1
|
Olivia TJ, Christian TJ, Patricia RR, Rocío C, Luis MRJ, Del Carmen LEE, Blanca BP. Serum integrin accumulation during asthma exacerbation: The role of matrix metalloproteinases. Scand J Immunol 2024; 100:e13420. [PMID: 39511761 DOI: 10.1111/sji.13420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/17/2024] [Accepted: 10/23/2024] [Indexed: 11/15/2024]
Abstract
The inflammation caused by asthma exacerbation can lead to permanent changes in the airways and loss of lung function. Integrins are membrane receptors that interact with components of the extracellular matrix and cell adhesion molecules. It is known that these receptors can be found in soluble form in some conditions such as asthma, but it is unknown if exacerbation during asthma leads to soluble integrins. Our results indicated that asthma patients showed higher levels of soluble α1, α2, and β2 integrin subunits in their serum compared to controls, as confirmed by both ELISA and western blot. During asthma exacerbation, the levels of α2 and β2 integrin subunits increased even more compared to non-exacerbation and controls, while the α1 integrin subunit decreased. Western blot analysis identified two β2 integrin subunits, one at 75 kDa and another at 120 kDa; the 120 kDa subunit increased during asthma exacerbation. The activity of matrix metalloproteinase 9 (MMP9) increased during exacerbation, while MMP2 remained unchanged. Lower forced expiratory volume in 1 second (FEV1) values were associated with higher expression levels of α2, β1, and β2 integrin subunits. Active and latent MMP9 were correlated with the levels of the β2 integrin subunit, which means that at low levels of active and latent MMP9, there are lower levels of β2 integrin subunit. In conclusion, asthma exacerbation leads to the presence of soluble integrins, particularly the β2 subunit, most likely due to MMP9-induced proteolytic cleavage.
Collapse
Affiliation(s)
- Tellez-Jimenez Olivia
- Laboratory of Immunopharmacology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, Mexico
| | - Trejo-Jasso Christian
- Clínica de Asma, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, Mexico
| | - Ramos-Ramirez Patricia
- Laboratory of Immunopharmacology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, Mexico
| | - Chapela Rocío
- Clínica de Asma, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, Mexico
| | - Miguel-Reyes José Luis
- Clínica de Asma, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, Mexico
| | | | - Bazán-Perkins Blanca
- Laboratory of Immunopharmacology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ciudad de México, Mexico
| |
Collapse
|
2
|
Yang S, Chatterjee S, Cipollo J. The Glycoproteomics-MS for Studying Glycosylation in Cardiac Hypertrophy and Heart Failure. Proteomics Clin Appl 2018; 12:e1700075. [PMID: 29424483 DOI: 10.1002/prca.201700075] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 11/10/2017] [Indexed: 12/13/2022]
Abstract
With recent advancements of analytical techniques and mass spectrometric instrumentations, proteomics has been widely exploited to study the regulation of protein expression associated with disease states. Many proteins may undergo abnormal change in response to the stimulants, leading to regulation of posttranslationally modified proteins. In this review, the physiological and pathological roles of protein glycosylation in cardiac hypertrophy is discussed, and how the signal pathways regulate heart function and leading to heart failure. The analytical methods for analysis of protein glycosylation, including glycans, glycosite, occupancy, and heterogeneity is emphasized. The rationale on glycoproteins as disease biomarkers is also discussed. The authors also propose potential research in this field and challenges in the diagnosis and treatment of this disease.
Collapse
Affiliation(s)
- Shuang Yang
- Laboratory of Bacterial Polysaccharides, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Subroto Chatterjee
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - John Cipollo
- Laboratory of Bacterial Polysaccharides, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
3
|
Gharibi A, La Kim S, Molnar J, Brambilla D, Adamian Y, Hoover M, Hong J, Lin J, Wolfenden L, Kelber JA. ITGA1 is a pre-malignant biomarker that promotes therapy resistance and metastatic potential in pancreatic cancer. Sci Rep 2017; 7:10060. [PMID: 28855593 PMCID: PMC5577248 DOI: 10.1038/s41598-017-09946-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/31/2017] [Indexed: 12/24/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has single-digit 5-year survival rates at <7%. There is a dire need to improve pre-malignant detection methods and identify new therapeutic targets for abrogating PDAC progression. To this end, we mined our previously published pseudopodium-enriched (PDE) protein/phosphoprotein datasets to identify novel PDAC-specific biomarkers and/or therapeutic targets. We discovered that integrin alpha 1 (ITGA1) is frequently upregulated in pancreatic cancers and associated precursor lesions. Expression of ITGA1-specific collagens within the pancreatic cancer microenvironment significantly correlates with indicators of poor patient prognosis, and depleting ITGA1 from PDAC cells revealed that it is required for collagen-induced tumorigenic potential. Notably, collagen/ITGA1 signaling promotes the survival of ALDH1-positive stem-like cells and cooperates with TGFβ to drive gemcitabine resistance. Finally, we report that ITGA1 is required for TGFβ/collagen-induced EMT and metastasis. Our data suggest that ITGA1 is a new diagnostic biomarker and target that can be leveraged to improve patient outcomes.
Collapse
Affiliation(s)
- Armen Gharibi
- Department of Biology, California State Univeristy Northridge, Northridge, California, USA
| | - Sa La Kim
- Department of Biology, California State Univeristy Northridge, Northridge, California, USA
| | - Justin Molnar
- Department of Biology, California State Univeristy Northridge, Northridge, California, USA
| | - Daniel Brambilla
- Department of Biology, California State Univeristy Northridge, Northridge, California, USA
| | - Yvess Adamian
- Department of Biology, California State Univeristy Northridge, Northridge, California, USA
| | - Malachia Hoover
- Department of Biology, California State Univeristy Northridge, Northridge, California, USA
| | - Julie Hong
- Department of Biology, California State Univeristy Northridge, Northridge, California, USA
| | - Joy Lin
- Department of Biology, California State Univeristy Northridge, Northridge, California, USA
| | - Laurelin Wolfenden
- Department of Biology, California State Univeristy Northridge, Northridge, California, USA
| | - Jonathan A Kelber
- Department of Biology, California State Univeristy Northridge, Northridge, California, USA.
| |
Collapse
|
4
|
Álvarez-Santos M, Carbajal V, Tellez-Jiménez O, Martínez-Cordero E, Ruiz V, Hernández-Pando R, Lascurain R, Santibañez-Salgado A, Bazan-Perkins B. Airway Hyperresponsiveness in Asthma Model Occurs Independently of Secretion of β1 Integrins in Airway Wall and Focal Adhesions Proteins Down Regulation. J Cell Biochem 2016; 117:2385-96. [PMID: 26969873 DOI: 10.1002/jcb.25536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 03/07/2016] [Indexed: 12/18/2022]
Abstract
The extracellular domains of some membrane proteins can be shed from the cell. A similar phenomenon occurs with β1 integrins (α1β1 and α2β1) in guinea pig. The putative role of β1 integrin subunit alterations due to shedding in airway smooth muscle (ASM) in an allergic asthma model was evaluated. Guinea pigs were sensitized and challenged with antigen. Antigenic challenges induced bronchoobstruction and hyperresponsiveness at the third antigenic challenge. Immunohistochemistry and immunoelectronmicroscopy studies showed that the cytosolic and extracellular domains of the β1 integrin subunit shared the same distribution in airway structures in both groups. Various polypeptides with similar molecular weights were detected with both the cytosolic and extracellular β1 integrin subunit antibodies in isolated airway myocytes and the connective tissue that surrounds the ASM bundle. Flow cytometry and Western blot studies showed that the expression of cytosolic and extracellular β1 integrin subunit domains in ASM was similar between groups. An increment of ITGB1 mRNA in ASM was observed in the asthma model group. RACE-PCR of ITGB1 in ASM did not show splicing variants. The expression levels of integrin-linked kinase (ILK) and paxillin diminished in the asthma model, but not talin. The levels of phosphorylation of myosin phosphatase target subunit 1 (MYPT1) at Thr(696) increased in asthma model. Our work suggests that β1 integrin is secreted in guinea pig airway wall. This secretion is not altered in asthma model; nevertheless, β1 integrin cytodomain assembly proteins in focal cell adhesions in which ILK and paxillin are involved are altered in asthma model. J. Cell. Biochem. 117: 2385-2396, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mayra Álvarez-Santos
- Departamento de Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlapan 4502, Col. Sección XVI, México DF, 14080, México
| | - Verónica Carbajal
- Departamento de Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlapan 4502, Col. Sección XVI, México DF, 14080, México
| | - Olivia Tellez-Jiménez
- Departamento de Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlapan 4502, Col. Sección XVI, México DF, 14080, México
| | - Erasmo Martínez-Cordero
- Departamento de Enfermedades Crónico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlapan 4502, Col. Sección XVI, México DF, 14080, México
| | - Victor Ruiz
- Laboratorio de Biología Molecular, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlapan 4502, Col. Sección XVI, México DF, 14080, México
| | - Rogelio Hernández-Pando
- Departamento de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición, Vasco de Quiroga 15, México DF, 14000, México
| | - Ricardo Lascurain
- Departamento de Bioquímica, Universidad Nacional Autónoma de México, México DF, 70159, Mexico
| | - Alfredo Santibañez-Salgado
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlapan 4502, Col. Sección XVI, México DF, 14080, México
| | - Blanca Bazan-Perkins
- Departamento de Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlapan 4502, Col. Sección XVI, México DF, 14080, México
| |
Collapse
|
5
|
Ueda K, Takami S, Saichi N, Daigo Y, Ishikawa N, Kohno N, Katsumata M, Yamane A, Ota M, Sato TA, Nakamura Y, Nakagawa H. Development of serum glycoproteomic profiling technique; simultaneous identification of glycosylation sites and site-specific quantification of glycan structure changes. Mol Cell Proteomics 2011; 9:1819-28. [PMID: 20811073 DOI: 10.1074/mcp.2010/000893] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Characterization and interpretation of disease-associated alterations of protein glycosylation are the central aims of the emerging glycoproteomics projects, which are expected to lead to more sensitive and specific diagnosis and improve therapeutic outcomes for various diseases. Here we report a new approach to identify carbohydrate-targeting serum biomarkers, termed isotopic glycosidase elution and labeling on lectin-column chromatography (IGEL). This technology is based on glycan structure-specific enrichment of glycopeptides by lectin-column chromatography and site-directed tagging of N-glycosylation sites by (18)O during the elution with N-glycosidase. The combination of IGEL with 8-plex isobaric tag for relative and absolute quantitation (iTRAQ) stable isotope labeling enabled us not only to identify N-glycosylation sites effectively but also to compare glycan structures on each glycosylation site quantitatively in a single LC/MS/MS analysis. We applied this method to eight sera from lung cancer patients and controls, and finally identified 107 glycopeptides in their sera, including A2GL_Asn151, A2GL_Asn290, CD14_Asn132, CO8A_Asn417, C163A_Asn64, TIMP1_Asn30, and TSP1_Asn1049 which showed the significant change of the affinity to Concanavalin A (ConA) lectin between the lung cancer samples and the controls (p < 0.05 and more than twofold change). These screening results were further confirmed by the conventional lectin-column chromatography and immunoblot analysis using additional serum samples. Our novel methodology, which should be valuable for diverse biomarker discoveries, can provide high-throughput and quantitative profiling of glycan structure alterations.
Collapse
Affiliation(s)
- Koji Ueda
- Laboratory for Biomarker Development, Center for Genomic Medicine, RIKEN, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Ueda K, Takami S, Saichi N, Daigo Y, Ishikawa N, Kohno N, Katsumata M, Yamane A, Ota M, Sato TA, Nakamura Y, Nakagawa H. Development of Serum Glycoproteomic Profiling Technique; Simultaneous Identification of Glycosylation Sites and Site-Specific Quantification of Glycan Structure Changes. Mol Cell Proteomics 2010. [DOI: 10.1074/mcp.m110.000893] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
7
|
Bank I, Kapyla J, Grinbaum A, Doolman R, Bank J, Sela BA. Analysis of cell-free human alpha1 integrin with a monoclonal antibody to the I-domain: detection in ocular fluid and function as an adhesion substrate. CELL COMMUNICATION & ADHESION 2004; 8:113-23. [PMID: 11936186 DOI: 10.3109/15419060109080711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The alpha1 beta1 integrin, an inserted (1) domain containing collagen receptor, is expressed in the cell surface membrane of normal and malignant cells, and may play a role in their migration through tissues or in metastatic spread. Here we report that a functional anti-human alpha1beta1 integrin monoclonal antibody (mAb) (1B3.1) directly and specifically binds plastic bound recombinant human alpha1 I-domain protein containing the collagen binding site. Detection was diminished by acidification of the I-domain protein but was enhanced by increasing concentrations of Mg2+ cation. Furthermore, we detected binding of the mAb to proteins from the ocular fluids of 6 patients, with the highest concentration, corresponding to 22.1 ng/ml of I-domain, found in a sample from the eye of a patient with metastatic lung adenocarcinoma. Interestingly, we found that both SKNSH neuroblastoma cells and virally transformed human T cells adhered specifically to plastic wells coated with either immobilized collagen IV or alpha1 I-domain. MAb I B3.1 inhibited adhesion to collagen IV but not to immobilized I-domain. These results suggest a novel function for cell free alpha1 I-domain as a substrate for cellular adhesion, which may have relevance in tumor spread in vivo.
Collapse
Affiliation(s)
- I Bank
- Department of Medicine, Chaim Sheba Medical Center, Tel Hashomer, Israel.
| | | | | | | | | | | |
Collapse
|