linalool. Linalool was converted into terpinolene. The conversion rate of nerol to terpinolene was the highest with 5.94%. α-Terpineol was not converted spontaneously into other terpenes due to its lowest Gibbs free energy, indicating that the cyclization and isomerization could occur spontaneously through an exotherm reaction. However, the dehydroxylation of linalool, nerol, and geraniol required an energy source.
Collapse
Affiliation(s)
- Yu Yang
- College of Enology, Northwest A&F University, 22 Xinong Road, 712100 Yangling, Shaanxi, China
| | - Stephanie Frank
- Leibniz Institute for Food Systems Biology at the Technical University of Munich (Leibniz-LSB@TUM), Lise-Meitner-Straße 34, 85354 Freising, Germany
| | - Xibu Wei
- College of Enology, Northwest A&F University, 22 Xinong Road, 712100 Yangling, Shaanxi, China
| | - Xingjie Wang
- Leibniz Institute for Food Systems Biology at the Technical University of Munich (Leibniz-LSB@TUM), Lise-Meitner-Straße 34, 85354 Freising, Germany
| | - Yunkui Li
- College of Enology, Northwest A&F University, 22 Xinong Road, 712100 Yangling, Shaanxi, China
- Shaanxi Key Laboratory of Viti-Viniculture, 22 Xinong Road, 712100 Yangling, Shaanxi, China
| | - Martin Steinhaus
- Leibniz Institute for Food Systems Biology at the Technical University of Munich (Leibniz-LSB@TUM), Lise-Meitner-Straße 34, 85354 Freising, Germany
| | - Yongsheng Tao
- College of Enology, Northwest A&F University, 22 Xinong Road, 712100 Yangling, Shaanxi, China
- Shaanxi Key Laboratory of Viti-Viniculture, 22 Xinong Road, 712100 Yangling, Shaanxi, China
| |
Collapse
|
34
|
Capturing the fungal community associated with conventional and organic Trebbiano Abruzzese grapes and its influence on wine characteristics. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102382] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
35
|
Metabolomics Integrated with HPLC-MS Reveals the Crucial Antioxidant Compounds of Muscadine Wine. Antioxidants (Basel) 2022; 12:antiox12010055. [PMID: 36670917 PMCID: PMC9854500 DOI: 10.3390/antiox12010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Wine is a kind of beverage with a variety of compounds beneficial to human health, which makes it popular all over the world and it contributes importantly to economics. The excessive oxidation of wine has always been a major problem in wine production and storage. Unlike traditional wines which are made from Eurasian grapes, wines made from muscadine grapes (Muscadinia rotundifolia Michx.) can maintain their sensory qualities under natural oxidation conditions for relatively long periods of time despite the insight mechanisms still being unclear. In this study, two muscadine wines, Carlos (CAL) and Noble (NOB), and two traditional wines, Chardonnay (CH) and Marselan (MAS), were chosen for comparison of their compositional alteration during oxidation, in order to analyze the principal components contributing to the antioxidant characteristics of muscadine wines. The DPPH, ORAC, color intensity, and total phenolic content changes during the natural oxidation process were analyzed. Six core significantly changed metabolites (SCMs, avicularin, beta-lactose, delphinidin-3-O-glucoside, ellagic acid, myricetin, and 4-methylcatechol [p < 0.05]) related to the oxidation process were determined. In addition, HPLC−MS was also used to identify pyrogallol which is a unique antioxidant compound in muscadine wine. The present work aims to reveal the crucial antioxidant compounds of muscadine wine and provide valuable information and a new platform for future research on wine oxidation.
Collapse
|
36
|
Yue X, Ju Y, Zhang H, Wang Z, Xu H, Zhang Z. Integrated transcriptomic and metabolomic analysis reveals the changes in monoterpene compounds during the development of Muscat Hamburg (Vitis vinifera L.) grape berries. Food Res Int 2022; 162:112065. [DOI: 10.1016/j.foodres.2022.112065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/12/2022] [Accepted: 10/16/2022] [Indexed: 11/29/2022]
|
37
|
Improving Aroma Complexity with Hanseniaspora spp.: Terpenes, Acetate Esters, and Safranal. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8110654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hanseniaspora vineae and Hanseniaspora opuntiae are apiculate yeasts normally found on the skins of ripe grapes and at the beginning of alcoholic fermentation. Several studies have reported that these species can provide interesting sensory characteristics to wine by contributing high levels of acetate esters and can increase the mouthfeel and body of wines. The present work aims to evaluate the use of these two species sequentially with Saccharomyces cerevisiae to improve the sensory profile of Albillo Mayor white wines. The fermentations were carried out in triplicate in 150 L stainless steel barrels. At the end of the alcoholic fermentation polysaccharides, colour, and an extensive study of the aromatic profiles were measured. Results showed up to 1.55 times higher content of 2-phenylethanol in H. opuntiae wines and up to three times higher concentration of fermentative esters in H. vineae wines than in the controls. Interestingly, it should be noted that the compound safranal was identified only in the H. vineae wines. These results indicated that the species studied are an interesting bio-tool to improve the aromatic profile of Albillo Mayor white wines. A novel non-targeted NMR-based metabolomics approach is proposed as a tool for optimising wine productions with standard and sequential fermentation schemes using apiculate yeast strains due to its discriminant capacity to differentiate fine features between wine samples from the identical geographical origin and grape variety but diverse fermentations or vintages.
Collapse
|
38
|
Shecori S, Kher MM, Tyagi K, Lerno L, Netzer Y, Lichter A, Ebeler SE, Drori E. A Field Collection of Indigenous Grapevines as a Valuable Repository for Applied Research. PLANTS (BASEL, SWITZERLAND) 2022; 11:2563. [PMID: 36235429 PMCID: PMC9570891 DOI: 10.3390/plants11192563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 12/01/2022]
Abstract
The grapevine is an economically important plant, with a historical connection to the development of human culture. Currently, over 6000 accessions are known as individual grapevine varieties, some of which are important to national heritage, valuable for current viticultural practices, and as genetic resources to maintain plasticity under changing climatic conditions, environmental sustainability, and market demands. Recently, the diversity of cultivated grapevines has declined significantly, due to the increased focus of global wine industries on a few major cultivars. Moreover, due to biotic and abiotic stresses, the wild V. vinifera germplasm's genetic diversity has declined, with some varieties on the verge of extinction. Vitis germplasm conservation can be achieved via either in situ (e.g., protected areas) or Ex situ (e.g., field collections, seed banks, and tissue culture collections) methods. This study aims to highlight the importance of Vitis field bank collections. We demonstrate the research done in the Israeli indigenous Vitis vinifera collection. The multi-layer analysis of the varieties enabled the identification of drought stress-resistant varieties, and suggested a mechanism for this resistance through noting the dramatic phenological differences in foliage development between resistant and sensitive varieties. In addition, we show a general characterization of the varieties via major grape characteristics, including bunch and berry shape, as well as their possible utilization based on their aromatic and phenolic profiles.
Collapse
Affiliation(s)
- Shani Shecori
- Chemical Engineering Department, Ariel University, Ariel 40700, Israel
| | | | - Kamal Tyagi
- Horticulture Section, SIPS, Cornell University, Ithaca, NY 14853, USA
| | - Larry Lerno
- Department of Viticulture and Enology, University of California, Davis, CA 95616, USA
| | - Yishai Netzer
- Chemical Engineering Department, Ariel University, Ariel 40700, Israel
- Eastern Regional R&D Center, Ariel 40700, Israel
| | - Amnon Lichter
- Department of Postharvest Science, The Volcani Institute, Rishon LeZion 7528809, Israel
| | - Susan E. Ebeler
- Department of Viticulture and Enology, University of California, Davis, CA 95616, USA
| | - Elyashiv Drori
- Chemical Engineering Department, Ariel University, Ariel 40700, Israel
- Eastern Regional R&D Center, Ariel 40700, Israel
| |
Collapse
|
39
|
Kaya O, Incesu M, Ates F, Keskin N, Verdugo-Vásquez N, Gutiérrez-Gamboa G. Study of Volatile Organic Compounds of Two Table Grapes (cv. Italia and Bronx Seedless) along Ripening in Vines Established in the Aegean Region (Turkey). PLANTS 2022; 11:plants11151935. [PMID: 35893640 PMCID: PMC9329889 DOI: 10.3390/plants11151935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022]
Abstract
(1) Background: Italia is a seeded grape variety widely cultivated in the Aegean Region in Turkey, whereas Bronx Seedless is a seedless grape variety, preferred by consumers due to its pink berries and interesting flavor. The goal was to study the volatile compounds of these table grapes throughout berry ripeness. (2) Methods: The volatile compounds were analyzed by GC-MS in six different phenological stages (3) Results: Bronx Seedless grapes presented a higher content of seven terpenes, three aldehydes, one fatty acid, three alcohols, one C6 compound, total aldehydes and total alcohols, and a lower content of eleven terpenes, one fatty acid, four esters, one alcohol, four C6 compounds and its total content than Italia table grapes. The concentration of most of the volatile compounds analyzed increased from “begin of berry touch” to “berries ripe for harvest” stages. Terpenes content in both varieties at harvest was lower than 1.0 mg L−1. β-ionone presented the highest odor activity value (OAV) in both varieties. Bronx Seedless grapes presented higher OAV for (Z)-3-hexenal and cedrol, and lower hexanal to (E)-2-hexenal ratio than Italia grapes. (4) Conclusions: Both varieties could be classified as neutral aromatical varieties and it is probable that to achieve a better aromatic quality, Bronx Seedless should be harvested later than Italia.
Collapse
Affiliation(s)
- Ozkan Kaya
- Erzincan Horticultural Research Institute, Republic of Turkey Ministry of Agriculture and Forestry, Erzincan 24060, Turkey
- Correspondence: (O.K.); (G.G.-G.); Tel.: +90-553-4701308 (O.K.); +56-9-79942130 (G.G.-G.)
| | - Melek Incesu
- Department of Food Engineering, Faculty of Agriculture, Ataturk University, Erzurum 25100, Turkey;
| | - Fadime Ates
- Manisa Viticulture Research Institute, Republic of Turkey Ministry of Agriculture and Forestry, Manisa 45125, Turkey;
| | - Nurhan Keskin
- Faculty of Agriculture, Department of Horticulture, Van Yüzüncü Yıl University, Van 65090, Turkey;
| | - Nicolás Verdugo-Vásquez
- Centro de Investigación Intihuasi, Instituto de Investigaciones Agropecuarias INIA, Colina San Joaquín s/n, La Serena 1700000, Chile;
| | - Gastón Gutiérrez-Gamboa
- Escuela de Agronomía, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Temuco 4780000, Chile
- Correspondence: (O.K.); (G.G.-G.); Tel.: +90-553-4701308 (O.K.); +56-9-79942130 (G.G.-G.)
| |
Collapse
|
40
|
Awale M, Liu C, Kwasniewski MT. Generating Novel Aroma Phenotypes Using Commercial Wine Samples to Characterize an F1 Population. FRONTIERS IN PLANT SCIENCE 2022; 13:894492. [PMID: 35800611 PMCID: PMC9253817 DOI: 10.3389/fpls.2022.894492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Due to their disease tolerance and cold hardy nature, interspecific hybrid grapes are widely grown in the Midwestern and Northeastern United States, with additional interest worldwide in the face of increased abiotic and biotic stresses from climate change. However, the aroma profile of these hybrids is unique and generally less popular in comparison with Vitis vinifera grapes. One of the challenges in any phenotyping project is first defining the traits of interest. As wine quality was our ultimate metric of interest, the aroma profile of commercial wines produced from the parents of a breeding population (Vitis aestivalis derived 'Norton' x V. vinifera. 'Cabernet Sauvignon') was first assessed for traits of interest. We investigated 11 commercial wines each of Norton, a popular hybrid in Missouri and Cabernet Sauvignon (Cab) for their volatile profiles using the more inclusive metabolomics-based workflow. We then analyzed 21 Norton and 21 Cab grapes from different sites and vintages for the free and bound volatile compounds using HS-SPME-GCMS to validate the differences in wine. The GCMS data was processed using XCMS software to find features that were different between the two cultivars. The two cultivars were found to have differences in their volatile profiles, with 304 features different for wine volatiles, 418 features different for free volatiles, and 302 features different for bound volatiles at 0.05 significance level and with at least a 1.5-fold change between the two cultivars. Those features were used to identify several odor-active compounds in both grapes and wines, including β-damascenone, β-ionone, eugenol, 1,1,6-trimethyl-1,2-dihydronaphthalene (TDN), and methyl salicylate. Some of the identified compounds were higher in Norton than Cab; however, several features were higher in Cab. Using the identified aroma compounds as markers, we phenotyped an F1 population of Norton and Cab. The F1 population was found to be segregating for many aroma compounds with some genotypes demonstrating an even higher concentration of aroma volatiles than either of the parents. Ultimately, using commercially available samples paired with untargeted analysis proved to be an efficient way to determine phenotypes of interest for further analysis and may offer an easy way to choose potential parents with desired traits for breeding.
Collapse
Affiliation(s)
- Mani Awale
- Department of Food Science, The Pennsylvania State University, University Park, PA, United States
- Grape and Wine Institute, University of Missouri, Columbia, MO, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Connie Liu
- Grape and Wine Institute, University of Missouri, Columbia, MO, United States
| | - Misha T. Kwasniewski
- Department of Food Science, The Pennsylvania State University, University Park, PA, United States
- Grape and Wine Institute, University of Missouri, Columbia, MO, United States
| |
Collapse
|
41
|
Geng K, Li D, Zhang J, Zhang Y, Zhan Z, Wang Z. Evolution of Volatile Aroma Compounds and Amino Acids in Cabernet Gernischt Grape Berries (Vitis vinifera L.): Comparison of Different Training Systems for Mechanical Soil Burial. Foods 2022; 11:foods11111568. [PMID: 35681317 PMCID: PMC9180044 DOI: 10.3390/foods11111568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 11/25/2022] Open
Abstract
Soil burial is a survival strategy for grapevines that can safely overwinter in north-western regions of China. A suitable training system was beneficial for soil burial to provide winter protection. Moreover, the training system can also significantly affect fruit quality during the development of grape berries, such as primary and secondary metabolites. In this study, four-year-old Cabernet Gernischt grapevines were used as experimental material and exposed to four training systems, including the Ningxia traditional vertical trunk (control, CK); the gobelet (T1); single guyot (T2); slant trunk with vertical shoot positioning (STVSP) (T3). The results showed that total soluble solid total phenol content was 12.69%, 57% higher under T3 training systems than in the control, and T3 alleviated the canopy density, leading to improving the leaf photosynthetic efficiency gas chromatography-mass spectrometry (GC-MS) assay used to detect the aroma compounds. The results indicated that the T3 training system enhanced the accumulation of alcohols, carbonyl compounds, C6/C9 and esters, which account for the largest proportion of volatile compounds, and the qRT-PCR reveals that VvEcar, Vvter, VvCCD1, and VvLis were raised under T3 at the transcriptional level. Moreover, T3 contributes to most free amino acid synthesis. Additionally, the PCA reveals the correlation of free amino acids under four training systems, which reflected the mostly amino acid related to T3, and thus, we could speculate that T3 enhances the overall aroma. These results may lead to new strategies to select a new, short trunk training system to achieve mechanized buried soil, to prevent cold and produce high-quality wine in this area.
Collapse
Affiliation(s)
- Kangqi Geng
- School of Life Sciences, Ningxia University, Yinchuan 750021, China; (K.G.); (Y.Z.); (Z.Z.)
| | - Dongmei Li
- College of Agriculture, Ningxia University, Yinchuan 750021, China; (D.L.); (J.Z.)
| | - Jing Zhang
- College of Agriculture, Ningxia University, Yinchuan 750021, China; (D.L.); (J.Z.)
| | - Yanxia Zhang
- School of Life Sciences, Ningxia University, Yinchuan 750021, China; (K.G.); (Y.Z.); (Z.Z.)
| | - Zhennan Zhan
- School of Life Sciences, Ningxia University, Yinchuan 750021, China; (K.G.); (Y.Z.); (Z.Z.)
| | - Zhenping Wang
- School of Life Sciences, Ningxia University, Yinchuan 750021, China; (K.G.); (Y.Z.); (Z.Z.)
- College of Agriculture, Ningxia University, Yinchuan 750021, China; (D.L.); (J.Z.)
- Correspondence: ; Tel.: +86-13895677292
| |
Collapse
|
42
|
Díaz-Fernández Á, Díaz-Losada E, Cortés-Diéguez S. Approach to the Chemotaxonomic Characterization of Traditional Cultivation Grape Varieties through Their Varietal Aroma Profile. Foods 2022; 11:foods11101427. [PMID: 35626997 PMCID: PMC9140530 DOI: 10.3390/foods11101427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/06/2022] [Accepted: 05/13/2022] [Indexed: 01/27/2023] Open
Abstract
In this study, the aroma profile of 12 minority grape varieties of Vitis vinifera L., included in the ‘Caiño group’, was defined along three vintages by solid phase microextraction followed by the gas chromatography–mass spectrometry method (SPME-GC-MS). Principal objectives were to assess the aromatic profile as a useful fingerprint to differentiate them, recover traditionally cultivated grape varieties for the differentiation of an important wine-growing area and discover their chemotaxonomic potential. In each variety, free and bound volatile profile was carried out by grouping varietal compounds into thirteen families. In total, 339 volatile compounds were identified, 230 as free forms and 205 as aromatic precursors. Remarkable quantitative differences were observed between aromatic profiles for terpenes in the free fraction and for C6 compounds, alcohols, sesquiterpenes and phenols in the glycosidic fraction. Principal component analysis based on their aromatic profile highlights a good differentiation between varieties and suggests a certain degree of aromatic chemotaxonomic proximity between previously known parental varieties, ‘Caiño Blanco’ with respect to ‘Caiño Bravo’ and ‘Albariño’. This study shows the preliminary results of a large research project involving a larger number of grape varieties and thus a broader spectrum of genetic relationships between them.
Collapse
Affiliation(s)
- Ángela Díaz-Fernández
- Estación de Viticultura e Enoloxía de Galicia-AGACAL, Ponte San Clodio s/n, 32428 Ourense, Spain; (Á.D.-F.); (E.D.-L.)
- Edificio Campus Auga, Biotecnología Industrial e Ingeniería Ambiental, BiotecnIA, Campus Sur, Universidad de Vigo, 32004 Ourense, Spain
| | - Emilia Díaz-Losada
- Estación de Viticultura e Enoloxía de Galicia-AGACAL, Ponte San Clodio s/n, 32428 Ourense, Spain; (Á.D.-F.); (E.D.-L.)
| | - Sandra Cortés-Diéguez
- Edificio Campus Auga, Biotecnología Industrial e Ingeniería Ambiental, BiotecnIA, Campus Sur, Universidad de Vigo, 32004 Ourense, Spain
- Correspondence:
| |
Collapse
|
43
|
Effects of Fruit Bagging Treatment with Different Types of Bags on the Contents of Phenolics and Monoterpenes in Muscat-Flavored Table Grapes. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The effects of fruit bagging treatments with seven different types of bags on the physicochemical characteristics of three table grape cultivars: RuiduZaohong (RDZH), RuiduHongyu (RDHY), and RuiduHongmei (RDHM) were investigated. Headspace-solid-phase micro-extraction combined with gas chromatography mass spectrometry (HS-SPME-GC-MS) was used to determine the compositions of monoterpenes in the fruit. The results showed that the total soluble solids in RDZH and RDHY fruits treated with the transparent, mesh, yellow, white, and blue bags were significantly higher than the control. The sugar–acid ratio of RDZH was optimized under the transparent bag and yellow bag treatments, and both significantly increased the sugar-acid ratio of RDHY and RDHM. Additionally, mesh bag, transparent bag, and white bag improved the contents of phenolics to a certain extent. The most abundant volatiles were linalool, geraniol, β-myrcene, β-cis-ocimene, and β-trans-ocimene, of which linalool was the main aroma component. The least squares discriminant analysis results showed that linalool, 4-terpineol, and terpinolen could be used to distinguish the main contribution of different bagging treatments for RDZH. Trans-isogeraniol, α-terpineol, and terpinolen could be used for RDHY. Trans-isogeraniol, β-myrcene, and terpinolen could be used for RDHM. In conclusion, transparent and white bags promoted the accumulation of phenolics and monoterpenes while pink and blue bags showed inhibitory effects.
Collapse
|
44
|
Boido E, Fariña L, Carrau F, Cozzolino D, Dellacassa E. Application of near-infrared spectroscopy/artificial neural network to quantify glycosylated norisoprenoids in Tannat grapes. Food Chem 2022; 387:132927. [PMID: 35421644 DOI: 10.1016/j.foodchem.2022.132927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/04/2022] [Accepted: 04/07/2022] [Indexed: 12/15/2022]
Abstract
Grape variety, vinification, and ageing are factors conditioning the aroma of a wine, with volatile secondary metabolites responsible for the so-called grape varietal character. Particularly, grape glycosylated norisoprenoids are mostly responsible for the sensory profile of Tannat wines, making relevant the use of fast instrumental tools to evaluate their concentration, allow classifying grapes and defining the optimum maturity for harvest. NIR spectroscopy is a fast, non-destructive technique, which requires minimal sample preparation. However, its quantitative applications need chemometric models for interpretation. In this work, a NIR-ANN calibration was developed to quantify norisoprenoids in Vitis vinifera cv. Tannat grapes during maturation and harvesting. Glycosidated norisoprenoids were determined by GC-MS. The ANN adjustments showed better performance than linear models such as PLS, while the best calibration was obtained by homogenising grape samples when comparing to grape juice; making possible to fit a model with an error of 146 μg/kg.
Collapse
Affiliation(s)
- Eduardo Boido
- Área de Enología y Biotecnología de las Fermentaciones, Facultad de Química, UdelaR, Uruguay.
| | - Laura Fariña
- Área de Enología y Biotecnología de las Fermentaciones, Facultad de Química, UdelaR, Uruguay
| | - Francisco Carrau
- Área de Enología y Biotecnología de las Fermentaciones, Facultad de Química, UdelaR, Uruguay
| | - Daniel Cozzolino
- Centre for Nutrition and Food Sciences, The University of Queensland, Australia
| | | |
Collapse
|
45
|
Wang S, Zhang Q, Zhao P, Ma Z, Zhang J, Ma W, Wang X. Investigating the effect of three phenolic fractions on the volatility of floral, fruity, and aged aromas by HS-SPME-GC-MS and NMR in model wine. Food Chem X 2022; 13:100281. [PMID: 35498990 PMCID: PMC9040039 DOI: 10.1016/j.fochx.2022.100281] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 02/07/2023] Open
Abstract
In this study, the volatility of three typical wine aromas in model wine was investigated by HS-SPME-GC-MS, NMR, and sensory evaluation as influenced by different concentrations and structural properties of phenolics. Results showed that three phenolic fractions (phenolic acids, monomeric/oligomeric and polymeric procyanidins) exhibited different matrix effects on floral, fruity, and aged aromas perception. Physico-chemical and sensory analyses together indicated that all fractions reduced the perceived intensity of fruity and aged aroma attributes, and displayed stronger retention effects on fruity aromas at higher mDP and concentrations. Monomeric/oligomeric and polymeric procyanidins promoted highly hydrophobic floral aromas release, whereas inhibiting the volatility of low hydrophobic fruity aromas. NMR confirmed that the reduction in the volatility of rose oxide, ethyl butanoate and whiskey lactone was attributed to interactions with epicatechin. This study aims to provide new thoughts and theoretical support for wine aroma regulation during winemaking by reconstructing the phenolic composition in wine.
Collapse
Affiliation(s)
- Shengnan Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Shaanxi 710119, PR China
| | - Qianting Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Shaanxi 710119, PR China
| | - Pengtao Zhao
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Shaanxi 710119, PR China.,Engineering Research Center of High Value Utilization of Western China Fruit Resources, Ministry of Education, Shaanxi Normal University, Shaanxi 710119, PR China
| | - Zeqiang Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Junxiang Zhang
- School of Food and Wine, Ningxia University, Yinchuan 750021, PR China
| | - Wen Ma
- School of Food and Wine, Ningxia University, Yinchuan 750021, PR China
| | - Xiaoyu Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Shaanxi 710119, PR China.,Engineering Research Center of High Value Utilization of Western China Fruit Resources, Ministry of Education, Shaanxi Normal University, Shaanxi 710119, PR China
| |
Collapse
|
46
|
Pisaniello L, Watson F, Siebert T, Francis L, Hixson JL. The Varietal Influence of Flavour Precursors from Grape Marc on Monoterpene and C 13-Norisoprenoid Profiles in Wine as Determined by Membrane-Assisted Solvent Extraction (MASE) GC-MS. Molecules 2022; 27:2046. [PMID: 35408445 PMCID: PMC9000514 DOI: 10.3390/molecules27072046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 11/20/2022] Open
Abstract
The winemaking by-product grape marc (syn. pomace) contains significant quantities of latent flavour in the form of flavour precursors which can be extracted and used to modulate the volatile composition of wine via chemical hydrolysis. Varietal differences in grapes are widely known with respect to their monoterpene content, and this work aimed to extend this knowledge into differences due to cultivar in volatiles derived from marc precursors following wine-like storage conditions. Marc extracts were produced from floral and non-floral grape lots on a laboratory-scale and from Muscat Gordo Blanco marc on a winery -scale, added to a base white wine for storage over five to six months, before being assessed using a newly developed membrane-assisted solvent extraction gas chromatography-mass spectrometry (GC-MS) method. The geraniol glucoside content of the marc extracts was higher than that of juices produced from each grape lot. In all wines with added marc extract from a floral variety, geraniol glucoside concentration increased by around 150-200%, with increases also observed for non-floral varieties. The relative volatile profile from extracts of the floral varieties was similar but had varied absolute concentrations. In summary, while varietally pure extracts would provide the greatest control over flavour outcomes when used in winemaking, aggregated marc parcels from floral cultivars may provide a mechanism to simplify the production logistics of latent flavour extracts for use in the wine sector.
Collapse
Affiliation(s)
| | | | | | | | - Josh L. Hixson
- The Australian Wine Research Institute, P.O. Box 197, Glen Osmond, SA 5064, Australia; (L.P.); (F.W.); (T.S.); (L.F.)
| |
Collapse
|
47
|
Enzymatic Characterization of Purified β-Glucosidase from Non-Saccharomyces Yeasts and Application on Chardonnay Aging. Foods 2022; 11:foods11060852. [PMID: 35327274 PMCID: PMC8950599 DOI: 10.3390/foods11060852] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/04/2023] Open
Abstract
The application of β-glucosidase from non-Saccharomyces yeasts to improve wine aroma has been widely explored. However, few enzymes are active under the severe conditions of wine aging (high ethanol concentration, low temperature, and low pH). Therefore, the application of β-glucosidase in wine aging needs further research. In this study, the β-glucosidases Mg-βgl and Hu-βgl extracted from Meyerozyma guilliermondii NM218 and Hanseniaspora uvarum BF345 were purified and used in young Chardonnay wines aged for 50 days. The enzyme activity of the two enzymes was measured. The effects of the two enzymes and a commercial β-glucosidase (An-βgl) on the volatile composition and sensory quality of the wine were also determined. The results showed that Mg-βgl and Hu-βgl had high specific activity of 1.95 U/mg and 2.11 U/mg, respectively, maintaining the activity of 70–80% at 20 °C, pH of 3.0–4.0, and 15% ethanol, corresponding to wine aging conditions. Analysis of volatiles with GC-MS showed a 65–70% increase in total terpenoids and new detection of C13-norisoprenoids when the wines were treated with the three β-glucosidases. In addition, wines treated with Mg-βgl and Hu-βgl had more hexanol, phenylethanol, ethyl octanoate, ethyl heptanoate, and ethyl caprate than wines treated without and with An-βgl. In sensory analysis, the judges showed a greater preference for Hu-βgl-treated wines, to which they attributed pleasant sweet, floral, honey, pomelo, and banana aromas. The results of this study not only offer a way to improve flavor complexity in wine but also provide a reference for the use of other edible sources of β-glucosidase in wine aging.
Collapse
|
48
|
Effect of Seawater Irrigation on the Sugars, Organic Acids, and Volatiles in ‘Reliance’ Grape. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8030248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ongoing climate change in recent decades exacerbated the decline in agricultural water use, and seawater irrigation could feasibly alleviate the shortage of water resources, which restricts viticulture in some countries. However, studies on the effects of seawater irrigation on grape volatiles are limited. Herein, ‘Reliance’ grapevines were irrigated with diluted seawater (10% concentrations) in the field since the pea-size berry stage (S1), stage EL 32 (S2), and the pre-veraison period (S3) every seven days. Results showed irrigation with seawater significantly increased the sugar content and decreased the organic acids when compared with the control berries. Seawater irrigation did not induce secondary soil salinization, and it enhanced the volatiles in the fatty acid and isoprene pathways without affecting the amino acid pathway aroma. More terpenes were found in seawater-treated berries, including citronellol, β-myrcene, α-terpineol, and trans-rose oxide. Gene profiling by RT-qPCR analysis revealed that VvLOXA could be the primary gene in C6 volatile biosynthesis altered by the seawater. Moreover, seawater irrigation during the pea-size period had the best effect on fruit quality. This work adds to our understanding of the effect of seawater irrigation on grape aroma quality and provides a sufficient basis for the utilization of seawater in vineyards.
Collapse
|
49
|
De Rosso M, Lonzarich V, Navarini L, Flamini R. Identification of new glycosidic terpenols and norisoprenoids (aroma precursors) in C. arabica L. green coffee by using a high-resolution mass spectrometry database developed in grape metabolomics. Curr Res Food Sci 2022; 5:336-344. [PMID: 35198992 PMCID: PMC8841958 DOI: 10.1016/j.crfs.2022.01.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 11/18/2022] Open
Abstract
Grape aroma precursors have been extensively studied and many glycosidically-bound terpenols and C13-norisoprenoids were identified. Instead, these compounds were scarcely investigated in green Coffea arabica where just few glycosidic compounds were identified so far. By resorting to knowledge of glycoside aroma precursors in grape and the possibility to identify their structures using a high-resolution mass spectrometry database constructed for grape metabolomics, targeted investigation of glycoside precursors in green C. arabica from different geographical origins, was performed. High linalool hexose-pentose was found in all the investigated samples and hexosyl-pentoside derivatives of geraniol, linalooloxide and another linalool isomer, were identified. Moreover, two putative norisoprenoid glycosides were characterized. β-Damascenone was detected in the volatile fraction of the examined C. arabica coffees only after acid addition, however no signals of β-damascenone glycosides, were found. Findings suggests that this important aroma compound could form by hydrolysis and dehydration of a putative 3-hydroxy-β-damascone glycoside precursor identified for the first time in coffee. Aglycones released during the roasting process contribute to enrich the coffee aroma with their positive sensory notes and the identification of these glycosides can contribute to disclose the coffee biology including biochemical, physiological and genetic aspects. Glycoside aroma precursors in green C. arabica coffee are poorly known. A grape database was used to investigate aroma precursors in green C. arabica. Geraniol and linalooloxide glycosides were identified for first time in coffee. Linalool hexosyl-pentoside was particularly abundant in samples from Ethiopia. Putative 3-hydroxy-β-damascone and vomifoliol glycosides were characterized.
Collapse
Affiliation(s)
- Mirko De Rosso
- Council for Agricultural Research and Economics – Viticulture & Oenology (CREA-VE), Viale XXVIII Aprile 26, 31015, Conegliano (TV), Italy
| | - Valentina Lonzarich
- Aromalab illycaffè S.p.A., AREA Science Park, Padriciano 99, 34149, Trieste, Italy
| | | | - Riccardo Flamini
- Council for Agricultural Research and Economics – Viticulture & Oenology (CREA-VE), Viale XXVIII Aprile 26, 31015, Conegliano (TV), Italy
- Corresponding author.
| |
Collapse
|
50
|
Feng MX, Jin XQ, Yao H, Zhu TY, Guo SH, Li S, Lei YL, Xing ZG, Zhao XH, Xu TF, Meng JF. Evolution of volatile profile and aroma potential of 'Gold Finger' table grapes during berry ripening. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:291-298. [PMID: 34096061 DOI: 10.1002/jsfa.11357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/09/2021] [Accepted: 06/06/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND 'Gold Finger' is a grape cultivar with a finger-like shape and a milk flavor. The process by which its aroma profile evolves during ripening is unclear. Thus, changes in the free and bound volatile compounds present in 'Gold Finger' grapes during ripening were investigated using headspace sampling-solid-phase microextraction-gas chromatography-mass spectroscopy (HS-SPME-GC-MS). RESULTS A total of 83 volatile aroma components were identified in the grapes, with aldehydes, esters, acids, and alcohols being the main components. The total aroma compound content exhibited significant differences between the bound and free forms. The total content of bound volatile compounds did not change significantly during fruit development, although the free aroma compound content was significantly higher than the bound content. The total content of free aldehydes, free alcohols, bound norisoprenoids, and ketones gradually increased for up to 70 days after flowering (DAF), while the total free ester, terpene, and acid content decreased. The characteristic aroma compounds of 'Gold Finger' grapes were identified as hexanal, (E)-2-hexenal, and ethyl hexanoate. CONCLUSIONS These results give a foundation for the further development of 'Gold Finger' grapes and provide a theoretical basis for the selection and breeding of novel aromatic grape varieties. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ming-Xin Feng
- Shaanxi Engineering Research Center for Viti-Viniculture, College of Enology, Northwest A&F University, Yangling, China
| | - Xu-Qiao Jin
- Shaanxi Engineering Research Center for Viti-Viniculture, College of Enology, Northwest A&F University, Yangling, China
| | - Heng Yao
- Shaanxi Engineering Research Center for Viti-Viniculture, College of Enology, Northwest A&F University, Yangling, China
| | - Tong-Yao Zhu
- Shaanxi Engineering Research Center for Viti-Viniculture, College of Enology, Northwest A&F University, Yangling, China
| | - Shui-Huan Guo
- Shaanxi Engineering Research Center for Viti-Viniculture, College of Enology, Northwest A&F University, Yangling, China
| | - Shuai Li
- Shaanxi Engineering Research Center for Viti-Viniculture, College of Enology, Northwest A&F University, Yangling, China
| | - Yu-Lu Lei
- Shaanxi Engineering Research Center for Viti-Viniculture, College of Enology, Northwest A&F University, Yangling, China
| | - Zhi-Gan Xing
- Shaanxi Engineering Research Center for Viti-Viniculture, College of Enology, Northwest A&F University, Yangling, China
| | - Xian-Hua Zhao
- College of Life Sciences and Enology, Taishan University, Taian, China
| | - Teng-Fei Xu
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Jiang-Fei Meng
- Shaanxi Engineering Research Center for Viti-Viniculture, College of Enology, Northwest A&F University, Yangling, China
- Heyang Experimental and Demonstrational Stations for Grape, Northwest A&F University, Heyang, China
| |
Collapse
|