1
|
Nuñez KM, Catalano JL, Scaplen KM, Kaun KR. Ethanol Behavioral Responses in Drosophila. Cold Spring Harb Protoc 2023; 2023:719-24. [PMID: 37019606 PMCID: PMC10551053 DOI: 10.1101/pdb.top107887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Drosophila melanogaster is a powerful genetic model for investigating the mechanisms underlying ethanol-induced behaviors, metabolism, and preference. Ethanol-induced locomotor activity is especially useful for understanding the mechanisms by which ethanol acutely affects the brain and behavior. Ethanol-induced locomotor activity is characterized by hyperlocomotion and subsequent sedation with increased exposure duration or concentration. Locomotor activity is an efficient, easy, robust, and reproducible behavioral screening tool for identifying underlying genes and neuronal circuits as well as investigating genetic and molecular pathways. We introduce a detailed protocol for performing experiments investigating how volatilized ethanol affects locomotor activity using the fly Group Activity Monitor (flyGrAM). We introduce installation, implementation, data collection, and subsequent data-analysis methods for investigating how volatilized stimuli affect activity. We also introduce a procedure for how to optogenetically probe neuronal activity to identify the neural mechanisms underlying locomotor activity.
Collapse
Affiliation(s)
- Kavin M Nuñez
- Molecular Pharmacology and Physiology Graduate Program, Brown University, Providence, Rhode Island 02912, USA
| | - Jamie L Catalano
- Molecular Pharmacology and Physiology Graduate Program, Brown University, Providence, Rhode Island 02912, USA
| | - Kristin M Scaplen
- Department of Psychology, Bryant University, Smithfield, Rhode Island 02917, USA
- Center for Health and Behavioral Sciences, Bryant University, Smithfield, Rhode Island 02917, USA
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912, USA
| | - Karla R Kaun
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
2
|
Cummins-Beebee PN, Chvilicek MM, Rothenfluh A. The Stage-Based Model of Addiction-Using Drosophila to Investigate Alcohol and Psychostimulant Responses. Int J Mol Sci 2023; 24:10909. [PMID: 37446084 PMCID: PMC10341944 DOI: 10.3390/ijms241310909] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Addiction is a progressive and complex disease that encompasses a wide range of disorders and symptoms, including substance use disorder (SUD), for which there are few therapeutic treatments. SUD is the uncontrolled and chronic use of substances despite the negative consequences resulting from this use. The progressive nature of addiction is organized into a testable framework, the neurobiological stage-based model, that includes three behavioral stages: (1) binge/intoxication, (2) withdrawal/negative affect, and (3) preoccupation/anticipation. Human studies offer limited opportunities for mechanistic insights into these; therefore, model organisms, like Drosophila melanogaster, are necessary for understanding SUD. Drosophila is a powerful model organism that displays a variety of SUD-like behaviors consistent with human and mammalian substance use, making flies a great candidate to study mechanisms of behavior. Additionally, there are an abundance of genetic tools like the GAL4/UAS and CRISPR/Cas9 systems that can be used to gain insight into the molecular mechanisms underlying the endophenotypes of the three-stage model. This review uses the three-stage framework and discusses how easily testable endophenotypes have been examined with experiments using Drosophila, and it outlines their potential for investigating other endophenotypes.
Collapse
Affiliation(s)
- Pearl N. Cummins-Beebee
- Department of Psychiatry, University of Utah, Salt Lake City, UT 84112, USA
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
- Neuroscience Graduate Program, University of Utah, Salt Lake City, UT 84112, USA
| | - Maggie M. Chvilicek
- Department of Psychiatry, University of Utah, Salt Lake City, UT 84112, USA
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
- Neuroscience Graduate Program, University of Utah, Salt Lake City, UT 84112, USA
| | - Adrian Rothenfluh
- Department of Psychiatry, University of Utah, Salt Lake City, UT 84112, USA
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
- Neuroscience Graduate Program, University of Utah, Salt Lake City, UT 84112, USA
- Department of Neurobiology, University of Utah, Salt Lake City, UT 84112, USA
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
3
|
Human Evolution and Dietary Ethanol. Nutrients 2021; 13:nu13072419. [PMID: 34371928 PMCID: PMC8308604 DOI: 10.3390/nu13072419] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 11/17/2022] Open
Abstract
The "drunken monkey" hypothesis posits that attraction to ethanol derives from an evolutionary linkage among the sugars of ripe fruit, associated alcoholic fermentation by yeast, and ensuing consumption by human ancestors. First proposed in 2000, this concept has received increasing attention from the fields of animal sensory biology, primate foraging behavior, and molecular evolution. We undertook a review of English language citations subsequent to publication of the original paper and assessed research trends and future directions relative to natural dietary ethanol exposure in primates and other animals. Two major empirical themes emerge: attraction to and consumption of fermenting fruits (and nectar) by numerous vertebrates and invertebrates (e.g., Drosophila flies), and genomic evidence for natural selection consistent with sustained exposure to dietary ethanol in diverse taxa (including hominids and the genus Homo) over tens of millions of years. We also describe our current field studies in Uganda of ethanol content within fruits consumed by free-ranging chimpanzees, which suggest chronic low-level exposure to this psychoactive molecule in our closest living relatives.
Collapse
|
4
|
Zheng S, Jiang B, Zhang T, Chen J. Combined mutagenesis and metabolic regulation to enhance D-arabitol production from Candida parapsilosis. J Ind Microbiol Biotechnol 2020; 47:425-435. [PMID: 32361796 DOI: 10.1007/s10295-020-02278-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/23/2020] [Indexed: 12/28/2022]
Abstract
D-Arabitol is an important pentitol that is widely used in the food, pharmaceutical and chemical industries. It is mainly produced by yeasts during the biotransformation of glucose. To obtain strains with high D-arabitol production, Candida parapsilosis was mutated using atmospheric and room temperature plasma (ARTP). Among the screened mutants, mutant A6 had the highest yield at 32.92 g/L, a 53.98% increase compared with the original strain (21.38 g/L). Furthermore, metabolic regulators were added to the medium to improve D-arabitol production. Pyrithioxin dihydrochloride increased D-arabitol production by 34.4% by regulating glucose-6-phosphate dehydrogenase, and 4-methylpyrazole increased D-arabitol production by 77.4% compared with the control group by inhibiting alcohol dehydrogenase activity. Amphotericin B and Triton X-100 increased D-arabitol production by 23.8% and 42.2% by improving the membrane permeability and dissolved oxygen content, respectively. This study may provide important implications for obtaining high-yield D-arabitol strains.
Collapse
Affiliation(s)
- Simeng Zheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China.
- International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China
- International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Jingjing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China
- International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, Jiangsu, China
| |
Collapse
|
5
|
Engel GL, Taber K, Vinton E, Crocker AJ. Studying alcohol use disorder using Drosophila melanogaster in the era of 'Big Data'. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2019; 15:7. [PMID: 30992041 PMCID: PMC6469124 DOI: 10.1186/s12993-019-0159-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 04/04/2019] [Indexed: 02/08/2023]
Abstract
Our understanding of the networks of genes and protein functions involved in Alcohol Use Disorder (AUD) remains incomplete, as do the mechanisms by which these networks lead to AUD phenotypes. The fruit fly (Drosophila melanogaster) is an efficient model for functional and mechanistic characterization of the genes involved in alcohol behavior. The fly offers many advantages as a model organism for investigating the molecular and cellular mechanisms of alcohol-related behaviors, and for understanding the underlying neural circuitry driving behaviors, such as locomotor stimulation, sedation, tolerance, and appetitive (reward) learning and memory. Fly researchers are able to use an extensive variety of tools for functional characterization of gene products. To understand how the fly can guide our understanding of AUD in the era of Big Data we will explore these tools, and review some of the gene networks identified in the fly through their use, including chromatin-remodeling, glial, cellular stress, and innate immunity genes. These networks hold great potential as translational drug targets, making it prudent to conduct further research into how these gene mechanisms are involved in alcohol behavior.
Collapse
Affiliation(s)
- Gregory L. Engel
- Department of Psychological Sciences, Castleton University, Castleton, VT 05735 USA
| | - Kreager Taber
- Program in Neuroscience, Middlebury College, Middlebury, VT 05753 USA
| | - Elizabeth Vinton
- Program in Neuroscience, Middlebury College, Middlebury, VT 05753 USA
| | - Amanda J. Crocker
- Program in Neuroscience, Middlebury College, Middlebury, VT 05753 USA
| |
Collapse
|
6
|
De Nobrega AK, Lyons LC. Drosophila: An Emergent Model for Delineating Interactions between the Circadian Clock and Drugs of Abuse. Neural Plast 2017; 2017:4723836. [PMID: 29391952 PMCID: PMC5748135 DOI: 10.1155/2017/4723836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/13/2017] [Indexed: 01/12/2023] Open
Abstract
Endogenous circadian oscillators orchestrate rhythms at the cellular, physiological, and behavioral levels across species to coordinate activity, for example, sleep/wake cycles, metabolism, and learning and memory, with predictable environmental cycles. The 21st century has seen a dramatic rise in the incidence of circadian and sleep disorders with globalization, technological advances, and the use of personal electronics. The circadian clock modulates alcohol- and drug-induced behaviors with circadian misalignment contributing to increased substance use and abuse. Invertebrate models, such as Drosophila melanogaster, have proven invaluable for the identification of genetic and molecular mechanisms underlying highly conserved processes including the circadian clock, drug tolerance, and reward systems. In this review, we highlight the contributions of Drosophila as a model system for understanding the bidirectional interactions between the circadian system and the drugs of abuse, alcohol and cocaine, and illustrate the highly conserved nature of these interactions between Drosophila and mammalian systems. Research in Drosophila provides mechanistic insights into the corresponding behaviors in higher organisms and can be used as a guide for targeted inquiries in mammals.
Collapse
Affiliation(s)
- Aliza K. De Nobrega
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Lisa C. Lyons
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
7
|
Shipley AT, Imeh-Nathaniel A, Orfanakos VB, Wormack LN, Huber R, Nathaniel TI. The Sensitivity of the Crayfish Reward System to Mammalian Drugs of Abuse. Front Physiol 2017; 8:1007. [PMID: 29270131 PMCID: PMC5723678 DOI: 10.3389/fphys.2017.01007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/21/2017] [Indexed: 12/27/2022] Open
Abstract
The idea that addiction occurs when the brain is not able to differentiate whether specific reward circuits were triggered by adaptive natural rewards or falsely activated by addictive drugs exist in several models of drug addiction. The suitability of crayfish (Orconectes rusticus) for drug addiction research arises from developmental variation of growth, life span, reproduction, behavior and some quantitative traits, especially among isogenic mates reared in the same environment. This broad spectrum of traits makes it easier to analyze the effect of mammalian drugs of abuse in shaping behavioral phenotype. Moreover, the broad behavioral repertoire allows the investigation of self-reinforcing circuitries involving appetitive and exploratory motor behavior, while the step-wise alteration of the phenotype by metamorphosis allows accurate longitudinal analysis of different behavioral states. This paper reviews a series of recent experimental findings that evidence the suitability of crayfish as an invertebrate model system for the study of drug addiction. Results from these studies reveal that unconditioned exposure to mammalian drugs of abuse produces a variety of stereotyped behaviors. Moreover, if presented in the context of novelty, drugs directly stimulate exploration and appetitive motor patterns along with molecular processes for drug conditioned reward. Findings from these studies indicate the existence of drug sensitive circuitry in crayfish that facilitates exploratory behavior and appetitive motor patterns via increased incentive salience of environmental stimuli or by increasing exploratory motor patterns. This work demonstrates the potential of crayfish as a model system for research into the neural mechanisms of addiction, by contributing an evolutionary, comparative context to our understanding of natural reward as an important life-sustaining process.
Collapse
Affiliation(s)
- Adam T Shipley
- Department of Biomedical Sciences, University of South Carolina School of Medicine, Greenville, SC, United States
| | | | - Vasiliki B Orfanakos
- Department of Biomedical Sciences, University of South Carolina School of Medicine, Greenville, SC, United States
| | - Leah N Wormack
- Department of Biomedical Sciences, University of South Carolina School of Medicine, Greenville, SC, United States
| | - Robert Huber
- J.P Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, United States
| | - Thomas I Nathaniel
- Department of Biomedical Sciences, University of South Carolina School of Medicine, Greenville, SC, United States
| |
Collapse
|
8
|
A DNA element in the slo gene modulates ethanol tolerance. Alcohol 2016; 51:37-42. [PMID: 26992698 DOI: 10.1016/j.alcohol.2015.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 12/23/2015] [Accepted: 12/23/2015] [Indexed: 12/20/2022]
Abstract
In Drosophila, the slo gene encodes BK-type Ca(2+)-activated K(+) channels and is involved in producing rapid functional tolerance to sedation with ethanol. Drosophila are ideal for the study of functional ethanol tolerance because the adult does not acquire metabolic ethanol tolerance (Scholz, Ramond, Singh, & Heberlein, 2000). It has been shown that mutations in slo block the capacity to acquire tolerance, that sedation with ethanol vapor induces slo gene expression in the nervous system, and that transgenic induction of slo can phenocopy tolerance (Cowmeadow, Krishnan, & Atkinson, 2005; Cowmeadow et al., 2006). Here we use ethanol-induced histone acetylation to map a DNA regulatory element in the slo transcriptional control region and functionally test the element for a role in producing ethanol tolerance. Histone acetylation is commonly associated with activating transcription factors. We used the chromatin immunoprecipitation assay to map histone acetylation changes following ethanol sedation to identify an ethanol-responsive DNA element. Ethanol sedation induced an increase in histone acetylation over a 60 n DNA element called 6b, which is situated between the two ethanol-responsive neural promoters of the slo gene. Removal of the 6b element from the endogenous slo gene affected the production of functional ethanol tolerance as assayed in an ethanol-vapor recovery from sedation assay. Removal of element 6b extended the period of functional ethanol tolerance from ∼10 days to more than 21 days after a single ethanol-vapor sedation. This study demonstrates that mapping the position of ethanol-induced histone acetylation is an effective way to identify DNA regulatory elements that help to mediate the response of a gene to ethanol. Using this approach, we identified a DNA element, which is conserved among Drosophila species, and which is important for producing a behaviorally relevant ethanol response.
Collapse
|
9
|
Devineni AV, Heberlein U. The evolution of Drosophila melanogaster as a model for alcohol research. Annu Rev Neurosci 2013; 36:121-38. [PMID: 23642133 DOI: 10.1146/annurev-neuro-062012-170256] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Animal models have been widely used to gain insight into the mechanisms underlying the acute and long-term effects of alcohol exposure. The fruit fly Drosophila melanogaster encounters ethanol in its natural habitat and possesses many adaptations that allow it to survive and thrive in ethanol-rich environments. Several assays to study ethanol-related behaviors in flies, ranging from acute intoxication to self-administration and reward, have been developed in the past 20 years. These assays have provided the basis for studying the physiological and behavioral effects of ethanol and for identifying genes mediating these effects. In this review we describe the ecological relationship between flies and ethanol, the effects of ethanol on fly development and behavior, the use of flies as a model for alcohol addiction, and the interaction between ethanol and social behavior. We discuss these advances in the context of their utility to help decipher the mechanisms underlying the diverse effects of ethanol, including those that mediate ethanol dependence and addiction in humans.
Collapse
Affiliation(s)
- Anita V Devineni
- Program in Neuroscience and Department of Anatomy, University of California-San Francisco, CA 94158, USA.
| | | |
Collapse
|
10
|
Sellings L, Pereira S, Qian C, Dixon-McDougall T, Nowak C, Zhao B, Tyndale RF, van der Kooy D. Nicotine-motivated behavior in Caenorhabditis elegans requires the nicotinic acetylcholine receptor subunits acr-5 and acr-15. Eur J Neurosci 2013; 37:743-56. [PMID: 23351035 DOI: 10.1111/ejn.12099] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 10/19/2012] [Accepted: 11/19/2012] [Indexed: 11/28/2022]
Abstract
Signaling at nicotinic acetylcholine receptors in Caenorhabditis elegans controls many behaviors, including egg-laying and locomotor activity. Here, we show that C. elegans approaches a point source of nicotine in a time-, concentration- and age-dependent manner. Additionally, nicotine paired with butanone under starvation conditions prevented the reduced approach to butanone that is observed when butanone is paired with starvation alone and pairing with nicotine generates a preference for the tastes of either sodium or chloride over baseline. These results suggest nicotine acts as a rewarding substance in C. elegans. Furthermore, the nicotinic receptor antagonist mecamylamine, the smoking cessation pharmacotherapy varenicline, mutation of the dop-1 and dop-2 dopamine receptors, and mutations of either acr-5 or acr-15, two nicotinic receptor subunit genes with sequence homology to the mammalian α7 subunit, all reduced the nicotine approach behavior. These two mutants also were defective at associating the presence of nicotine with butanone under starvation conditions and acr-5 mutation could obviate the effect of pairing nicotine with salts. Furthermore, the approach deficit in acr-15 mutants was rescued by selective re-expression in a subset of neurons, but not in muscle. Caenorhabditis elegans may therefore serve as a useful model organism for nicotine-motivated behaviors that could aid in the identification of novel nicotine motivational molecular pathways and consequently the development of novel cessation aids.
Collapse
Affiliation(s)
- Laurie Sellings
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Pohl JB, Baldwin BA, Dinh BL, Rahman P, Smerek D, Prado FJ, Sherazee N, Atkinson NS. Ethanol preference in Drosophila melanogaster is driven by its caloric value. Alcohol Clin Exp Res 2012; 36:1903-12. [PMID: 22551215 DOI: 10.1111/j.1530-0277.2012.01817.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 02/15/2012] [Indexed: 12/01/2022]
Abstract
BACKGROUND Perhaps the most difficult thing to ascertain concerning the behavior of another animal is its motivation. The motivation underlying the preference of Drosophila melanogaster for ethanol (EtOH)-rich food has long been ascribed to its value as a food. A recently introduced idea is that, as in humans, the pharmacological effects of EtOH also motivate the fly to choose EtOH-rich food over nonalcoholic food. METHODS Flies are given a choice between pipets that contain liquid food and liquid food supplemented with EtOH. In some experiments, carbohydrates are added to the non-EtOH-containing food to balance the calories for EtOH. RESULTS We confirm that D. melanogaster indeed prefer food that is supplemented with EtOH. However, if the alternative food choice is isocaloric, D. melanogaster usually do not show any preference for a 10% EtOH solution. Even after EtOH preference has been established, it can be completely reversed if the alternative food is calorically supplemented. This occurs even when the carbohydrate solution used to balance calories is not gustatorily attractive. Furthermore, if the alternative food contains more calories than the EtOH food, the flies will prefer the non-EtOH food. We go on to show that during the preference assay that EtOH in the fly does not exceed 4 mM, which in mammals is a nonintoxicating dose. CONCLUSIONS We conclude that preference for EtOH in this assay arises not from the pharmacological effects of EtOH but rather because of its nutritive value.
Collapse
Affiliation(s)
- Jascha B Pohl
- Waggoner Center for Alcohol and Addiction Research , Section of Neurobiology, The University of Texas at Austin, TX 78712, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Alcaro A, Panksepp J, Huber R. d-Amphetamine stimulates unconditioned exploration/approach behaviors in crayfish: towards a conserved evolutionary function of ancestral drug reward. Pharmacol Biochem Behav 2011; 99:75-80. [PMID: 21504757 DOI: 10.1016/j.pbb.2011.04.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 03/28/2011] [Accepted: 04/02/2011] [Indexed: 10/18/2022]
Abstract
In mammals, rewarding properties of drugs depend on their capacity to activate a dopamine-mediated appetitive motivational seeking state--a system that allows animals to pursue and find all kinds of objects and events needed for survival. With such states strongly conserved in evolution, invertebrates have recently been developed into a powerful model in addiction research, where a shared ancestral brain system for the acquisition of reward can mediate drug addiction in many species. A conditioned place preference paradigm has illustrated that crayfish seek out environments that had previously been paired with psychostimulant and opioid administration. The present work demonstrates that the administration of D-amphetamine stimulates active explorative behaviors in crayfish through the action of the drug within their head ganglion. Crayfish, with a modularly organized and experimentally accessible, ganglionic nervous system offers a unique model to investigate (1) the fundamental, biological mechanisms of addictive drug reward; (2) how an appetitive/seeking disposition is implemented in a simple neural system, and (3) how it mediates the rewarding actions of major drugs of abuse.
Collapse
Affiliation(s)
- Antonio Alcaro
- Santa Lucia Foundation, European Centre for Brain Research (CERC), Via del Fosso di Fiorano 65, 00143 Rome, Italy
| | | | | |
Collapse
|
13
|
Huber R, Panksepp JB, Nathaniel T, Alcaro A, Panksepp J. Drug-sensitive reward in crayfish: an invertebrate model system for the study of SEEKING, reward, addiction, and withdrawal. Neurosci Biobehav Rev 2010; 35:1847-53. [PMID: 21182861 DOI: 10.1016/j.neubiorev.2010.12.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 12/14/2010] [Indexed: 11/17/2022]
Abstract
In mammals, rewarding properties of drugs depend on their capacity to activate appetitive motivational states. With the underlying mechanisms strongly conserved in evolution, invertebrates have recently emerged as a powerful new model in addiction research. In crayfish natural reward has proven surprisingly sensitive to human drugs of abuse, opening an unlikely avenue of research into the basic biological mechanisms of drug addiction. In a series of studies we first examined the presence of natural reward systems in crayfish, then characterized its sensitivity to a wide range of human drugs of abuse. A conditioned place preference (CPP) paradigm was used to demonstrate that crayfish seek out those environments that had previously been paired with the psychostimulants cocaine and amphetamine, and the opioid morphine. The administration of amphetamine exerted its effects at a number of sites, including the stimulation of circuits for active exploratory behaviors (i.e., SEEKING). A further study examined morphine-induced reward, extinction and reinstatement in crayfish. Repeated intra-circulatory infusions of morphine served as a reward when paired with distinct visual or tactile cues. Morphine-induced CPP was extinguished after repeated saline injections. Following this extinction phase, morphine-experienced crayfish were once again challenged with the drug. The priming injections of morphine reinstated CPP at all tested doses, suggesting that morphine-induced CPP is unrelenting. In an exploration of drug-associated behavioral sensitization in crayfish we concurrently mapped measures of locomotion and rewarding properties of morphine. Single and repeated intra-circulatory infusions of morphine resulted in persistent locomotory sensitization, even 5 days following the infusion. Moreover, a single dose of morphine was sufficient to induce long-term behavioral sensitization. CPP for morphine and context-dependent cues could not be disrupted over a drug free period of 5 days. This work demonstrates that crayfish offer a comparative and complementary approach in addiction research. Serving as an invertebrate animal model for the exposure to mammalian drugs of abuse, modularly organized and experimentally accessible nervous systems render crayfish uniquely suited for studying (1) the basic biological mechanisms of drug effects, (2) to explore how the appetitive/seeking disposition is implemented in a simple neural system, and (3) how such a disposition is related to the rewarding action of drugs of abuse. This work aimed to contribute an evolutionary, comparative context to our understanding of a key component in learning, and of natural reward as an important life-sustaining process.
Collapse
Affiliation(s)
- Robert Huber
- J.P. Scott Center for Neuroscience, Mind & Behavior, Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA.
| | | | | | | | | |
Collapse
|
14
|
Rodan AR, Rothenfluh A. The genetics of behavioral alcohol responses in Drosophila. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2010; 91:25-51. [PMID: 20813239 DOI: 10.1016/s0074-7742(10)91002-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Drosophila melanogaster is commonly found near rotting or fermenting fruit, reflected in its name pomace, or vinegar fly. In such environments, flies often encounter significant levels of ethanol. Three observations have made Drosophila a very promising model organism to understand the genetic contributions to the behavioral responses to alcohol. First, similar to higher vertebrates, flies show hyperactivation upon exposure to a low to medium dose of alcohol, while high doses can lead to sedation. In addition, when given a choice, flies will actually prefer alcohol-containing food over regular food. Second, the genes and biochemical pathways implicated in controlling these behavioral responses in flies are also participating in determining alcohol responses, and drinking behavior in mammals. Third, the fact that flies have been studied genetically for over one hundred years means that an exceptional repertoire of genetic tools are at our disposal. Here, we will review some of these tools and experimental approaches, survey the methods for, and measures after Drosophila ethanol exposure, and discuss the different molecular components and functional pathways involved in these behavioral responses to alcohol.
Collapse
Affiliation(s)
- Aylin R Rodan
- Division of Nephrology, Department of Psychiatry and Program in Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
| | | |
Collapse
|
15
|
|
16
|
Abstract
Caenorhabditis elegans senses multiple environmental stimuli through sensory systems and rapidly changes its behaviors for survival. With a simple and well-characterized nervous system, C. elegans is a suitable animal model for studying behavioral plasticity. Previous studies have shown acute neurodepressive effects of ethanol on multiple behaviors of C. elegans similar to the effect of ethanol on other organisms. Caenorhabditis elegans also develops ethanol tolerance during continuous exposure to ethanol. In mammals, chronic ethanol exposure leads to ethanol tolerance as well as increased ethanol consumption. Ethanol preference is associated with the development of tolerance and may lead to the development of ethanol dependence. In this study, we show that C. elegans is a useful model organism for studying chronic effects of ethanol, including the development of ethanol preference. We designed a behavioral assay for testing ethanol preference after prolonged ethanol exposure. Despite baseline aversive responses to ethanol, animals show ethanol preference after 4 h of pre-exposure to ethanol and exhibit significantly enhanced preference for ethanol after a lifetime of ethanol exposure. The cat-2 and tph-1 mutant animals have defects in the synthetic enzymes for dopamine and serotonin, respectively. These mutants are deficient in the development of ethanol preference, indicating that dopamine and serotonin are required for this form of behavioral plasticity.
Collapse
Affiliation(s)
- J Lee
- Ernest Gallo Clinic and Research Center, Department of Neurology, Programs in Neuroscience and Biomedical Science, University of California, San Francisco, Emeryville, CA 94608, USA
| | | | | |
Collapse
|
17
|
Davis J. Patterns of Variation in the Influence of Natal Experience on Habitat Choice. QUARTERLY REVIEW OF BIOLOGY 2008; 83:363-80. [DOI: 10.1086/592851] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
18
|
Guarnieri DJ, Heberlein U. Drosophila melanogaster, a genetic model system for alcohol research. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2003; 54:199-228. [PMID: 12785288 DOI: 10.1016/s0074-7742(03)54006-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In its natural environment, which consists of fermenting plant materials, the fruit fly Drosophila melanogaster encounters high levels of ethanol. Flies are well equipped to deal with the toxic effects of ethanol; they use it as an energy source and for lipid biosynthesis. The primary ethanol-metabolizing pathway in flies involves the enzymes alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH); their role in adaptation to ethanol-rich environments has been studied extensively. The similarity between Drosophila and mammals is not restricted to the manner in which they metabolize ethanol; behaviors elicited by ethanol exposure are also remarkably similar in these organisms. Flies show signs of acute intoxication, which range from locomotor stimulation at low doses to complete sedation at higher doses, they develop tolerance upon intermittent ethanol exposure, and they appear to like ethanol, showing preference for ethanol-containing media. Molecular genetic analysis of ethanol-induced behaviors in Drosophila, while still in its early stages, has already revealed some surprising parallels with mammals. The availability of powerful tools for genetic manipulation in Drosophila, together with the high degree of conservation at the genomic level, make Drosophila a promising model organism to study the mechanism by which ethanol regulates behavior and the mechanisms underlying the organism's adaptation to long-term ethanol exposure.
Collapse
Affiliation(s)
- Douglas J Guarnieri
- Department of Anatomy, Program in Neuroscience, University of California at San Francisco, San Francisco, CA 94143-0452, USA
| | | |
Collapse
|
19
|
Abstract
Susceptibility to drug addiction depends on genetic and environmental factors and their complex interactions. Studies with mammalian models have identified molecular targets, neurochemical systems, and brain regions that mediate some of the addictive properties of abused drugs. Yet, our understanding of how the primary effects of drugs lead to addiction remains incomplete. Recently, researchers have turned to the invertebrate model systems Drosophila melanogaster and Caenorhabditis elegans to dissect the mechanisms by which abused drugs modulate behavior. Due to their sophisticated genetics, relatively simple anatomy, and their remarkable molecular similarity to mammals, these invertebrate models should provide useful insights into the mechanisms of drug action. Here we review recent behavioral and genetic studies in flies and worms on the effects of ethanol, cocaine, and nicotine, three of the most widely abused drugs in the world.
Collapse
Affiliation(s)
- Fred W Wolf
- Department of Anatomy and Program in Neuroscience, University of California San Francisco, 513 Parnassus Avenue, San Francisco, California 94143-0452, USA.
| | | |
Collapse
|
20
|
Egg-laying preference for ethanol involving learning has adaptive significance inDrosophila melanogaster. ACTA ACUST UNITED AC 2000. [DOI: 10.3758/bf03200253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|