1
|
Acute-phase protein behavior in dairy cattle herd naturally infected with Trypanosoma vivax. Vet Parasitol 2015; 211:141-5. [DOI: 10.1016/j.vetpar.2015.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 05/12/2015] [Accepted: 05/13/2015] [Indexed: 11/24/2022]
|
2
|
Wheeler RJ. The trypanolytic factor-mechanism, impacts and applications. Trends Parasitol 2010; 26:457-64. [PMID: 20646962 DOI: 10.1016/j.pt.2010.05.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 05/19/2010] [Accepted: 05/20/2010] [Indexed: 11/25/2022]
Abstract
The Trypanosoma brucei subspecies T. brucei brucei is non-human infective due to susceptibility to lysis by trypanolytic factor (TLF) in human serum. Reviewed here are the advances which have revealed apolipoprotein L1 (ApoL1), found in high density lipoprotein, as the lysis-inducing component of TLF, the means of uptake via haptoglobin-related protein receptor and the mechanism of resistance in T. b. rhodesiense via its serum resistance-associated (SRA) protein. The first practical steps to application of these discoveries are now in progress; transgenic animals expressing either baboon or minimally truncated human ApoL1 show resistance to both T. b. brucei and T. b. rhodesiense. This has major implications for treatment and prevention of human and animal African trypanosomiasis.
Collapse
Affiliation(s)
- Richard J Wheeler
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, UK.
| |
Collapse
|
3
|
Pays E, Vanhollebeke B, Vanhamme L, Paturiaux-Hanocq F, Nolan DP, Pérez-Morga D. The trypanolytic factor of human serum. Nat Rev Microbiol 2006; 4:477-86. [PMID: 16710327 DOI: 10.1038/nrmicro1428] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
African trypanosomes (the prototype of which is Trypanosoma brucei brucei) are protozoan parasites that infect a wide range of mammals. Human blood, unlike the blood of other mammals, has efficient trypanolytic activity, and this needs to be counteracted by these parasites. Resistance to this activity has arisen in two subspecies of Trypanosoma brucei - Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense - allowing these parasites to infect humans, and this results in sleeping sickness in East Africa and West Africa, respectively. Study of the mechanism by which T. b. rhodesiense escapes lysis by human serum led to the identification of an ionic-pore-forming apolipoprotein - known as apolipoprotein L1 - that is associated with high-density-lipoprotein particles in human blood. In this Opinion article, we argue that apolipoprotein L1 is the factor that is responsible for the trypanolytic activity of human serum.
Collapse
Affiliation(s)
- Etienne Pays
- Laboratory of Molecular Parasitology, Institute of Molecular Biology and Medicine (IBMM), Université Libre de Bruxelles, 12 rue des Professeurs Jeener et Brachet, B-6041 Gosselies, Belgium.
| | | | | | | | | | | |
Collapse
|
4
|
Vanhamme L, Pays E. The trypanosome lytic factor of human serum and the molecular basis of sleeping sickness. Int J Parasitol 2004; 34:887-98. [PMID: 15217727 DOI: 10.1016/j.ijpara.2004.04.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2004] [Revised: 04/20/2004] [Accepted: 04/20/2004] [Indexed: 02/08/2023]
Abstract
Trypanosoma brucei brucei infects a wide range of mammals but is unable to infect humans because this subspecies is lysed by normal human serum (NHS). The trypanosome lytic factor is associated with High Density Lipoproteins (HDLs). Several HDL-associated components have been proposed as candidate lytic factors, and contradictory hypotheses concerning the mechanism of lysis have been suggested. Elucidation of the process by which Trypanosoma brucei rhodesiense resists lysis and causes human sleeping sickness has indicated that the HDL-bound apolipoprotein L-I (apoL-I) could be the long-sought after lytic component of NHS. This research also allowed the identification of a specific diagnostic DNA probe for T. b. rhodesiense, and may lead to the development of novel anti-trypanosome strategies for use in the field.
Collapse
Affiliation(s)
- Luc Vanhamme
- Department of Molecular Biology, Laboratory of Molecular Parasitology, IBMM, University of Brussels, 12, rue des Professeurs Jeener et Brachet, B6041 Gosselies, Belgium
| | | |
Collapse
|
5
|
Graham A, Hassall DG, Rafique S, Owen JS. Evidence for a paraoxonase-independent inhibition of low-density lipoprotein oxidation by high-density lipoprotein. Atherosclerosis 1997; 135:193-204. [PMID: 9430369 DOI: 10.1016/s0021-9150(97)00162-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
One mechanism by which plasma high-density lipoprotein (HDL) may protect against atherogenesis is by inhibiting the oxidation of low-density lipoprotein (LDL). Recent evidence suggests that paraoxonase, an HDL-associated, calcium-dependent enzyme, may be responsible for the antioxidant action of HDL (Mackness et al., Atherosclerosis 1993;104:129; Mackness et al., FEBS Lett 1991;286:152; Watson et al., J Clin Invest 1995;96:2882; Navab et al., Arterio Thromb Vasc Biol 1996;16:831); in particular, paraoxonase activity inhibits the formation of 'minimally oxidized' LDL by hydrolyzing biologically active oxidized phospholipids (Watson et al., J Clin Invest 1995;96:2882; Navab et al., Arterio Thromb Vasc Biol 1996;16:831). However, antioxidant effects of HDL have also been demonstrated under calcium-free conditions, arguing that this enzyme may not be the only mechanism by which HDL inhibits LDL oxidation (Tribble et al., J Lipid Res 1995;36:2580). Here we have evaluated the role of paraoxonase in prevention of LDL oxidation by using HDL subfractions, isolated from human serum or EDTA-plasma, which display markedly different levels of paraoxonase activity; the abilities of modified forms of HDL to prevent LDL oxidation by cultured human (THP-1) macrophages were also assessed. Paraoxonase activity was substantially lower in HDL prepared from plasma compared to serum HDL; moreover, virtually all of the lipoprotein-associated paraoxonase activity was located in the HDL3 fraction, with HDL2 retaining only 1-5% of the total activity. Despite possessing 5-fold differences in paraoxonase activity, HDL3 isolated from plasma or serum was equally effective in inhibiting LDL oxidation by THP-1 macrophages; furthermore, although plasma HDL3 was more protective than plasma HDL2, the latter did significantly inhibit LDL oxidation. Non-paraoxonase antioxidant constituents of plasma HDL3 were investigated further. ApoHDL3, the totally delipidated form of HDL3, was much less effective than native HDL3; when examined individually, purified apolipoprotein A-II gave greater protection than apo A-I, although this effect was not evident in apo A-II-enriched HDL3. Partial delipidation of HDL3, which removes both neutral lipids and alpha-tocopherol, did not significantly diminish its ability to inhibit LDL oxidation by THP-1 macrophages; phospholipid vesicles prepared from partially delipidated HDL3 also inhibited LDL oxidation effectively. We conclude that, in this model of cellular LDL oxidation, the phospholipid fraction of HDL exerts inhibitory effects which are independent of HDL paraoxonase activity.
Collapse
Affiliation(s)
- A Graham
- Department of Biochemistry and Molecular Biology, Royal Free Hospital School of Medicine, London, UK.
| | | | | | | |
Collapse
|
6
|
Delgado-Rodríguez M, Medina-Cuadros M, Martínez-Gallego G, Sillero-Arenas M. Total Cholesterol, HDL-Cholesterol, and Risk of Nosocomial Infection: A Prospective Study in Surgical Patients. Infect Control Hosp Epidemiol 1997. [DOI: 10.2307/30141957] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
7
|
|
8
|
Lorenz P, Betschart B, Owen JS. Trypanosoma brucei brucei and high-density lipoproteins: Old and new thoughts on the identity and mechanism of the trypanocidal factor in human serum. ACTA ACUST UNITED AC 1995; 11:348-52. [PMID: 15275320 DOI: 10.1016/0169-4758(95)80191-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Nature has provided humans with a surprising means of protection against the African trypanosome Trypanosoma brucei brucei There is consensus, in that this singular trypanocidal factor is serum high-density lipoproteins (HDL). which the trypanosomes engulf through a physiological, receptor-mediated pathway for delivery to acidic intracellular vesicles. There is also controversy, however, in that the active particles and their essential cytotoxic elements are disputed, in part reflecting the ill-defined mechanism by which the parasites are finally killed. Here Patrick Lorenz, Bruno Betschart and Jim Owen discuss the possibilities for resolving these discrepancies and speculate on the prospects of exploiting this unexpected property of human HDL for protecting livestock.
Collapse
Affiliation(s)
- P Lorenz
- Zentrum für Molekulare Biologie, Universität Heidelberg, Postfach 10 62 49, D-69120 Heidelberg, Germany
| | | | | |
Collapse
|
9
|
Tomlinson S, Jansen AM, Koudinov A, Ghiso JA, Choi-Miura NH, Rifkin MR, Ohtaki S, Nussenzweig V. High-density-lipoprotein-independent killing of Trypanosoma brucei by human serum. Mol Biochem Parasitol 1995; 70:131-8. [PMID: 7637693 DOI: 10.1016/0166-6851(95)00019-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The cattle pathogen Trypanosoma brucei brucei is morphologically indistinguishable from the human pathogens T.b. rhodesiense and T.b. gambiense. However, unlike the human pathogens, T.b. brucei is lysed by normal human serum (NHS). The trypanolytic factor in NHS co-purifies with high-density lipoproteins (HDL), but its precise nature is unknown. Using a new fluorescence-based viability assay to assess T.b. brucei killing, we find that the HDL-deficient sera from two patients with Tangier disease are as trypanolytic as NHS. Fractionation of the Tangier sera by density ultracentrifugation revealed that the activity resides only in lipoprotein-depleted fractions. Tangier and NHS were also subjected to molecular sieving chromatography, and the activity profiles were identical. Lytic fractions to T. brucei (but not to T. rhodesiense) appeared under two distinct peaks of 100-600 kDa and > 1000 kDa. Neither peak coincided with the position of the major serum lipoproteins, as determined by cholesterol titrations. The high-molecular-mass peak did not contain the HDL-associated apolipoprotein-A1. Further, we did not find that purified apolipoproteins A1 or J are lytic for the trypanosomes. We conclude that the killing of T. brucei by human serum can be independent of HDL.
Collapse
Affiliation(s)
- S Tomlinson
- Michael Heidelberger Division of Immunology, New York University Medical Center, NY 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Tytler EM, Moore DR, Pierce MA, Hager KM, Esko JD, Hajduk SL. Reconstitution of the trypanolytic factor from components of a subspecies of human high-density lipoproteins. Mol Biochem Parasitol 1995; 69:9-17. [PMID: 7723792 DOI: 10.1016/0166-6851(94)00172-j] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Trypanosoma brucei brucei is non-infectious to man due to the sensitivity of these parasites to the lytic activity of normal human serum. Apolipoproteins (apo) have been purified, under non-denaturing conditions, from the subclass of human high-density lipoprotein (HDL), termed trypanosome lytic factor (TLF), which is responsible for the cytotoxicity of human serum to T. b. brucei. The TLF apolipoproteins were purified by anion exchange chromatography in the presence of the nonionic detergent octylglucoside and a reconstitution method was developed which allowed the role of the individual apolipoproteins and different lipids to be assessed. The results suggest that the TLF lipids do not have a direct role in lysis but are necessary for the correct assembly of the lytic HDL particle. Apo A-I, apo L-III and apo L-I contribute to lysis in reconstituted particles but individually they are not cytotoxic. Apo A-II was not required in the reconstituted TLF particle for trypanosome lysis. Formation of a lytic HDL particle required apo L-III suggesting its potential role as a toxin. Thermal inactivation of TLF activity correlated with the amount of denatured apo L-I, indicating that apo L-I was involved in lysis of T. b. brucei by native TLF.
Collapse
Affiliation(s)
- E M Tytler
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, School of Medicine 35294, USA
| | | | | | | | | | | |
Collapse
|
11
|
Ong AC, Jowett TP, Moorhead JF, Owen JS. Human high density lipoproteins stimulate endothelin-1 release by cultured human renal proximal tubular cells. Kidney Int 1994; 46:1315-21. [PMID: 7853789 DOI: 10.1038/ki.1994.400] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The vasoconstrictive and mitogenic actions of endothelins have been implicated in the pathogenesis of progressive renal disease. In the present study, we have assessed whether plasma high density lipoproteins (HDL), the major filtered urinary lipoprotein in nephrotic states, can influence endothelin-1 (ET-1) production by cultured human renal proximal tubular cells. Human HDL was found to stimulate ET-1 secretion up to fourfold in a dose- and time-dependent manner; the effect was greater in subconfluent cultures than in confluent ones. There was little difference between the stimulatory effect of HDL2 and the major HDL subclass, HDL3. Preincubation of the cells with albumin did not abolish the HDL effect, while partially- or fully-delipidated HDL3 largely reproduced the effect of whole HDL3. These findings suggest that stimulation of ET-1 secretion was not simply due to protein or lipid repletion of the cells. Rather, the effect was mediated by HDL apolipoproteins, although binding to the HDL receptors involved in cellular cholesterol homeostasis was not required as tetranitromethane-modified HDL3 was an equally effective agonist of ET-1 release. Apolipoprotein (apo) A-I was indirectly implicated in the process since modified HDL3 in which apoA-II largely replaced apoA-I was less potent than HDL3. A one hour exposure of the cells to HDL3 was sufficient to activate ET-1 production for the following 12 hours, although maximum activation required six hours.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A C Ong
- Department of Medicine, University College London Medical School, United Kingdom
| | | | | | | |
Collapse
|
12
|
Lorenz P, James RW, Owen JS, Betschart B. Heterogeneity in the properties of the trypanolytic factor in normal human serum. Mol Biochem Parasitol 1994; 64:153-64. [PMID: 8078518 DOI: 10.1016/0166-6851(94)90143-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Although it seems clear that the trypanolytic factor in human serum capable of killing Trypanosoma brucei brucei is high density lipoprotein (HDL), it nevertheless remains controversial as to whether the trypanolytic properties of HDL are confined to a specific subclass or whether all particles have activity. In the present study, we have compared the lytic activities of serum fractions from six normal individuals prepared by gradient ultracentrifugation and also, to avoid ultracentrifugally-induced loss of HDL apolipoproteins, by gel filtration using fast protein liquid chromatography (FPLC). All sera displayed trypanolytic activity in fractions corresponding to the general density (rho = 1.06-1.20 g ml-1) and size (59-440 kDa) limits conventionally used to describe bulk human HDL, the particles between rho = 1.18-1.20 g ml-1 and between 214-440 kDa being particularly lytic. But some sera additionally contained fractions with powerful activity outside these density (rho > 1.24 g ml-1) and size (> 1000 kDa) ranges. Nevertheless, such fractions were considered to contain material with HDL characteristics; apolipoprotein A-I, the major protein of HDL, was always present and the lytic activity of the sera could be completely neutralized by absorption with HDL antiserum. We conclude that all of the trypanolytic activity in human sera is associated with HDL particles and that it is a property of several HDL subpopulations with very different density and size characteristics. Presumably the well-recognized wide variation in trypanocidal activity of normal human sera reflects differences in the quantities of these HDL subpopulations rather than in the total amount of a single, uniquely lytic particle.
Collapse
|