1
|
Reyes-Quiroz ME, Alba G, Sáenz J, Geniz I, Jiménez J, Martín-Nieto J, Santa-María C, Sobrino F. Platelet-activating factor and hydrogen peroxide exert a dual modulatory effect on the transcription of LXRα and its target genes in human neutrophils. Int Immunopharmacol 2016; 38:357-66. [DOI: 10.1016/j.intimp.2016.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 04/29/2016] [Accepted: 05/03/2016] [Indexed: 11/25/2022]
|
2
|
Challenges and Strategies for Proteome Analysis of the Interaction of Human Pathogenic Fungi with Host Immune Cells. Proteomes 2015; 3:467-495. [PMID: 28248281 PMCID: PMC5217390 DOI: 10.3390/proteomes3040467] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/23/2015] [Accepted: 12/08/2015] [Indexed: 12/17/2022] Open
Abstract
Opportunistic human pathogenic fungi including the saprotrophic mold Aspergillus fumigatus and the human commensal Candida albicans can cause severe fungal infections in immunocompromised or critically ill patients. The first line of defense against opportunistic fungal pathogens is the innate immune system. Phagocytes such as macrophages, neutrophils and dendritic cells are an important pillar of the innate immune response and have evolved versatile defense strategies against microbial pathogens. On the other hand, human-pathogenic fungi have sophisticated virulence strategies to counteract the innate immune defense. In this context, proteomic approaches can provide deeper insights into the molecular mechanisms of the interaction of host immune cells with fungal pathogens. This is crucial for the identification of both diagnostic biomarkers for fungal infections and therapeutic targets. Studying host-fungal interactions at the protein level is a challenging endeavor, yet there are few studies that have been undertaken. This review draws attention to proteomic techniques and their application to fungal pathogens and to challenges, difficulties, and limitations that may arise in the course of simultaneous dual proteome analysis of host immune cells interacting with diverse morphotypes of fungal pathogens. On this basis, we discuss strategies to overcome these multifaceted experimental and analytical challenges including the viability of immune cells during co-cultivation, the increased and heterogeneous protein complexity of the host proteome dynamically interacting with the fungal proteome, and the demands on normalization strategies in terms of relative quantitative proteome analysis.
Collapse
|
3
|
Exosome release following activation of the dendritic cell immunoreceptor: A potential role in HIV-1 pathogenesis. Virology 2015; 484:103-112. [DOI: 10.1016/j.virol.2015.05.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 02/27/2015] [Accepted: 05/13/2015] [Indexed: 01/26/2023]
|
4
|
Reyes-Quiroz ME, Alba G, Saenz J, Santa-María C, Geniz I, Jiménez J, Ramírez R, Martín-Nieto J, Pintado E, Sobrino F. Oleic acid modulates mRNA expression of liver X receptor (LXR) and its target genes ABCA1 and SREBP1c in human neutrophils. Eur J Nutr 2014; 53:1707-17. [PMID: 24722912 DOI: 10.1007/s00394-014-0677-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 02/19/2014] [Indexed: 01/04/2023]
Abstract
PURPOSE Regulation of liver X receptors (LXRs) is essential for cholesterol homeostasis and inflammation. The present study was conducted to determine whether oleic acid (OA) could regulate mRNA expression of LXRα and LXRα-regulated genes and to assess the potential promotion of oxidative stress by OA in neutrophils. METHODS Human neutrophils were treated with OA at different doses and LXR target gene expression, oxidative stress production, lipid efflux and inflammation state were analyzed. RESULTS We describe that mRNA synthesis of both LXRα and ABCA1 (a reverse cholesterol transporter) was induced by OA in human neutrophils. This fatty acid enhanced the effects of LXR ligands on ABCA1 and LXR expression, but it decreased the mRNA levels of sterol regulatory element-binding protein 1c (a transcription factor that regulates the synthesis of triglycerides). Although OA elicited a slight oxidative stress in the short term (15-30 min) in neutrophils, it is unlikely that this is relevant for the modulation of transcription in our experimental conditions, which involve longer incubation time (i.e., 6 h). Of physiological importance is our finding that OA depresses intracellular lipid levels and that markers of inflammation, such as ERK1/2 and p38 mitogen-activated protein kinase phosphorylation, were decreased by OA treatment. In addition, 200 μM OA reduced the migration of human neutrophils, another marker of the inflammatory state. However, OA did not affect lipid peroxidation induced by pro-oxidant agents. CONCLUSIONS This work presents for the first time evidence that human neutrophils are highly sensitive to OA and provides novel data in support of a protective role of this monounsaturated acid against the activation of neutrophils during inflammation.
Collapse
Affiliation(s)
- María Edith Reyes-Quiroz
- Departamento de Bioquímica Médica y Biología Molecular, Facultad de Medicina, Universidad de Sevilla, Avda. Sánchez Pizjuán 4, 41009, Sevilla, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Reyes-Quiroz ME, Alba G, Santa-María C, Saenz J, Geniz I, Jiménez J, Ramírez R, Martín-Nieto J, Pintado E, Sobrino F. Platelet-activating factor downregulates the expression of liver X receptor-α and its target genes in human neutrophils. FEBS J 2014; 281:970-82. [PMID: 24289152 DOI: 10.1111/febs.12662] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 10/22/2013] [Accepted: 11/22/2013] [Indexed: 01/11/2023]
Abstract
Liver X receptors (LXRs) are ligand-activated members of the nuclear receptor superfamily that regulate the expression of genes involved in lipid metabolism and inflammation, although their role in inflammation and immunity is less well known. It has been reported that oxysterols/LXRs may act as anti-inflammatory molecules, although opposite actions have also been reported. In this study, we investigated the effect of platelet-activating factor (PAF), a proinflammatory molecule, on LXRα signalling in human neutrophils. We found that PAF exerted an inhibitory effect on mRNA expression of TO901317-induced LXRα, ATP-binding cassette transporter A1, ATP-binding cassette transporter G1, and sterol response element binding protein 1c. This negative action was mediated by the PAF receptor, and was dependent on the release of reactive oxygen species elicited by PAF, as it was enhanced by pro-oxidant treatment and reversed by antioxidants. Current data also support the idea that PAF induces phosphorylation of the LXRα molecule in an extracellular signal-regulated kinase 1/2-mediated fashion. These results suggest that a possible mechanism by which PAF exerts its proinflammatory effect is through the downregulation of LXRα and its related genes, which supports the notion that LXRα ligands exert a modulatory role in the neutrophil-mediated inflammatory response.
Collapse
Affiliation(s)
- María E Reyes-Quiroz
- Departamento de Bioquímica Médica y Biología Molecular, Universidad de Sevilla, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Alba G, Reyes ME, Santa-María C, Ramírez R, Geniz I, Jiménez J, Martín-Nieto J, Pintado E, Sobrino F. Transcription of liver X receptor is down-regulated by 15-deoxy-Δ(12,14)-prostaglandin J(2) through oxidative stress in human neutrophils. PLoS One 2012; 7:e42195. [PMID: 23115616 PMCID: PMC3480349 DOI: 10.1371/journal.pone.0042195] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 07/04/2012] [Indexed: 01/04/2023] Open
Abstract
Liver X receptors (LXRs) are ligand-activated transcription factors of the nuclear receptor superfamily. They play important roles in controlling cholesterol homeostasis and as regulators of inflammatory gene expression and innate immunity, by blunting the induction of classical pro-inflammatory genes. However, opposite data have also been reported on the consequences of LXR activation by oxysterols, resulting in the specific production of potent pro-inflammatory cytokines and reactive oxygen species (ROS). The effect of the inflammatory state on the expression of LXRs has not been studied in human cells, and constitutes the main aim of the present work. Our data show that when human neutrophils are triggered with synthetic ligands, the synthesis of LXRα mRNA became activated together with transcription of the LXR target genes ABCA1, ABCG1 and SREBP1c. An inflammatory mediator, 15-deoxy-Δ12,14-prostaglandin J2 (15dPGJ2), hindered T0901317-promoted induction of LXRα mRNA expression together with transcription of its target genes in both neutrophils and human macrophages. This down-regulatory effect was dependent on the release of reactive oxygen species elicited by 15dPGJ2, since it was enhanced by pro-oxidant treatment and reversed by antioxidants, and was also mediated by ERK1/2 activation. Present data also support that the 15dPGJ2-induced serine phosphorylation of the LXRα molecule is mediated by ERK1/2. These results allow to postulate that down-regulation of LXR cellular levels by pro-inflammatory stimuli might be involved in the development of different vascular diseases, such as atherosclerosis.
Collapse
Affiliation(s)
- Gonzalo Alba
- Departamento de Bioquímica Médica y Biología Molecular, Universidad de Sevilla, Sevilla, Spain
| | - María Edith Reyes
- Departamento de Bioquímica Médica y Biología Molecular, Universidad de Sevilla, Sevilla, Spain
| | - Consuelo Santa-María
- Departamento de Bioquímica y Biología Molecular, Universidad de Sevilla, Sevilla, Spain
| | - Remedios Ramírez
- Departamento de Bioquímica Médica y Biología Molecular, Universidad de Sevilla, Sevilla, Spain
| | - Isabel Geniz
- Distrito Sanitario Sevilla Norte, Servicio Andaluz de Salud, Sevilla, Spain
| | - Juan Jiménez
- Departamento de Bioquímica Médica y Biología Molecular, Universidad de Sevilla, Sevilla, Spain
| | - José Martín-Nieto
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Elízabeth Pintado
- Departamento de Bioquímica Médica y Biología Molecular, Universidad de Sevilla, Sevilla, Spain
| | - Francisco Sobrino
- Departamento de Bioquímica Médica y Biología Molecular, Universidad de Sevilla, Sevilla, Spain
- * E-mail:
| |
Collapse
|
7
|
Alba G, Santa-María C, Reyes-Quiroz ME, El Bekay R, Geniz I, Martín-Nieto J, Pintado E, Sobrino F. Calcineurin expression and activity is regulated by the intracellular redox status and under hypertension in human neutrophils. J Endocrinol 2012; 214:399-408. [PMID: 22739212 DOI: 10.1530/joe-12-0106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Calcineurin (protein phosphatase 2B) (CN) comprises a family of serine/threonine phosphatases that play a pivotal role in signal transduction cascades in a variety of cells, including neutrophils. Angiotensin II (Ang II) increases both activity and de novo synthesis of CN in human neutrophils. This study focuses on the role that intracellular redox status plays in the induction of CN activity by Ang II. Both de novo synthesis of CN and activity increase promoted by Ang II were downregulated when cells were treated with L-buthionine-(S,R)-sulfoximine, an inhibitor of synthesis of the antioxidant glutathione. We have also investigated the effect of pyrrolidine dithiocarbamate and phenazine methosulfate, which are antioxidant and oxidant compounds, respectively, and concluded that the intracellular redox status of neutrophils is highly critical for Ang II-induced increase of CN expression and activity. Results obtained in neutrophils from hypertensive patients were very similar to those obtained in these cells on treatment with Ang II. We have also addressed the possible functional implication of CN activation in the development of hypertension. Present findings indicate that downregulation of hemoxygenase-1 expression in neutrophils from hypertensive subjects is likely mediated by CN, which acts by hindering translocation to the nucleus of the transcription factor NRF2. These data support and extend our previous results and those from other authors on modulation of CN expression and activity levels by the intracellular redox status.
Collapse
Affiliation(s)
- Gonzalo Alba
- Departamento de Bioquímica Médica y Biología Molecular, Facultad de Medicina and Departamento de Bioquímica y Biología Molecular, Universidad de Sevilla, Avenida Sánchez Pizjuán 4, E-41009 Sevilla, Spain
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Fu SL, Pierre J, Smith-Norowitz TA, Hagler M, Bowne W, Pincus MR, Mueller CM, Zenilman ME, Bluth MH. Immunoglobulin E antibodies from pancreatic cancer patients mediate antibody-dependent cell-mediated cytotoxicity against pancreatic cancer cells. Clin Exp Immunol 2009; 153:401-9. [PMID: 18803764 DOI: 10.1111/j.1365-2249.2008.03726.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In addition to allergy and parasitic infections, immunoglobulin E (IgE) has been shown recently to possess anti-viral and anti-cancer effects. We investigated serum levels of IgE, its low-affinity receptor, soluble CD23 (sCD23) in patients with pancreatic cancer and the effect of IgE against pancreatic cancer cells. Twelve patients were evaluated for pancreatic cancer by imaging and confirmed by biopsy. Fifteen healthy volunteers served as controls. Serum Igs (IgG, IgM, IgA, IgE) and sCD23 levels were determined (enzyme-linked immunosorbent assay, nephelometry) and the presence of cancer-specific IgE was assessed (fluorescence microscopy, Western blot). IgE anti-cancer activity was determined by antibody-dependent cell-mediated cytotoxicity (ADCC). Serum levels of IgE and sCD23 were elevated significantly in patients with pancreatic cancer versus controls, whereas no differences were observed in other Ig isotypes (IgG, IgM, IgA). Flow cytometry and immunofluorescence microscopy demonstrated similar presence of IgG and IgE pancreatic cancer Igs. However, Western blot analysis indicated differences in IgG and IgE antigen-specific antibodies; IgE antibody recognized a 50 kD protein. ADCC studies demonstrated that serum and purified IgE-mediated cytotoxicity against pancreatic cancer cells, effects which were reversed with anti-IgE neutralizing antibody and IgE depletion (immunoaffinity); greater cytotoxicity was observed in patient serum when compared with healthy controls. These data suggest that IgE and sCD23 may serve as useful biomarkers for patients with pancreatic cancer and may be important in the immune response to this disease in that IgE-directed therapy may help to direct treatment.
Collapse
Affiliation(s)
- S L Fu
- Department of Surgery, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Marois L, Vaillancourt M, Marois S, Proulx S, Paré G, Rollet-Labelle E, Naccache PH. The ubiquitin ligase c-Cbl down-regulates FcgammaRIIa activation in human neutrophils. THE JOURNAL OF IMMUNOLOGY 2009; 182:2374-84. [PMID: 19201892 DOI: 10.4049/jimmunol.0801420] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Little is known about the mechanisms that arrest FcgammaRIIa signaling in human neutrophils once engaged by immune complexes or opsonized pathogens. In our previous studies, we observed a loss of immunoreactivity of Abs directed against FcgammaRIIa following its cross-linking. In this study, we report on the mechanisms involved in this event. A stimulated internalization of FcgammaRIIa leading to the down-regulation of its surface expression was observed by flow cytometry and confocal microscopy. Immunoprecipitation of the receptor showed that FcgammaRIIa is ubiquitinated after stimulation. MG132 and clasto-lactacystin beta-lactone inhibited the loss of immunoreactivity of FcgammaRIIa, suggesting that this receptor was down-regulated via the proteasomal pathway. The E3 ubiquitin ligase c-Cbl was found to translocate from the cytosol to the plasma membrane following receptor cross-linking. Furthermore, c-Cbl was recruited to the same subset of high-density, detergent-resistant membrane fractions as stimulated FcgammaRIIa itself. Silencing the expression of c-Cbl by small interfering RNA decreased FcgammaRIIa ubiquitination and prevented its degradation without affecting the internalisation process. It also prolonged the stimulation of the tyrosine phosphorylation response to the cross-linking of the receptor. We conclude that c-Cbl mediates the ubiquitination of stimulated FcgammaRIIa and thereby contributes to the termination of FcgammaRIIa signaling via its proteasomal degradation, thus leading to the down-regulation of neutrophil signalisation and function (phagocytosis) through this receptor.
Collapse
Affiliation(s)
- Louis Marois
- Centre de recherche en rhumatologie et immunologie, Centre de recherche du Centre hospitalier universitaire de Québec, Department of Medicine, Faculty of Medicine, Laval University, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
10
|
Cantin R, Diou J, Bélanger D, Tremblay AM, Gilbert C. Discrimination between exosomes and HIV-1: purification of both vesicles from cell-free supernatants. J Immunol Methods 2008; 338:21-30. [PMID: 18675270 DOI: 10.1016/j.jim.2008.07.007] [Citation(s) in RCA: 245] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 06/02/2008] [Accepted: 07/01/2008] [Indexed: 01/02/2023]
Abstract
Although enveloped retroviruses bud from the cell surface of T lymphocytes, they use the endocytic pathway and the internal membrane of multivesicular bodies for their assembly and release from macrophages and dendritic cells (DCs). Exosomes, physiological nanoparticles produced by hematopoietic cells, egress from this same pathway and are similar to retroviruses in terms of size, density, the molecules they incorporate and their ability to activate immune cells. Retroviruses are therefore likely to contaminate in vitro preparations of exosomes and vice versa and sucrose gradients are inefficient at separating them. However, we have found that their sedimentation velocities in an iodixanol (Optiprep) velocity gradient are sufficiently different to allow separation and purification of both vesicles. Using acetylcholinesterase as an exosome marker, we demonstrate that Optiprep velocity gradients are very efficient in separating exosomes from HIV-1 particles produced on 293T cells, primary CD4(+) T cells, macrophages or DCs, with exosomes collecting at 8.4-12% iodixanol and HIV-1 at 15.6%. We also show that immunodepletion with an anti-acetylcholinesterase antibody rapidly produces highly purified preparations of HIV-1 or exosomes. These findings have applications in fundamental research on exosomes and/or AIDS, as well as in clinical applications where exosomes are involved, more specifically in tumour therapy or in gene therapy using exosomes generated from DCs genetically modified by transfection with virus.
Collapse
Affiliation(s)
- Réjean Cantin
- Centre de recherche en infectiologie, Faculty of Medicine, Laval University, Québec, Canada
| | | | | | | | | |
Collapse
|
11
|
Shaharabany M, Holtzman EJ, Mayan H, Hirschberg K, Seger R, Farfel Z. Distinct pathways for the involvement of WNK4 in the signaling of hypertonicity and EGF. FEBS J 2008; 275:1631-42. [DOI: 10.1111/j.1742-4658.2008.06318.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Popa-Nita O, Rollet-Labelle E, Thibault N, Gilbert C, Bourgoin SG, Naccache PH. Crystal-induced neutrophil activation. IX. Syk-dependent activation of class Ia phosphatidylinositol 3-kinase. J Leukoc Biol 2007; 82:763-73. [PMID: 17535983 DOI: 10.1189/jlb.0307174] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The deposition of monosodium urate (MSU) crystals in the joints of humans leads to an extremely acute, inflammatory reaction, commonly known as gout, characterized by a massive infiltration of neutrophils. Direct interactions of MSU crystals with human neutrophils and inflammatory mediators are crucial to the induction and perpetuation of gout attacks. The intracellular signaling events initiated by the physical interaction between MSU crystals and neutrophils depend on the activation of specific tyrosine kinases (Src and Syk, in particular). In addition, PI-3Ks may be involved. The present study investigates the involvement of the PI-3K family in the mediation of the responses of human neutrophils to MSU crystals. The results obtained indicate that the interaction of MSU crystals with human neutrophils leads to the stimulation of class Ia PI-3Ks by a mechanism that is dependent on the tyrosine kinase Syk. We also found an increase in the amount of p85 associated with the Nonidet P-40-insoluble fraction derived from MSU crystal-stimulated human neutrophils. Furthermore, MSU crystals induce the formation of a complex containing p85 and Syk, which is mediated by the Src family kinases. Finally, evidence is also obtained indicating that the activation of PI-3Ks by MSU crystals is a critical element regulating phospholipase D activation and degranulation of human neutrophils. The latter response is likely to be involved in the joint and tissue damage that occurs in gouty patients.
Collapse
Affiliation(s)
- Oana Popa-Nita
- Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHUQ, Department of Medicine, Faculty of Medicine, Laval University, Québec, Canada
| | | | | | | | | | | |
Collapse
|
13
|
Gilbert C, Cantin R, Barat C, Tremblay MJ. Human immunodeficiency virus type 1 replication in dendritic cell-T-cell cocultures is increased upon incorporation of host LFA-1 due to higher levels of virus production in immature dendritic cells. J Virol 2007; 81:7672-82. [PMID: 17494076 PMCID: PMC1933380 DOI: 10.1128/jvi.02810-06] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Dendritic cells (DCs) act as a portal for invasion by human immunodeficiency virus type-1 (HIV-1). Here, we investigated whether virion-incorporated host cell membrane proteins can affect virus replication in DC-T-cell cocultures. Using isogenic viruses either devoid of or bearing host-derived leukocyte function-associated antigen 1 (LFA-1), we showed that HIV-1 production is augmented when LFA-1-bearing virions are used compared to that for viral entities lacking this adhesion molecule. This phenomenon was observed in immature monocyte-derived DCs (IM-MDDCs) only and not in DCs displaying a mature phenotype. The increase is not due to higher virus production in responder CD4(+) T cells but rather is linked with a more important productive infection of IM-MDDCs. We provided evidence that virus-associated host LFA-1 molecules do not affect a late event in the HIV-1 life cycle but rather exert an effect on an early step in virus replication. We demonstrated that the enhancement of productive infection of IM-MDDCs that is conferred by virus-anchored host LFA-1 involves the protein kinase A (PKA) and PKC signal transduction pathways. The biological significance of this phenomenon was established by performing experiments with virus stocks produced in primary human cells and anti-LFA-1 antibodies. Together, our results indicate that the association between some virus-bound host proteins and their natural cognate ligands can modulate de novo HIV-1 production by IM-MDDCs. Therefore, the additional interactions between virus-bound host cell membrane constituents and counter receptors on the surfaces of DCs can influence HIV-1 replication in IM-MDDC-T-cell cocultures.
Collapse
Affiliation(s)
- Caroline Gilbert
- Research Center in Infectious Diseases, Laval Univeristy, Quebec, Canada
| | | | | | | |
Collapse
|
14
|
Gilbert C, Barat C, Cantin R, Tremblay MJ. Involvement of Src and Syk Tyrosine Kinases in HIV-1 Transfer from Dendritic Cells to CD4+T Lymphocytes. THE JOURNAL OF IMMUNOLOGY 2007; 178:2862-71. [PMID: 17312130 DOI: 10.4049/jimmunol.178.5.2862] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dendritic cells (DCs) are considered as key mediators of the early events in HIV-1 infection at mucosal sites. Although several aspects of the complex interactions between DCs and HIV-1 have been elucidated, there are still basic questions that remain to be answered about DCs/HIV-1 interplay. In this study, we examined the contribution of nonreceptor TKs in the known ability of DCs to efficiently transfer HIV-1 to CD4(+) T cells in trans. Experiments performed with specific inhibitors of Src and Syk family members indicate that these tyrosine kinases (TKs) are participating to HIV-1 transfer from immature monocyte-derived DCs (IM-MDDCs) to autologous CD4(+) T cells. Experiments with IM-MDDCs transfected with small interfering RNAs targeting Lyn and Syk confirmed the importance of these nonreceptor TKs in HIV-1 transmission. The Src- and Syk-mediated effect on virus transfer was linked with infection of IM-MDDCs in cis-as monitored by quantifying integrated viral DNA and de novo virus production. The process of HIV-1 transmission from IM-MDDCs to CD4(+) T cells was unaffected following treatment with protein kinase C and protein kinase A inhibitors. These data suggest that Src and Syk TKs play a functional role in productive HIV-1 infection of IM-MDDCs. Additional work is needed to facilitate our comprehension of the various mechanisms underlying the exact contribution of Src and Syk TKs to this phenomenon.
Collapse
Affiliation(s)
- Caroline Gilbert
- Centre de Recherche en Infectiologie, Centre Hospitalier de l'Université Laval, and Faculté de Médecine, Université Laval, 2705 Boulevard Laurier, Quebec, Canada
| | | | | | | |
Collapse
|
15
|
Beauséjour Y, Tremblay MJ. Interaction between the cytoplasmic domain of ICAM-1 and Pr55Gag leads to acquisition of host ICAM-1 by human immunodeficiency virus type 1. J Virol 2004; 78:11916-25. [PMID: 15479832 PMCID: PMC523275 DOI: 10.1128/jvi.78.21.11916-11925.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have examined the molecular basis for the selective incorporation of the adhesion molecule ICAM-1 within human immunodeficiency virus type 1 (HIV-1). The process of ICAM-1 incorporation was investigated by using different ICAM-1 constructs in combination with virus capture and immunoprecipitation studies, Western blot and confocal microscopy analyses, and infectivity assays. Experiments conducted with viruses bearing a truncated version of ICAM-1 revealed that the cytoplasmic domain of ICAM-1 governs insertion of this adhesion molecule into HIV-1. Further experiments suggested that there is an association between ICAM-1 and the virus-encoded Pr55(Gag) polyprotein. This study represents the first demonstration that structural Gag polyproteins play a key role in the uptake of a host-derived cell surface by the virus entity. Taken together, our results indicate that interactions between viral and cellular proteins are responsible for the selective uptake of host ICAM-1 by HIV-1. This observation describes a new strategy by which HIV-1 can modulate its replicative cycle, considering that insertion of ICAM-1 within nascent virions has been shown to increase virus infectivity.
Collapse
Affiliation(s)
- Yannick Beauséjour
- Research Center in Infectious Diseases, RC709, CHUL Research Center, Faculty of Medicine, Laval University, Quebec, Canada
| | | |
Collapse
|
16
|
Boilard E, Bourgoin SG, Bernatchez C, Surette ME. Identification of an autoantigen on the surface of apoptotic human T cells as a new protein interacting with inflammatory group IIA phospholipase A2. Blood 2003; 102:2901-9. [PMID: 12829607 DOI: 10.1182/blood-2002-12-3702] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One of the most studied secreted phospholipases A2 (sPLA2), the group IIA sPLA2, is found at high levels in inflammatory fluids of patients with autoimmune diseases. A characteristic of group IIA sPLA2 is its preference for negatively charged phospholipids, which become exposed on the extracellular leaflet of apoptotic cell membranes. We recently showed that low molecular weight heparan sulfate proteoglycans (HSPGs) and uncharacterized detergent-insoluble binding site(s) contribute to the enhanced binding of human group IIA PLA2 (hGIIA) to apoptotic human T cells. Using matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry we now identify vimentin as the major HSPG-independent binding protein of hGIIA on apoptotic primary T lymphocytes. Vimentin is partially exposed on the surface of apoptotic T cells and binds hGIIA via its rod domain in a calcium-independent manner. Studies with hGIIA mutants showed that specific motifs in the interfacial binding surface are involved in the interaction with vimentin. The sPLA2 inhibitor LY311727, but not heparin, inhibited this interaction. In contrast, heparin but not LY311727 abrogated the binding of hGIIA to cellular HSPGs. Importantly, vimentin does not inhibit the catalytic activity of hGIIA. Altogether, the results show that vimentin, in conjunction with HSPGs, contributes to the enhanced binding of hGIIA to apoptotic T cells.
Collapse
Affiliation(s)
- Eric Boilard
- Centre de Recherche en Rhumatologie et Immunologie, Université Laval, QC G1V 4G2, Canada
| | | | | | | |
Collapse
|
17
|
Abstract
Recently we demonstrated the existence of a phosphatidylinositol 3-kinase (PI3K)-independent F-actin polymerization during neutrophil pseudopod extension. Here we examine the use of the PI3K-dependent and PI3K-independent pathways of activation by the N-formyl peptide receptor and the chemokine receptors, and the priming of the 2 pathways by granulocyte-macrophage colony-stimulating factor (GM-CSF) and insulin. The inhibition of PI3K activity with wortmannin showed that rate of pseudopod extension stimulated with N-formyl-Met-Leu-Phe (fMLP was mostly dependent on PI3K, while the rate of interleukin-8 (IL-8)-stimulated pseudopod extension was less dependent on PI3K. The incubation of cells with either GM-CSF or insulin increased the rate of pseudopod extension by 50% when the cells were stimulated with IL-8 but not with fMLP. The stimulation with IL-8 phosphorylated the PI3K regulatory subunit. This phosphorylation was enhanced by GM-CSF, which increased PI3K activity and total phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) production. The effect of GM-CSF was blocked with wortmannin. In contrast, insulin did not increase p85 phosphorylation and did not enhance PI3K activity or PtdIns(3,4,5)P3 production. The effect of insulin was insensitive to wortmannin; however, it was blocked by an Src homology 2 (SH2)-binding peptide. These data indicate that priming of IL-8 activation with GM-CSF was mediated via the PI3Ks of class IA, while priming with insulin used a PI3K-independent pathway.
Collapse
Affiliation(s)
- David Chodniewicz
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708-0300, USA
| | | |
Collapse
|
18
|
Boilard E, Bourgoin SG, Bernatchez C, Poubelle PE, Surette ME. Interaction of low molecular weight group IIA phospholipase A2 with apoptotic human T cells: role of heparan sulfate proteoglycans. FASEB J 2003; 17:1068-80. [PMID: 12773489 DOI: 10.1096/fj.02-0938com] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Human group IIA phospholipase A2 (hIIA PLA2) is a 14 kDa secreted enzyme associated with inflammatory diseases. A newly discovered property of hIIA PLA2 is the binding affinity for the heparan sulfate proteoglycan (HSPG) glypican-1. In this study, the binding of hIIA PLA2 to apoptotic human T cells was investigated. Little or no exogenous hIIA PLA2 bound to CD3-activated T cells but significant binding was measured on activated T cells induced to undergo apoptosis by anti-CD95. Binding to early apoptotic T cells was greater than to late apoptotic cells. The addition of heparin and the hydrolysis of HSPG by heparinase III only partially inhibited hIIA PLA2 binding to apoptotic cells, suggesting an interaction with both HSPG and other binding protein(s). Two low molecular weight HSPG were coimmunoprecipitated with hIIA PLA2 from apoptotic T cells, but not from living cells. Treatment of CD95-stimulated T cells with hIIA PLA2 resulted in the release of arachidonic acid but not oleic acid from cells and this release was blocked by heparin and heparinase III. Altogether, these results suggest a role for hIIA PLA2 in the release of arachidonic acid from apoptotic cells through interactions with HSPG and its potential implication in the progression of inflammatory diseases.
Collapse
Affiliation(s)
- Eric Boilard
- Pilot Therapeutics Inc., 2000 Daniel Island Dr., Suite 440, Charleston, SC 29492, USA.
| | | | | | | | | |
Collapse
|
19
|
Bouillon M, El Fakhry Y, Girouard J, Khalil H, Thibodeau J, Mourad W. Lipid raft-dependent and -independent signaling through HLA-DR molecules. J Biol Chem 2003; 278:7099-107. [PMID: 12499388 DOI: 10.1074/jbc.m211566200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lipid rafts are plasma membrane microdomains that are highly enriched in signaling molecules and that act as signal transduction platforms for many immune receptors. The involvement of these microdomains in HLA-DR-induced signaling is less well defined. We examined the constitutive presence of HLA-DR molecules in lipid rafts, their possible recruitment into these microdomains, and the role of these microdomains in HLA-DR-induced responses. We detected significant amounts of HLA-DR molecules in the lipid rafts of EBV(+) and EBV(-) B cell lines, monocytic cell lines, transfected HeLa cells, tonsillar B cells, and human monocytes. Localization of HLA-DR in these microdomains was unaffected by the deletion of the cytoplasmic domain of both the alpha and beta chains. Ligation of HLA-DR with a bivalent, but not a monovalent, ligand resulted in rapid tyrosine phosphorylation of many substrates, especially Lyn, and activation of ERK1/2 MAP kinase. However, the treatment failed to induce further recruitment of HLA-DR molecules into lipid rafts. The HLA-DR-induced signaling events were accompanied by the induction of cell-cell adhesion that could be inhibited by PTK and Lyn but not ERK1/2 inhibitors. Disruption of lipid rafts by methyl-beta-cyclodextrin (MbetaCD) resulted in the loss of membrane raft association with HLA-DR molecules, inhibition of HLA-DR-mediated protein tyrosine phosphorylation and cell-cell adhesion. MbetaCD did not affect the activation of ERK1/2, which was absent from lipid rafts. These results indicate that although all the HLA-DR-induced events studied are dependent on HLA-DR dimerization, some require the presence of HLA-DR molecules in lipid rafts, whereas others do not.
Collapse
Affiliation(s)
- Marlene Bouillon
- Centre de Recherche en Rhumatologie et Immunologie, (CHUL), Département de Médecine, Université Laval, Quebec City, Quebec G1V 4G2, Canada
| | | | | | | | | | | |
Collapse
|
20
|
Gilbert C, Rollet-Labelle E, Caon AC, Naccache PH. Immunoblotting and sequential lysis protocols for the analysis of tyrosine phosphorylation-dependent signaling. J Immunol Methods 2002; 271:185-201. [PMID: 12445741 DOI: 10.1016/s0022-1759(02)00347-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In stimulated neutrophils, the majority of tyrosine-phosphorylated proteins are concentrated in Triton X-100 or NP-40 insoluble fractions. Most immunobiochemical studies, whose objective is to study the functional relevance of tyrosine phosphorylation are, however, performed using the supernatants of cells that are lysed in non-ionic detergent-containing buffers (RIPA lysis buffers). This observation prompted us to develop an alternative lysis protocol. We established a procedure involving the sequential lysis of neutrophils in buffers of increasing tonicities that not only preserve and solubilize tyrosine-phosphorylated proteins but also retain their enzymatic activities. The sequential lysis of neutrophils in hypotonic, isotonic and hypertonic buffers containing non-ionic detergents resulted in the solubilization of a significant fraction of tyrosine-phosphorylated proteins. Furthermore, we observed in neutrophils in which CD32 was cross-linked that the tyrosine kinase activity of Lyn was enhanced in the soluble fraction recovered from the hypertonic lysis but not in that derived from the first hypotonic lysis. Furthermore, we detected tyrosine kinase activity and the presence of the tyrosine kinase Syk in association with CD32 in the soluble hypertonic lysis fraction. This fraction also contained most of the tyrosine-phosphorylated proteins including Cbl, Syk and CD32 itself. The results of this study provide a new experimental procedure for the investigation of tyrosine phosphorylation pathways in activated human neutrophils which may also be applicable to other cell types.
Collapse
Affiliation(s)
- Caroline Gilbert
- Centre de Recherche en Rhumatologie et Immunologie, CIHR group on the Molecular Mechanisms of Inflammation, Centre de Recherche du CHUL, Laval University, Ste.-Foy, Québec, Canada
| | | | | | | |
Collapse
|