1
|
Marquez J, Dong J, Hayashi J, Serrero G. Prostaglandin F2 Receptor Negative Regulator (PTGFRN) Expression Correlates With a Metastatic-like Phenotype in Epidermoid Carcinoma, Pediatric Medulloblastoma, and Mesothelioma. J Cell Biochem 2024; 125:e30616. [PMID: 38924562 DOI: 10.1002/jcb.30616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024]
Abstract
Prostaglandin F2 receptor negative regulator (PTGFRN) is a transmembrane protein associated with metastatic characteristics of certain cancer types. However, it remains poorly characterized and its direct function in cancer remains unclear. The study presented here aims to further examine whether PTGFRN expression affects a cancer cell's phenotype, as well as metastatic-like characteristics. We used stable shRNA and cDNA transfections to respectively knockdown and overexpress PTGFRN in three different cancer cell lines, two of which are representative of rare and aggressive cancers (Mesothelioma and Pediatric Medulloblastoma). We then examined the characteristics of the resulting clones and showed a decrease in proliferation, migration, colony formation, and spheroid growth capabilities in cells where PTGFRN expression had been inhibited, while cells overexpressing PTGFRN showed the opposite. In addition, we showed that PTGFRN displayed direct binding to two protein partners, Integrin β1 and E. Cadherin, the latter of which is a novel direct binding partner to PTGFRN. Furthermore, silencing PTGFRN expression impacted the cellular process of autophagy, thereby providing another avenue by which PTGFRN potentially contributes to a cancer cell phenotype. Our findings demonstrate the potential role of PTGFRN in cancer metastasis and suggest PTGFRN as a future target for drug development in the treatment of metastatic cancers.
Collapse
Affiliation(s)
- Jorge Marquez
- Department of Pharmaceutical Sciences, Baltimore School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
- Target Discovery Division, A&G Pharmaceutical Inc., Columbia, Maryland, USA
| | - Jianping Dong
- Target Discovery Division, A&G Pharmaceutical Inc., Columbia, Maryland, USA
| | - Jun Hayashi
- Precision Antibody Service, Columbia, Maryland, USA
| | - Ginette Serrero
- Target Discovery Division, A&G Pharmaceutical Inc., Columbia, Maryland, USA
- Precision Antibody Service, Columbia, Maryland, USA
| |
Collapse
|
2
|
Rui T, Zhang X, Feng S, Huang H, Zhan S, Xie H, Zhou L, Zheng S, Ling Q. MiR-516a-3p is a Novel Mediator of Hepatocellular Carcinoma Oncogenic Activity and Cellular Metabolism. ENGINEERING 2022; 16:162-175. [DOI: 10.1016/j.eng.2021.07.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2025]
|
3
|
Mala U, Baral TK, Somasundaram K. Integrative analysis of cell adhesion molecules in glioblastoma identified prostaglandin F2 receptor inhibitor (PTGFRN) as an essential gene. BMC Cancer 2022; 22:642. [PMID: 35690717 PMCID: PMC9188228 DOI: 10.1186/s12885-022-09682-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/13/2022] [Indexed: 11/27/2022] Open
Abstract
Background Glioblastoma (GBM) is the most common primary malignant brain tumor in adults exhibiting infiltration into surrounding tissues, recurrence, and resistance to therapy. GBM infiltration is accomplished by many deregulated factors such as cell adhesion molecules (CAMs), which are membrane proteins that participate in cell-cell and cell-ECM interactions to regulate survival, proliferation, migration, and stemness. Methods A comprehensive bioinformatics analysis of CAMs (n = 518) in multiple available datasets revealed genetic and epigenetic alterations among CAMs in GBM. Univariate Cox regression analysis using TCGA dataset identified 127 CAMs to be significantly correlated with survival. The poor prognostic indicator PTGFRN was chosen to study its role in glioma. Silencing of PTGFRN in glioma cell lines was achieved by the stable expression of short hairpin RNA (shRNA) against the PTGFRN gene. PTGFRN was silenced and performed cell growth, migration, invasion, cell cycle, and apoptosis assays. Neurosphere and limiting dilution assays were also performed after silencing of PTGFRN in GSCs. Results Among the differentially regulated CAMs (n = 181, 34.9%), major proportion of them were found to be regulated by miRNAs (n = 95, 49.7%) followed by DNA methylation (n = 32, 16.7%), and gene copy number variation (n = 12, 6.2%). We found that PTGFRN to be upregulated in GBM tumor samples and cell lines with a significant poor prognostic correlation with patient survival. Silencing PTGFRN diminished cell growth, colony formation, anchorage-independent growth, migration, and invasion and led to cell cycle arrest and induction of apoptosis. At the mechanistic level, silencing of PTGFRN reduced pro-proliferative and promigratory signaling pathways such as ERK, AKT, and mTOR. PTGFRN upregulation was found to be due to the loss of its promoter methylation and downregulation of miR-137 in GBM. PTGFRN was also found to be higher in glioma stem-like cells (GSCs) than the matched differentiated glioma cells (DGCs) and is required for GSC growth and survival. Silencing of PTGFRN in GSCs reduced transcript levels of reprogramming factors (Olig2, Pou3f2, Sall2, and Sox2). Conclusion In this study, we provide a comprehensive overview of the differential regulation of CAMs and the probable causes for their deregulation in GBM. We also establish an oncogenic role of PTGFRN and its regulation by miR-137 in GBM, thus signifying it as a potential therapeutic target. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09682-2.
Collapse
Affiliation(s)
- Uchurappa Mala
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Tapan Kumar Baral
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Kumaravel Somasundaram
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
4
|
Marquez J, Dong J, Dong C, Tian C, Serrero G. Identification of Prostaglandin F2 Receptor Negative Regulator (PTGFRN) as an internalizable target in cancer cells for antibody-drug conjugate development. PLoS One 2021; 16:e0246197. [PMID: 33503070 PMCID: PMC7840024 DOI: 10.1371/journal.pone.0246197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/14/2021] [Indexed: 11/19/2022] Open
Abstract
Antibody-drug conjugates (ADC) are effective antibody-based therapeutics for hematopoietic and lymphoid tumors. However, there is need to identify new targets for ADCs, particularly for solid tumors and cancers with unmet needs. From a hybridoma library developed against cancer cells, we selected the mouse monoclonal antibody 33B7, which was able to bind to, and internalize, cancer cell lines. This antibody was used for identification of the target by immunoprecipitation and mass spectrometric analysis, followed by target validation. After target validation, 33B7 binding and target positivity were tested by flow cytometry and western blot analysis in several cancer cell lines. The ability of 33B7 conjugated to saporin to inhibit in vitro proliferation of PTFRN positive cell lines was investigated, as well as the 33B7 ADC in vivo effect on tumor growth in athymic mice. All flow cytometry and in vitro internalization assays were analyzed for statistical significance using a Welsh's T-test. Animal studies were analyzed using Two-Way Analysis of Variance (ANOVA) utilizing post-hoc Bonferroni analysis, and/or Mixed Effects analysis. The 33B7 cell surface target was identified as Prostaglandin F2 Receptor Negative Regulator (PTGFRN), a transmembrane protein in the Tetraspanin family. This target was confirmed by showing that PTGFRN-expressing cells bound and internalized 33B7, compared to PTGFRN negative cells. Cells able to bind 33B7 were PTGFRN-positive by Western blot analysis. In vitro treatment PTGFRN-positive cancer cell lines with the 33B7-saporin ADC inhibited their proliferation in a dose-dependent fashion. 33B7 conjugated to saporin was also able to block tumor growth in vivo in mouse xenografts when compared to a control ADC. These findings show that screening antibody libraries for internalizing antibodies in cancer cell lines is a good approach to identify new cancer targets for ADC development. These results suggest PTGFRN is a possible therapeutic target via antibody-based approach for certain cancers.
Collapse
Affiliation(s)
- Jorge Marquez
- Target Discovery Division, A&G Pharmaceutical, Inc., Columbia, Maryland, United States of America
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore School of Pharmacy, Baltimore, Maryland, United States of America
| | - Jianping Dong
- Target Discovery Division, A&G Pharmaceutical, Inc., Columbia, Maryland, United States of America
| | - Chun Dong
- Precision Antibody Division, A&G Pharmaceutical, Inc., Columbia, Maryland, United States of America
| | - Changsheng Tian
- Target Discovery Division, A&G Pharmaceutical, Inc., Columbia, Maryland, United States of America
| | - Ginette Serrero
- Target Discovery Division, A&G Pharmaceutical, Inc., Columbia, Maryland, United States of America
- Precision Antibody Division, A&G Pharmaceutical, Inc., Columbia, Maryland, United States of America
| |
Collapse
|
5
|
Aguila B, Morris AB, Spina R, Bar E, Schraner J, Vinkler R, Sohn JW, Welford SM. The Ig superfamily protein PTGFRN coordinates survival signaling in glioblastoma multiforme. Cancer Lett 2019; 462:33-42. [PMID: 31377205 DOI: 10.1016/j.canlet.2019.07.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/23/2019] [Accepted: 07/27/2019] [Indexed: 01/20/2023]
Abstract
Glioblastoma multiforme (GBM) is the most malignant primary brain tumor with a median survival of approximately 14 months. Despite aggressive treatment of surgical resection, chemotherapy and radiation therapy, only 3-5% of GBM patients survive more than 3 years. Contributing to this poor therapeutic response, it is believed that GBM contains both intrinsic and acquired mechanisms of resistance, including resistance to radiation therapy. In order to define novel mediators of radiation resistance, we conducted a functional knockdown screen, and identified the immunoglobulin superfamily protein, PTGFRN. In GBM, PTGFRN is found to be overexpressed and to correlate with poor survival. Reducing PTGFRN expression radiosensitizes GBM cells and potently decreases the rate of cell proliferation and tumor growth. Further, PTGFRN inhibition results in significant reduction of PI3K p110β and phosphorylated AKT, due to instability of p110β. Additionally, PTGFRN inhibition decreases nuclear p110β leading to decreased DNA damage sensing and DNA damage repair. Therefore overexpression of PTGFRN in glioblastoma promotes AKT-driven survival signaling and tumor growth, as well as increased DNA repair signaling. These findings suggest PTGFRN is a potential signaling hub for aggressiveness in GBM.
Collapse
Affiliation(s)
- Brittany Aguila
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Adina Brett Morris
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Raffaella Spina
- Department of Neurological Surgery, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Eli Bar
- Department of Neurological Surgery, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Julie Schraner
- Department of Radiation Onoclogy, University Hospitals Cleveland Medical Center, Seidman Cancer Center, Cleveland, OH, 44106, USA
| | - Robert Vinkler
- Department of Radiation Onoclogy, University Hospitals Cleveland Medical Center, Seidman Cancer Center, Cleveland, OH, 44106, USA
| | - Jason W Sohn
- Department of Radiation Oncology, Allegheny Health Network, Pittsburgh, PA, 15212, USA
| | - Scott M Welford
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.
| |
Collapse
|
6
|
Ahmed K, LaPierre MP, Gasser E, Denzler R, Yang Y, Rülicke T, Kero J, Latreille M, Stoffel M. Loss of microRNA-7a2 induces hypogonadotropic hypogonadism and infertility. J Clin Invest 2017; 127:1061-1074. [PMID: 28218624 DOI: 10.1172/jci90031] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 12/15/2016] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) are negative modulators of gene expression that fine-tune numerous biological processes. miRNA loss-of-function rarely results in highly penetrant phenotypes, but rather, influences cellular responses to physiologic and pathophysiologic stresses. Here, we have reported that a single member of the evolutionarily conserved miR-7 family, miR-7a2, is essential for normal pituitary development and hypothalamic-pituitary-gonadal (HPG) function in adulthood. Genetic deletion of mir-7a2 causes infertility, with low levels of gonadotropic and sex steroid hormones, small testes or ovaries, impaired spermatogenesis, and lack of ovulation in male and female mice, respectively. We found that miR-7a2 is highly expressed in the pituitary, where it suppresses golgi glycoprotein 1 (GLG1) expression and downstream bone morphogenetic protein 4 (BMP4) signaling and also reduces expression of the prostaglandin F2a receptor negative regulator (PTGFRN), an inhibitor of prostaglandin signaling and follicle-stimulating hormone (FSH) and luteinizing hormone (LH) secretion. Our results reveal that miR-7a2 critically regulates sexual maturation and reproductive function by interconnecting miR-7 genomic circuits that regulate FSH and LH synthesis and secretion through their effects on pituitary prostaglandin and BMP4 signaling.
Collapse
|
7
|
Hanagata N, Li X. Osteoblast-enriched membrane protein IFITM5 regulates the association of CD9 with an FKBP11–CD81–FPRP complex and stimulates expression of interferon-induced genes. Biochem Biophys Res Commun 2011; 409:378-84. [DOI: 10.1016/j.bbrc.2011.04.136] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 04/28/2011] [Indexed: 10/18/2022]
|
8
|
CD9P-1 expression correlates with the metastatic status of lung cancer, and a truncated form of CD9P-1, GS-168AT2, inhibits in vivo tumour growth. Br J Cancer 2011; 104:496-504. [PMID: 21206492 PMCID: PMC3049554 DOI: 10.1038/sj.bjc.6606033] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Loss of CD9 expression has been correlated with a higher motility and metastatic potential of tumour cells originating from different organs. However, the mechanism underlying this loss is not yet understood. METHODS We produced a truncated form of partner 1 of CD9 (CD9P-1), GS-168AT2, and developed a new monoclonal antibody directed towards the latter. We measured the expression of CD9 and CD9P-1 in human lung tumours (hLTs), and monitored the level of CD9 in NCI-H460, in vitro and in vivo, in the presence and absence of GS-168AT2. RESULTS Loss of CD9 is inversely related to the expression of CD9P-1, which correlates with the metastatic status of hLT (n=55). In vitro, GS-168AT2 is rapidly internalised and degraded at both the membrane and cytoplasm of NCI-H460, and this correlates with the association of GS-168AT2 with both CD9 and CD81. Intraperitoneal injections of GS-168AT2 in NCI-H460-xenografted Nude mice led to drastic inhibition of tumour growth, as well as to the downregulation of CD9, but not of CD81, in the tumour core. CONCLUSION These findings show for the first time that CD9P-1 expression positively correlates with the metastatic status of hLT, and that the upregulation of CD9P-1 expression could be one of the mechanisms underlying the loss of CD9 in solid tumours. Our study also reveals that, under certain conditions, loss of CD9 could be a tumour growth-limiting phenomenon rather than a tumour growth-promoting one.
Collapse
|
9
|
Park KS, Lee JM, Ku BJ, Jo YS, Lee SK, Min KW, Han KA, Kim HJ, Kim HJ. The Effects of D-Chiro-Inositol on Glucose Metabolism in 3T3-L1 Cells. KOREAN DIABETES JOURNAL 2008. [DOI: 10.4093/kdj.2008.32.3.196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kang Seo Park
- Department of Internal Medicine, Eulji University School of Medicine, Korea
| | | | - Bon Jeong Ku
- Department of Internal Medicine, Chungnam National University School of Medicine, Korea
| | - Young Suk Jo
- Department of Internal Medicine, Eulji University School of Medicine, Korea
| | - Seong Kyu Lee
- Department of Internal Medicine, Eulji University School of Medicine, Korea
| | - Kyung Wan Min
- Department of Internal Medicine, Eulji University School of Medicine, Korea
| | - Kyung Ah Han
- Department of Internal Medicine, Eulji University School of Medicine, Korea
| | - Hyo Jeong Kim
- Department of Internal Medicine, Eulji University School of Medicine, Korea
| | - Hyun Jin Kim
- Department of Internal Medicine, Eulji University School of Medicine, Korea
| |
Collapse
|
10
|
Claas C, Wahl J, Orlicky D, Karaduman H, Schnölzer M, Kempf T, Zöller M. The tetraspanin D6.1A and its molecular partners on rat carcinoma cells. Biochem J 2005; 389:99-110. [PMID: 15725074 PMCID: PMC1184542 DOI: 10.1042/bj20041287] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tetraspanins function as molecular organizers of multi-protein complexes by assembling primary complexes of a relatively low mass into extensive networks involved in cellular signalling. In this paper, we summarize our studies performed on the tetraspanin D6.1A/CO-029/TM4SF3 expressed by rat carcinoma cells. Primary complexes of D6.1A are almost indistinguishable from complexes isolated with anti-CD9 antibody. Indeed, both tetraspanins directly associate with each other and with a third tetraspanin, CD81. Moreover, FPRP (prostaglandin F2alpha receptor-regulatory protein)/EWI-F/CD9P-1), an Ig superfamily member that has been described to interact with CD9 and CD81, is also a prominent element in D6.1A complexes. Primary complexes isolated with D6.1A-specific antibody are clearly different from complexes containing the tetraspanin CD151. CD151 is found to interact only with D6.1A if milder conditions, i.e. lysis with LubrolWX instead of Brij96, are applied to disrupt cellular membranes. CD151 probably mediates the interaction of D6.1A primary complexes with alpha3beta1 integrin. In addition, two other molecules were identified to be part of D6.1A complexes at this higher level of association: type II phosphatidylinositol 4-kinase and EpCAM, an epithelial marker protein overexpressed by many carcinomas. The characterization of the D6.1A core complex and additional more indirect interactions will help to elucidate the role in tumour progression and metastasis attributed to D6.1A.
Collapse
Affiliation(s)
- Christoph Claas
- *Department of Tumor Progression and Immune Defense, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Joachim Wahl
- *Department of Tumor Progression and Immune Defense, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - David J. Orlicky
- †Department of Pathology, University of Colorado Health Sciences Center, Denver, CO, U.S.A
| | - Handan Karaduman
- *Department of Tumor Progression and Immune Defense, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Martina Schnölzer
- ‡Central Unit for Protein Analysis, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Tore Kempf
- ‡Central Unit for Protein Analysis, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Margot Zöller
- *Department of Tumor Progression and Immune Defense, Deutsches Krebsforschungszentrum, Heidelberg, Germany
- §Department of Applied Genetics, University Karlsruhe, Germany
- To whom correspondence should be addressed (email )
| |
Collapse
|
11
|
Lefrere I, De Coppet P, Camelin JC, Le Lay S, Mercier N, Elshourbagy N, Bril A, Berrebi-Bertrand I, Feve B, Krief S. Neuropeptide AF and FF modulation of adipocyte metabolism. Primary insights from functional genomics and effects on beta-adrenergic responsiveness. J Biol Chem 2002; 277:39169-78. [PMID: 12149260 DOI: 10.1074/jbc.m205084200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The presence of a neuropeptide AF and FF receptor (NPFF-R2) mRNA in human adipose tissue (Elshourbagy, N. A., Ames, R. S., Fitzgerald, L. R., Foley, J. J., Chambers, J. K., Szekeres, P. G., Evans, N. A., Schmidt, D. B., Buckley, P. T., Dytko, G. M., Murdock, P. R., Tan, K. B., Shabon, U., Nuthulaganti, P., Wang, D. Y., Wilson, S., Bergsma, D. J., and Sarau, H. M. (2000) J. Biol. Chem. 275, 25965-25971) suggested these peptides, principally recognized for their pain modulating effects, may also impact on adipocyte metabolism, an aspect that has not been explored previously. Our aim was thus to obtain more insights into the actions of these peptides on adipocytes, an approach initially undertaken with a functional genomic assay. First we showed that 3T3-L1 adipocytes express both NPFF-R1 and NPFF-R2 transcripts, and that NPAF binds adipocyte membranes with a nanomolar affinity as assessed by surface plasmon resonance technology. Then, and following a 24-h treatment with NPFF or NPAF (1 microm), we have measured using real-time quantitative reverse transcriptase-PCR the mRNA steady state levels of already well characterized genes involved in key pathways of adipose metabolism. Among the 45 genes tested, few were modulated by NPFF ( approximately 10%) and a larger number by NPAF ( approximately 27%). Interestingly, NPAF increased the mRNA levels of beta2- and beta3-adrenergic receptors (AR), and to a lesser extent those of beta1-ARs. These variations in catecholamine receptor mRNAs correlated with a clear induction in the density of beta2- and beta3-AR proteins, and in the potency of beta-AR subtype-selective agonists to stimulate adenylyl cyclase activity. Altogether, these data show that NPFF-R1 and NPFF-R2 are functionally present in adipocytes and suggest that besides their well described pain modulation effects, NPAF and to a lesser extent NPFF, may have a global impact on body energy storage and utilization.
Collapse
MESH Headings
- 3T3 Cells
- Adenylyl Cyclases/metabolism
- Adipocytes/metabolism
- Adipose Tissue/metabolism
- Animals
- Biosensing Techniques
- Cell Membrane/metabolism
- Cyclic AMP/metabolism
- Dose-Response Relationship, Drug
- Gene Expression Regulation
- Glycerolphosphate Dehydrogenase/metabolism
- Humans
- Mice
- Neuropeptides/metabolism
- Oligopeptides/metabolism
- Protein Binding
- RNA/metabolism
- RNA, Messenger/metabolism
- Receptors, Adrenergic, beta/metabolism
- Receptors, Adrenergic, beta-1/metabolism
- Receptors, Adrenergic, beta-2/metabolism
- Receptors, Adrenergic, beta-3/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Surface Plasmon Resonance
- Time Factors
Collapse
Affiliation(s)
- Isabelle Lefrere
- GlaxoSmithKline Laboratoires Pharmaceutiques, 4 rue du Chesnay-Beauregard, BP 58, 35762 Saint-Grégoire, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Orlicky DJ, DeGregori J, Schaack J. Construction of stable coxsackievirus and adenovirus receptor-expressing 3T3-L1 cells. J Lipid Res 2001. [DOI: 10.1016/s0022-2275(20)31614-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
13
|
|
14
|
Stipp CS, Orlicky D, Hemler ME. FPRP, a major, highly stoichiometric, highly specific CD81- and CD9-associated protein. J Biol Chem 2001; 276:4853-62. [PMID: 11087758 DOI: 10.1074/jbc.m009859200] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
CD81 and CD9, members of the transmembrane-4 superfamily (TM4SF; tetraspanins), form extensive complexes with other TM4SF proteins, integrins, and other proteins, especially in mild detergents. In moderately stringent Brij 96 lysis conditions, CD81 and CD9 complexes are virtually identical to each other, but clearly distinct from other TM4SF complexes. One of the most prominent proteins within CD81 and CD9 complexes is identified here as FPRP, the 133-kDa prostaglandin F(2alpha) receptor regulatory protein. FPRP, a cell-surface Ig superfamily protein, associates specifically with CD81 or with CD81 and CD9, but not with integrins or other TM4SF proteins. In contrast to other CD81- and CD9-associating proteins, FPRP associates at very high stoichiometry, with essentially 100% of cell-surface FPRP on 293 cells being CD81- and CD9-associated. Also, CD81.CD9.FPRP complexes have a discrete size (<4 x 10(6) Da) as measured by gel permeation chromatography and remain intact after disruption of cholesterol-rich membrane microdomains by methyl-beta-cyclodextrin. Although CD81 associated with both alpha(3) integrin and FPRP in 293 cells, the alpha(3)beta(1).CD81 and CD81.CD9.FPRP complexes were distinct, as determined by immunoprecipitation and immunodepletion experiments. In conclusion, our data affirm the existence of distinct TM4SF complexes with unique compositions and specifically characterize FPRP as the most robust, highly stoichiometric CD81- and/or CD9-associated protein yet described.
Collapse
Affiliation(s)
- C S Stipp
- Dana-Farber Cancer Institute and the Department of Pathology, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
| | | | | |
Collapse
|
15
|
Weng L, Falla N, Van den Heuvel R, Raymackers J, Karperien M, Van Bezooijen R, Van Vlasselaer P, Löwik C, Merregaert J. The monoclonal antibodies 18d7/91f2 recognize a receptor regulatory protein on mouse bone marrow stromal cells. J Bone Miner Res 2000; 15:1286-300. [PMID: 10893677 DOI: 10.1359/jbmr.2000.15.7.1286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Two monoclonal antibodies 18D7 and 91F2 were developed by immunizing rats with the mouse bone marrow-derived osteogenic cell line MN7. Hybridomas secreting rat antibodies against MN7 cell surface markers were selected by flow cytometry analysis. Both the monoclonal antibody 18D7 and the monoclonal antibody 91F2 are directed against the same cell surface antigen present on MN7 cells. Here, we report on the immunopurification of the 18D7/91F2 antigen and its identification as the prostaglandin F2 alpha receptor regulatory protein (FPRP). FPRP is expressed as a single messenger RNA (mRNA) of approximately 6 kilobases (kb) in MN7 cells and is differentially expressed in developing osteogenic cultures of bone marrow cells of the mouse. However, addition of the monoclonal antibodies 18D7 and 91F2 to these cultures did not inhibit bone formation in vitro. Both monoclonal antibodies reacted with mouse stromal cell lines established from bone marrow, thymus, spleen, and mandibular condyles. Immunohistochemical analysis of mature tibia of mice using the monoclonal antibody 18D7 revealed the presence of a distinct population of bone marrow cells close to trabecular and endosteal bone surfaces. In the central bone marrow, hardly any positive cells were found. In 17-day-old fetal mouse radius 18D7 immunoreactivity was restricted to cells in the periosteum in close vicinity to the bone collar. Mature osteoblasts, osteoclasts, osteocytes, growth plate chondrocytes, and mature macrophages were all negative. Taken together, these results suggest that FPRP plays a role in the osteogenic differentiation process.
Collapse
Affiliation(s)
- L Weng
- Department of Biochemistry, University of Antwerp, Wilrijk, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|