1
|
Hp-s1 Ganglioside Suppresses Proinflammatory Responses by Inhibiting MyD88-Dependent NF-κB and JNK/p38 MAPK Pathways in Lipopolysaccharide-Stimulated Microglial Cells. Mar Drugs 2020; 18:md18100496. [PMID: 33003399 PMCID: PMC7600735 DOI: 10.3390/md18100496] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Hp-s1 ganglioside is isolated from the sperm of sea urchin (Hemicentrotus pulcherrimus). In addition to neuritogenic activity, the biological function of Hp-s1 in neuroinflammation is unknown. In this study, we investigated the anti-neuroinflammatory effect of Hp-s1 on lipopolysaccharide (LPS)-stimulated microglial cells. MG6 microglial cells were stimulated with LPS in the presence or absence of different Hp-s1 concentrations. The anti-inflammatory effect and underlying mechanism of Hp-s1 in LPS-activated microglia cells were assessed through a Cell Counting kit-8 assay, Western blot analysis, and immunofluorescence. We found that Hp-s1 suppressed not only the expression of inducible nitric oxide synthase and cyclooxygenase-2 but also the expression of proinflammatory cytokines, such as TNF-α, IL-1β, and IL-6. Hp-s1 inhibited the LPS-induced NF-κB signaling pathway by attenuating the phosphorylation and translocation of NF-κB p65 and by disrupting the degradation and phosphorylation of inhibitor κB-α (IκBα). Moreover, Hp-s1 inhibited the LPS-induced phosphorylation of p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK). Hp-s1 also reduced the expression of myeloid differentiation factor 88 (MyD88) and TNF receptor-associated factors 6 (TRAF6), which are prerequisites for NF-κB and MAPKs activation. These findings indicated that Hp-s1 alleviated LPS-induced proinflammatory responses in microglial cells by downregulating MyD88-mediated NF-κB and JNK/p38 MAPK signaling pathways, suggesting further evaluation as a new anti-neuroinflammatory drug.
Collapse
|
2
|
Ersek A, Xu K, Antonopoulos A, Butters TD, Santo AE, Vattakuzhi Y, Williams LM, Goudevenou K, Danks L, Freidin A, Spanoudakis E, Parry S, Papaioannou M, Hatjiharissi E, Chaidos A, Alonzi DS, Twigg G, Hu M, Dwek RA, Haslam SM, Roberts I, Dell A, Rahemtulla A, Horwood NJ, Karadimitris A. Glycosphingolipid synthesis inhibition limits osteoclast activation and myeloma bone disease. J Clin Invest 2015; 125:2279-2292. [PMID: 25915583 PMCID: PMC4518690 DOI: 10.1172/jci59987] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 03/19/2015] [Indexed: 01/06/2023] Open
Abstract
Glycosphingolipids (GSLs) are essential constituents of cell membranes and lipid rafts and can modulate signal transduction events. The contribution of GSLs in osteoclast (OC) activation and osteolytic bone diseases in malignancies such as the plasma cell dyscrasia multiple myeloma (MM) is not known. Here, we tested the hypothesis that pathological activation of OCs in MM requires de novo GSL synthesis and is further enhanced by myeloma cell-derived GSLs. Glucosylceramide synthase (GCS) inhibitors, including the clinically approved agent N-butyl-deoxynojirimycin (NB-DNJ), prevented OC development and activation by disrupting RANKL-induced localization of TRAF6 and c-SRC into lipid rafts and preventing nuclear accumulation of transcriptional activator NFATc1. GM3 was the prevailing GSL produced by patient-derived myeloma cells and MM cell lines, and exogenous addition of GM3 synergistically enhanced the ability of the pro-osteoclastogenic factors RANKL and insulin-like growth factor 1 (IGF-1) to induce osteoclastogenesis in precursors. In WT mice, administration of GM3 increased OC numbers and activity, an effect that was reversed by treatment with NB-DNJ. In a murine MM model, treatment with NB-DNJ markedly improved osteolytic bone disease symptoms. Together, these data demonstrate that both tumor-derived and de novo synthesized GSLs influence osteoclastogenesis and suggest that NB-DNJ may reduce pathological OC activation and bone destruction associated with MM.
Collapse
Affiliation(s)
- Adel Ersek
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Ke Xu
- Centre for Haematology, Department of Medicine, and
| | - Aristotelis Antonopoulos
- Division of Molecular Biosciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | - Terry D. Butters
- Institute of Glycobiology, Department of Biochemistry, Oxford, United Kingdom
| | - Ana Espirito Santo
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Youridies Vattakuzhi
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Lynn M. Williams
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | | | - Lynett Danks
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Andrew Freidin
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | | | - Simon Parry
- Division of Molecular Biosciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | - Maria Papaioannou
- Centre for Haematology, Department of Medicine, and
- AHEPA Hospital, Aristotelion University Medical School, Thessaloniki, Greece
| | | | | | - Dominic S. Alonzi
- Institute of Glycobiology, Department of Biochemistry, Oxford, United Kingdom
| | - Gabriele Twigg
- Institute of Glycobiology, Department of Biochemistry, Oxford, United Kingdom
| | - Ming Hu
- Centre for Haematology, Department of Medicine, and
| | - Raymond A. Dwek
- Institute of Glycobiology, Department of Biochemistry, Oxford, United Kingdom
| | - Stuart M. Haslam
- Division of Molecular Biosciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | | | - Anne Dell
- Division of Molecular Biosciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | | | - Nicole J. Horwood
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
3
|
Boccuto L, Aoki K, Flanagan-Steet H, Chen CF, Fan X, Bartel F, Petukh M, Pittman A, Saul R, Chaubey A, Alexov E, Tiemeyer M, Steet R, Schwartz CE. A mutation in a ganglioside biosynthetic enzyme, ST3GAL5, results in salt & pepper syndrome, a neurocutaneous disorder with altered glycolipid and glycoprotein glycosylation. Hum Mol Genet 2013; 23:418-33. [PMID: 24026681 DOI: 10.1093/hmg/ddt434] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
'Salt & Pepper' syndrome is an autosomal recessive condition characterized by severe intellectual disability, epilepsy, scoliosis, choreoathetosis, dysmorphic facial features and altered dermal pigmentation. High-density SNP array analysis performed on siblings first described with this syndrome detected four shared regions of loss of heterozygosity (LOH). Whole-exome sequencing narrowed the candidate region to chromosome 2p11.2. Sanger sequencing confirmed a homozygous c.994G>A transition (p.E332K) in the ST3GAL5 gene, which encodes for a sialyltransferase also known as GM3 synthase. A different homozygous mutation of this gene has been previously associated with infantile-onset epilepsy syndromes in two other cohorts. The ST3GAL5 enzyme synthesizes ganglioside GM3, a glycosophingolipid enriched in neural tissue, by adding sialic acid to lactosylceramide. Unlike disorders of glycosphingolipid (GSL) degradation, very little is known regarding the molecular and pathophysiologic consequences of altered GSL biosynthesis. Glycolipid analysis confirmed a complete lack of GM3 ganglioside in patient fibroblasts, while microarray analysis of glycosyltransferase mRNAs detected modestly increased expression of ST3GAL5 and greater changes in transcripts encoding enzymes that lie downstream of ST3GAL5 and in other GSL biosynthetic pathways. Comprehensive glycomic analysis of N-linked, O-linked and GSL glycans revealed collateral alterations in response to loss of complex gangliosides in patient fibroblasts and in zebrafish embryos injected with antisense morpholinos that targeted zebrafish st3gal5 expression. Morphant zebrafish embryos also exhibited increased apoptotic cell death in multiple brain regions, emphasizing the importance of GSL expression in normal neural development and function.
Collapse
|
4
|
Prokazova NV, Samovilova NN, Gracheva EV, Golovanova NK. Ganglioside GM3 and its biological functions. BIOCHEMISTRY (MOSCOW) 2009; 74:235-49. [PMID: 19364317 DOI: 10.1134/s0006297909030018] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Metabolism, topology, and possible mechanisms for regulation of the ganglioside GM3 content in the cell are reviewed. Under consideration are biological functions of GM3, such as involvement in cell differentiation, proliferation, oncogenesis, and apoptosis.
Collapse
Affiliation(s)
- N V Prokazova
- Institute of Experimental Cardiology, Russian Cardiology Research Center, Russian Ministry of Health, 121552 Moscow, Russia.
| | | | | | | |
Collapse
|
5
|
Park JE, Wu DY, Prendes M, Lu SX, Ragupathi G, Schrantz N, Chapman PB. Fine specificity of natural killer T cells against GD3 ganglioside and identification of GM3 as an inhibitory natural killer T-cell ligand. Immunology 2008; 123:145-55. [PMID: 18154620 DOI: 10.1111/j.1365-2567.2007.02760.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
GD3, a ganglioside expressed on melanoma, is the only tumour-associated glycolipid described to date that can induce a CD1d-restricted natural killer T (NKT)-cell response. We analysed the fine specificity of GD3-reactive NKT cells and discovered that immunization with GD3 induced two populations of GD3-reactive NKT cells. One population was CD4+ CD8- and was specific for GD3; the other population was CD4- CD8- and cross-reacted with GM3 in a CD1d-restricted manner, but did not cross-react with GM2, GD2, or lactosylceramide. This indicated that the T-cell receptors reacting with GD3 recognize glucose-galactose linked to at least one N-acetyl-neuraminic acid but will not accommodate a terminal N-acetylgalactosamine. Immunization with GM2, GM3, GD2, or lactosylceramide did not induce an NKT-cell response. Coimmunization of GM3-loaded antigen-presenting cells (APCs) with GD3-loaded APCs suppressed the NKT-cell response to GD3 in a CD1d-restricted manner. This suppressive effect was specific for GM3 and was a local effect lasting 2-4 days. In vitro, GM3-loaded APCs also suppressed the interleukin-4 response, but not the interferon-gamma response, of NKT cells to alpha-galactosylceramide. However, there was no effect on the T helper type 2 responses of conventional T cells. We found that this suppression was not mediated by soluble factors. We hypothesize that GM3 induces changes to the APC that lead to suppression of T helper type 2-like NKT-cell responses.
Collapse
Affiliation(s)
- Jun-Eui Park
- Department of Medicine, Swim Across America Laboratory, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Gracheva EV, Samovilova NN, Golovanova NK, Andreeva ER, Andrianova IV, Tararak EM, Prokazova NV. Activation of ganglioside GM3 biosynthesis in human monocyte/macrophages during culturing in vitro. BIOCHEMISTRY (MOSCOW) 2007; 72:772-7. [PMID: 17680770 DOI: 10.1134/s0006297907070127] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We found that GM3 levels in human peripheral blood monocytes and cultured monocyte-derived macrophages were 0.37 and 2.7 microg per million cells, respectively. GM3 synthase of monocytes and to a greater extent of monocyte-derived macrophages was shown to be able to sialylate endogenous substrate, lactosylceramide (LacCer), to form GM3. With exogenously added LacCer, GM3 synthase activity was 57.1 and 563 pmol/h per mg protein in monocytes and monocyte-derived macrophages, respectively. The revealed changes in ganglioside GM3 biosynthesis are specific as the activity of some other sialyltransferases under these conditions was not altered. Human anti-GM3 synthase antibody detected in monocytes a main protein with molecular weight of 60 kD and minor proteins with molecular masses of 52 and 64 kD. In monocyte-derived macrophages the amounts of 60 kD protein and especially 64 kD protein sharply rose. Thus, the increase in ganglioside GM3 levels, GM3 synthase activity, and the enzyme amounts during culturing of monocyte/macrophages may be one of the mechanisms of in vivo increased ganglioside GM3 levels in arterial atherosclerotic lesions.
Collapse
Affiliation(s)
- E V Gracheva
- Institute of Experimental Cardiology, Cardiology Research Center, Russian Ministry of Health, Moscow, 121552, Russia
| | | | | | | | | | | | | |
Collapse
|
7
|
de Leòn J, Fernández A, Mesa C, Clavel M, Fernández LE. Role of tumour-associated N-glycolylated variant of GM3 ganglioside in cancer progression: effect over CD4 expression on T cells. Cancer Immunol Immunother 2006; 55:443-50. [PMID: 16208470 PMCID: PMC11030556 DOI: 10.1007/s00262-005-0041-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2005] [Accepted: 06/07/2005] [Indexed: 10/25/2022]
Abstract
Gangliosides have diverse biological functions including modulation of immune system response. These molecules are differentially expressed on malignant cells compared with the corresponding normal ones and are involved in cancer progression affecting, in different ways, the host's anti-tumour specific immune responses. Although in humans the N-glycolylated variant of GM3 ganglioside is almost exclusively expressed in tumour tissues, the significance of this glycolipid for malignant cell biology remains obscure, while for NAcGM3 strong immune suppressive effects have been reported. The present work demonstrates, for the first time, the capacity of NGcGM3 ganglioside to down-modulate CD4 expression in murine and human T lymphocytes, especially in non-activated T cells. Thirty and tenfold reductions in CD4 expression were induced by purified NGcGM3 ganglioside in murine and human T lymphocytes, respectively. The CD4 complete recovery in these cells occurred after 48 h of ganglioside removal, due to neo-synthesis. Restored T cells kept similar sensitivity to ganglioside-induced CD4 down-modulation after a new challenge. In addition, a clear association between NGcGM3 insertion in lymphocyte plasma membranes and the CD4 down-modulation effect was documented. Notably, a possible role of this ganglioside in tumour progression, taking advantage of the X63 myeloma model, was also outlined. The relevance of these findings, characterizing NGcGM3 as a possible tumour immunesurveillance inhibitor and supporting the reason for its neo-expression in certain human cancers, is contributing to this unique heterophilic ganglioside validation as target for cancer immunotherapy.
Collapse
Affiliation(s)
- Joel de Leòn
- Vaccine Department, Centre of Molecular Immunology, 216 esq 15, Atabey, Playa, 16040, C. Habana, Cuba.
| | | | | | | | | |
Collapse
|
8
|
Hashiramoto A, Mizukami H, Yamashita T. Ganglioside GM3 promotes cell migration by regulating MAPK and c-Fos/AP-1. Oncogene 2006; 25:3948-55. [PMID: 16491123 DOI: 10.1038/sj.onc.1209416] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gangliosides have been proposed as modulators of transmembrane signaling. Recently, GM3, a glycosphingolipid containing monosaialic acids, is thought to be one of the key molecules of signal transduction in mammalian cells. In this study, we used mouse embryonic fibroblast cell lines (MEFs) established from sialyltransferase-I knockout mice (GM3 synthase KO mice) to evaluate the regulation of mitogenic signals by gangliosides. Cell proliferation assay revealed a higher growth potential of GM3 KO MEFs. Immunoblots showed upregulation of Ras/Raf/MEK/ERK pathway in GM3 KO MEFs, and these signals resulted in enhanced translocation of ERK into the nuclei. Further, both exogenous and endogenous add-back of GM3 decreased the activities of MAPK in GM3 KO MEFs. In addition, GM3 KO MEFs formed foci in high-density culture condition, and analyses of cell cycle modulators revealed the resistance of GM3 KO MEFs for entering cell cycle arrest. Finally, sustained expressions of c-Fos in GM3 KO MEFs were shown to correlate with DNA-binding activity between c-Fos and AP-1. These results demonstrate that the deletion of sialyltransferase-I changes the character of MEFs to a highly activated state of the MAPK pathway, indicating the critical role of GM3 as a regulator of membrane-transmitted signals.
Collapse
Affiliation(s)
- A Hashiramoto
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
9
|
Castiglione M, Spinsanti P, Iacovelli L, Lenti L, Martini F, Gradini R, Di Giorgi Gerevini V, Caricasole A, Caruso A, De Maria R, Nicoletti F, Melchiorri D. Activation of Fas receptor is required for the increased formation of the disialoganglioside GD3 in cultured cerebellar granule cells committed to apoptotic death. Neuroscience 2004; 126:889-98. [PMID: 15207324 DOI: 10.1016/j.neuroscience.2004.04.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2004] [Indexed: 10/26/2022]
Abstract
Apoptosis was induced in cultured cerebellar granule cells by lowering extracellular K+ concentrations (usually from 25 to 10 mM). The apoptotic phenotype was preceded by an early and transient increase in the intracellular levels of the disialoganglioside, GD3, which behaves as a putative pro-apoptotic factor. We examined whether activation of Fas receptor mediates the increase in GD3 formation in granule cells committed to die. Degenerating granule cells showed increased expression of both Fas receptor and its ligand (Fas-L), at times that coincided with the increase in GD3 levels and the induction of GD3 synthase mRNA. Addition of neutralizing anti-Fas-L antibodies reduced the extent of 'low-K+'-induced apoptosis and abolished the increase in GD3 levels and GD3 synthase mRNA. Similar reductions were observed in cultures prepared from gld or lpr mice, which harbor loss-of-function mutations of Fas-L and Fas receptor, respectively. In addition, exogenous application of soluble Fas-L further enhanced both the increase in GD3 formation and cell death in cultured granule cells switched from 25 into 10 mM K+. We conclude that activation of Fas receptor is entirely responsible for the increase in GD3 levels and contributes to the development of apoptosis by trophic deprivation in cultured cerebellar granule cells.
Collapse
Affiliation(s)
- M Castiglione
- Department of Human Physiology and Pharmacology, University of Rome La Sapienza, Piazzale Aldo Moro, 5, 00185, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|