1
|
Kumar CMS, Mai AM, Mande SC, Lund PA. Genetic and structural insights into the functional importance of the conserved gly-met-rich C-terminal tails in bacterial chaperonins. Commun Biol 2025; 8:555. [PMID: 40200084 PMCID: PMC11978752 DOI: 10.1038/s42003-025-07927-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 03/11/2025] [Indexed: 04/10/2025] Open
Abstract
E. coli chaperonin GroEL forms nano-cages for protein folding. Although the chaperonin-mediated protein folding mechanism is well understood, the role of the conserved glycine and methionine-rich carboxy-terminal residues remains unclear. Bacteria with multiple chaperonins always retain at least one paralogue having the gly-met-rich C-terminus, indicating an essential conserved function. Here, we observed a stronger selection pressure on the paralogues with gly-met-rich C-termini, consistent with their ancestral functional importance. E. coli GroEL variants having mutations in their C-termini failed to functionally replace GroEL, suggesting the functional significance of the gly-met-rich C-termini. Further, our structural modelling and normal mode analysis showed that the C-terminal region shuttles between two cavity-specific conformations that correlate with the client-protein-binding apical domains, supporting C-termini's role in client protein encapsulation. Therefore, employing phylogenetic, genetic, and structural tools, we demonstrate that the gly-met-rich C-termini are functionally significant in chaperonin-mediated protein folding function. Owing to the pathogenic roles of the chaperonins having non-canonical C-termini, future investigations on the client protein selectivity will enable understanding the disease-specific client protein folding pathways and treatment options.
Collapse
Affiliation(s)
- C M Santosh Kumar
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK.
| | - Aisha M Mai
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - Shekhar C Mande
- National Centre for Cell Science, Pune, India
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, India
| | - Peter A Lund
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
2
|
Halder R, Nissley DA, Sitarik I, Jiang Y, Rao Y, Vu QV, Li MS, Pritchard J, O'Brien EP. How soluble misfolded proteins bypass chaperones at the molecular level. Nat Commun 2023; 14:3689. [PMID: 37344452 DOI: 10.1038/s41467-023-38962-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/24/2023] [Indexed: 06/23/2023] Open
Abstract
Subpopulations of soluble, misfolded proteins can bypass chaperones within cells. The extent of this phenomenon and how it happens at the molecular level are unknown. Through a meta-analysis of the experimental literature we find that in all quantitative protein refolding studies there is always a subpopulation of soluble but misfolded protein that does not fold in the presence of one or more chaperones, and can take days or longer to do so. Thus, some misfolded subpopulations commonly bypass chaperones. Using multi-scale simulation models we observe that the misfolded structures that bypass various chaperones can do so because their structures are highly native like, leading to a situation where chaperones do not distinguish between the folded and near-native-misfolded states. More broadly, these results provide a mechanism by which long-time scale changes in protein structure and function can persist in cells because some misfolded states can bypass components of the proteostasis machinery.
Collapse
Affiliation(s)
- Ritaban Halder
- Department of Chemistry, Pennsylvania State University, University Park, PA, 16802, USA
| | - Daniel A Nissley
- Department of Chemistry, Pennsylvania State University, University Park, PA, 16802, USA
- Department of Statistics, University of Oxford, Oxford, OX1 3LB, UK
| | - Ian Sitarik
- Department of Chemistry, Pennsylvania State University, University Park, PA, 16802, USA
| | - Yang Jiang
- Department of Chemistry, Pennsylvania State University, University Park, PA, 16802, USA
| | - Yiyun Rao
- Molecular, Cellular and Integrative Biosciences Program, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Quyen V Vu
- Institute of Physics, Polish Academy of Sciences; Al. Lotnikow 32/46, 02-668, Warsaw, Poland
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences; Al. Lotnikow 32/46, 02-668, Warsaw, Poland
- Institute for Computational Sciences and Technology; Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
| | - Justin Pritchard
- Department of Biomedical Engineering, Pennsylvania State University, State College, PA, 16802, USA
- Huck Institute for the Life Sciences, Pennsylvania State University, State College, PA, 16802, USA
| | - Edward P O'Brien
- Department of Chemistry, Pennsylvania State University, University Park, PA, 16802, USA.
- Bioinformatics and Genomics Graduate Program, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA.
- Institute for Computational and Data Sciences, Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
3
|
Sokolova OS, Pichkur EB, Maslova ES, Kurochkina LP, Semenyuk PI, Konarev PV, Samygina VR, Stanishneva-Konovalova TB. Local Flexibility of a New Single-Ring Chaperonin Encoded by Bacteriophage AR9 Bacillus subtilis. Biomedicines 2022; 10:biomedicines10102347. [PMID: 36289609 PMCID: PMC9598537 DOI: 10.3390/biomedicines10102347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 11/25/2022] Open
Abstract
Chaperonins, a family of molecular chaperones, assist protein folding in all domains of life. They are classified into two groups: bacterial variants and those present in endosymbiotic organelles of eukaryotes belong to group I, while group II includes chaperonins from the cytosol of archaea and eukaryotes. Recently, chaperonins of a prospective new group were discovered in giant bacteriophages; however, structures have been determined for only two of them. Here, using cryo-EM, we resolved a structure of a new chaperonin encoded by gene 228 of phage AR9 B. subtilis. This structure has similarities and differences with members of both groups, as well as with other known phage chaperonins, which further proves their diversity.
Collapse
Affiliation(s)
- Olga S. Sokolova
- Faculty of Biology, MSU-BIT Shenzhen University, Shenzhen 518172, China
| | - Evgeny B. Pichkur
- Complex of NBICS Technologies, National Research Center “Kurchatov Institute”, 123098 Moscow, Russia
| | | | - Lidia P. Kurochkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Pavel I. Semenyuk
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Petr V. Konarev
- Complex of NBICS Technologies, National Research Center “Kurchatov Institute”, 123098 Moscow, Russia
- Shubnikov Institute of Crystallography of FSRC “Crystallography and Photonics”, RAS, 119333 Moscow, Russia
| | - Valeriya R. Samygina
- Complex of NBICS Technologies, National Research Center “Kurchatov Institute”, 123098 Moscow, Russia
- Shubnikov Institute of Crystallography of FSRC “Crystallography and Photonics”, RAS, 119333 Moscow, Russia
| | | |
Collapse
|
4
|
Kurochkina LP, Semenyuk PI, Sokolova OS. Structural and Functional Features of Viral Chaperonins. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1-9. [PMID: 35491019 DOI: 10.1134/s0006297922010011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Chaperonins provide proper folding of proteins in vivo and in vitro and, as was thought until recently, are characteristic of prokaryotes, eukaryotes, and archaea. However, it turned out that some bacteria viruses (bacteriophages) encode their own chaperonins. This review presents results of the investigations of the first representatives of this new chaperonin group: the double-ring EL chaperonin and the single-ring OBP and AR9 chaperonins. Biochemical properties and structure of the phage chaperonins were compared within the group and with other known group I and group II chaperonins.
Collapse
Affiliation(s)
- Lidia P Kurochkina
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Pavel I Semenyuk
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Olga S Sokolova
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
5
|
Rodriguez A, Von Salzen D, Holguin BA, Bernal RA. Complex Destabilization in the Mitochondrial Chaperonin Hsp60 Leads to Disease. Front Mol Biosci 2020; 7:159. [PMID: 32766281 PMCID: PMC7381220 DOI: 10.3389/fmolb.2020.00159] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/24/2020] [Indexed: 01/21/2023] Open
Abstract
Several neurological disorders have been linked to mutations in chaperonin genes and more specifically to the HSPD1 gene. In humans, HSPD1 encodes the mitochondrial Heat Shock Protein 60 (mtHsp60) chaperonin, which carries out essential protein folding reactions that help maintain mitochondrial and cellular homeostasis. It functions as a macromolecular complex that provides client proteins an environment that favors proper folding in an ATP-dependent manner. It has been established that mtHsp60 plays a crucial role in the proper folding of mitochondrial proteins involved in ATP producing pathways. Recently, various single-point mutations in the mtHsp60 encoding gene have been directly linked to neuropathies and paraplegias. Individuals who harbor mtHsp60 mutations that negatively impact its folding ability display phenotypes with highly compromised muscle and neuron cells. Carriers of these mutations usually develop neuropathies and paraplegias at different stages of their lives mainly characterized by leg stiffness and weakness as well as degeneration of spinal cord nerves. These phenotypes are likely due to hindered energy producing pathways involved in cellular respiration resulting in ATP deprived cells. Although the complete protein folding mechanism of mtHsp60 is not well understood, recent work suggests that several of these mutations act by destabilizing the oligomeric stability of mtHsp60. Here, we discuss recent studies that highlight key aspects of the mtHsp60 mechanism with a focus on some of the known disease-causing point mutations, D29G and V98I, and their effect on the protein folding reaction cycle.
Collapse
Affiliation(s)
| | | | | | - Ricardo A. Bernal
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, TX, United States
| |
Collapse
|
6
|
Abstract
This chronologue seeks to document the discovery and development of an understanding of oligomeric ring protein assemblies known as chaperonins that assist protein folding in the cell. It provides detail regarding genetic, physiologic, biochemical, and biophysical studies of these ATP-utilizing machines from both in vivo and in vitro observations. The chronologue is organized into various topics of physiology and mechanism, for each of which a chronologic order is generally followed. The text is liberally illustrated to provide firsthand inspection of the key pieces of experimental data that propelled this field. Because of the length and depth of this piece, the use of the outline as a guide for selected reading is encouraged, but it should also be of help in pursuing the text in direct order.
Collapse
|
7
|
Thirumalai D, Lorimer GH, Hyeon C. Iterative annealing mechanism explains the functions of the GroEL and RNA chaperones. Protein Sci 2019; 29:360-377. [PMID: 31800116 DOI: 10.1002/pro.3795] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 12/16/2022]
Abstract
Molecular chaperones are ATP-consuming machines, which facilitate the folding of proteins and RNA molecules that are kinetically trapped in misfolded states. Unassisted folding occurs by the kinetic partitioning mechanism according to which folding to the native state, with low probability as well as misfolding to one of the many metastable states, with high probability, occur rapidly. GroEL is an all-purpose stochastic machine that assists misfolded substrate proteins to fold. The RNA chaperones such as CYT-19, which are ATP-consuming enzymes, help the folding of ribozymes that get trapped in metastable states for long times. GroEL does not interact with the folded proteins but CYT-19 disrupts both the folded and misfolded ribozymes. The structures of GroEL and RNA chaperones are strikingly different. Despite these differences, the iterative annealing mechanism (IAM) quantitatively explains all the available experimental data for assisted folding of proteins and ribozymes. Driven by ATP binding and hydrolysis and GroES binding, GroEL undergoes a catalytic cycle during which it samples three allosteric states, T (apo), R (ATP bound), and R″ (ADP bound). Analyses of the experimental data show that the efficiency of the GroEL-GroES machinery and mutants is determined by the resetting rate k R ″ → T , which is largest for the wild-type (WT) GroEL. Generalized IAM accurately predicts the folding kinetics of Tetrahymena ribozyme and its variants. Chaperones maximize the product of the folding rate and the steady-state native state fold by driving the substrates out of equilibrium. Neither the absolute yield nor the folding rate is optimized.
Collapse
Affiliation(s)
- D Thirumalai
- Department of Chemistry, The University of Texas at Austin, Austin, Texas
| | - George H Lorimer
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland
| | | |
Collapse
|
8
|
Thirumalai D, Hyeon C. Signalling networks and dynamics of allosteric transitions in bacterial chaperonin GroEL: implications for iterative annealing of misfolded proteins. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0182. [PMID: 29735736 DOI: 10.1098/rstb.2017.0182] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2018] [Indexed: 12/14/2022] Open
Abstract
Signal transmission at the molecular level in many biological complexes occurs through allosteric transitions. Allostery describes the responses of a complex to binding of ligands at sites that are spatially well separated from the binding region. We describe the structural perturbation method, based on phonon propagation in solids, which can be used to determine the signal-transmitting allostery wiring diagram (AWD) in large but finite-sized biological complexes. Application to the bacterial chaperonin GroEL-GroES complex shows that the AWD determined from structures also drives the allosteric transitions dynamically. From both a structural and dynamical perspective these transitions are largely determined by formation and rupture of salt-bridges. The molecular description of allostery in GroEL provides insights into its function, which is quantitatively described by the iterative annealing mechanism. Remarkably, in this complex molecular machine, a deep connection is established between the structures, reaction cycle during which GroEL undergoes a sequence of allosteric transitions, and function, in a self-consistent manner.This article is part of a discussion meeting issue 'Allostery and molecular machines'.
Collapse
Affiliation(s)
- D Thirumalai
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| | - Changbong Hyeon
- Korea Institute for Advanced Study, Seoul 02455, South Korea
| |
Collapse
|
9
|
Jain N, Knowles TJ, Lund PA, Chaudhuri TK. Minichaperone (GroEL191-345) mediated folding of MalZ proceeds by binding and release of native and functional intermediates. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:941-951. [PMID: 29864530 DOI: 10.1016/j.bbapap.2018.05.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/02/2018] [Accepted: 05/28/2018] [Indexed: 10/14/2022]
Abstract
The isolated apical domain of GroEL consisting of residues 191-345 (known as "minichaperone") binds and assists the folding of a wide variety of client proteins without GroES and ATP, but the mechanism of its action is still unknown. In order to probe into the matter, we have examined minichaperone-mediated folding of a large aggregation prone protein Maltodextrin-glucosidase (MalZ). The key objective was to identify whether MalZ exists free in solution, or remains bound to, or cycling on and off the minichaperone during the refolding process. When GroES was introduced during refolding process, production of the native MalZ was inhibited. We also observed the same findings with a trap mutant of GroEL, which stably captures a predominantly non-native MalZ released from minichaperone during refolding process, but does not release it. Tryptophan and ANS fluorescence measurements indicated that refolded MalZ has the same structure as the native MalZ, but that its structure when bound to minichaperone is different. Surface plasmon resonance measurements provide an estimate for the equilibrium dissociation constant KD for the MalZ-minichaperone complex of 0.21 ± 0.04 μM, which are significantly higher than for most GroEL clients. This showed that minichaperone interacts loosely with MalZ to allow the protein to change its conformation and fold while bound during the refolding process. These observations suggest that the minichaperone works by carrying out repeated cycles of binding aggregation-prone protein MalZ in a relatively compact conformation and in a partially folded but active state, and releasing them to attempt to fold in solution.
Collapse
Affiliation(s)
- Neha Jain
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, India; Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, UK
| | - Timothy J Knowles
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, UK
| | - Peter A Lund
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, UK.
| | - Tapan K Chaudhuri
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, India.
| |
Collapse
|
10
|
Bhatt JM, Enriquez AS, Wang J, Rojo HM, Molugu SK, Hildenbrand ZL, Bernal RA. Single-Ring Intermediates Are Essential for Some Chaperonins. Front Mol Biosci 2018; 5:42. [PMID: 29755985 PMCID: PMC5934643 DOI: 10.3389/fmolb.2018.00042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 04/13/2018] [Indexed: 11/20/2022] Open
Abstract
Chaperonins are macromolecular complexes found throughout all kingdoms of life that assist unfolded proteins reach a biologically active state. Historically, chaperonins have been classified into two groups based on sequence, subunit structure, and the requirement for a co-chaperonin. Here, we present a brief review of chaperonins that can form double- and single-ring conformational intermediates in their protein-folding catalytic pathway. To date, the bacteriophage encoded chaperonins ϕ-EL and OBP, human mitochondrial chaperonin and most recently, the bacterial groEL/ES systems, have been reported to form single-ring intermediates as part of their normal protein-folding activity. These double-ring chaperonins separate into single-ring intermediates that have the ability to independently fold a protein. We discuss the structural and functional features along with the biological relevance of single-ring intermediates in cellular protein folding. Of special interest are the ϕ-EL and OBP chaperonins which demonstrate features of both group I and II chaperonins in addition to their ability to function via single-ring intermediates.
Collapse
Affiliation(s)
- Jay M Bhatt
- Department of Chemistry, The University of Texas at El Paso, El Paso, TX, United States
| | - Adrian S Enriquez
- Department of Chemistry, The University of Texas at El Paso, El Paso, TX, United States
| | - Jinliang Wang
- Department of Chemistry, The University of Texas at El Paso, El Paso, TX, United States
| | - Humberto M Rojo
- Department of Chemistry, The University of Texas at El Paso, El Paso, TX, United States
| | - Sudheer K Molugu
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | | | - Ricardo A Bernal
- Department of Chemistry, The University of Texas at El Paso, El Paso, TX, United States
| |
Collapse
|
11
|
Molecular chaperones maximize the native state yield on biological times by driving substrates out of equilibrium. Proc Natl Acad Sci U S A 2017; 114:E10919-E10927. [PMID: 29217641 DOI: 10.1073/pnas.1712962114] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Molecular chaperones facilitate the folding of proteins and RNA in vivo. Under physiological conditions, the in vitro folding of Tetrahymena ribozyme by the RNA chaperone CYT-19 behaves paradoxically; increasing the chaperone concentration reduces the yield of native ribozymes. In contrast, the protein chaperone GroEL works as expected; the yield of the native substrate increases with chaperone concentration. The discrepant chaperone-assisted ribozyme folding thus contradicts the expectation that it operates as an efficient annealing machine. To resolve this paradox, we propose a minimal stochastic model based on the Iterative Annealing Mechanism (IAM) that offers a unified description of chaperone-mediated folding of both proteins and RNA. Our theory provides a general relation that quantitatively predicts how the yield of native states depends on chaperone concentration. Although the absolute yield of native states decreases in the Tetrahymena ribozyme, the product of the folding rate and the steady-state native yield increases in both cases. By using energy from ATP hydrolysis, both CYT-19 and GroEL drive their substrate concentrations far out of equilibrium, thus maximizing the native yield in a short time. This also holds when the substrate concentration exceeds that of GroEL. Our findings satisfy the expectation that proteins and RNA be folded by chaperones on biologically relevant time scales, even if the final yield is lower than what equilibrium thermodynamics would dictate. The theory predicts that the quantity of chaperones in vivo has evolved to optimize native state production of the folded states of RNA and proteins in a given time.
Collapse
|
12
|
Takenaka T, Nakamura T, Yanaka S, Yagi-Utsumi M, Chandak MS, Takahashi K, Paul S, Makabe K, Arai M, Kato K, Kuwajima K. Formation of the chaperonin complex studied by 2D NMR spectroscopy. PLoS One 2017; 12:e0187022. [PMID: 29059240 PMCID: PMC5653362 DOI: 10.1371/journal.pone.0187022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 10/11/2017] [Indexed: 11/21/2022] Open
Abstract
We studied the interaction between GroES and a single-ring mutant (SR1) of GroEL by the NMR titration of 15N-labeled GroES with SR1 at three different temperatures (20, 25 and 30°C) in the presence of 3 mM ADP in 100 mM KCl and 10 mM MgCl2 at pH 7.5. We used SR1 instead of wild-type double-ring GroEL to precisely control the stoichiometry of the GroES binding to be 1:1 ([SR1]:[GroES]). Native heptameric GroES was very flexible, showing well resolved cross peaks of the residues in a mobile loop segment (residue 17–34) and at the top of a roof hairpin (Asn51) in the heteronuclear single quantum coherence spectra. The binding of SR1 to GroES caused the cross peaks to disappear simultaneously, and hence it occurred in a single-step cooperative manner with significant immobilization of the whole GroES structure. The binding was thus entropic with a positive entropy change (219 J/mol/K) and a positive enthalpy change (35 kJ/mol), and the binding constant was estimated at 1.9×105 M−1 at 25°C. The NMR titration in 3 mM ATP also indicated that the binding constant between GroES and SR1 increased more than tenfold as compared with the binding constant in 3 mM ADP. These results will be discussed in relation to the structure and mechanisms of the chaperonin GroEL/GroES complex.
Collapse
Affiliation(s)
- Toshio Takenaka
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, Myodaiji, Okazaki, Aichi, Japan
| | - Takashi Nakamura
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, Myodaiji, Okazaki, Aichi, Japan
| | - Saeko Yanaka
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, Myodaiji, Okazaki, Aichi, Japan
| | - Maho Yagi-Utsumi
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, Myodaiji, Okazaki, Aichi, Japan
- Department of Functional Molecular Science, School of Physical Sciences, the Graduate University for Advanced Studies (Sokendai), Myodaiji, Okazaki, Aichi, Japan
| | - Mahesh S. Chandak
- Department of Functional Molecular Science, School of Physical Sciences, the Graduate University for Advanced Studies (Sokendai), Myodaiji, Okazaki, Aichi, Japan
| | - Kazunobu Takahashi
- Department of Physics, Graduate School of Science, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Subhankar Paul
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, Myodaiji, Okazaki, Aichi, Japan
| | - Koki Makabe
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, Myodaiji, Okazaki, Aichi, Japan
- Department of Functional Molecular Science, School of Physical Sciences, the Graduate University for Advanced Studies (Sokendai), Myodaiji, Okazaki, Aichi, Japan
- Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata, Japan
| | - Munehito Arai
- Department of Life Sciences, Graduate School of Arts and Sciences, the University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Koichi Kato
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, Myodaiji, Okazaki, Aichi, Japan
- Department of Functional Molecular Science, School of Physical Sciences, the Graduate University for Advanced Studies (Sokendai), Myodaiji, Okazaki, Aichi, Japan
| | - Kunihiro Kuwajima
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, Myodaiji, Okazaki, Aichi, Japan
- Department of Functional Molecular Science, School of Physical Sciences, the Graduate University for Advanced Studies (Sokendai), Myodaiji, Okazaki, Aichi, Japan
- Department of Physics, Graduate School of Science, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
- School of Computational Sciences, Korea Institute for Advanced Study (KIAS), Dongdaemun-gu, Seoul, Korea
- * E-mail: ,
| |
Collapse
|
13
|
Creating the Functional Single-Ring GroEL-GroES Chaperonin Systems via Modulating GroEL-GroES Interaction. Sci Rep 2017; 7:9710. [PMID: 28852160 PMCID: PMC5575113 DOI: 10.1038/s41598-017-10499-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/09/2017] [Indexed: 11/08/2022] Open
Abstract
Chaperonin and cochaperonin, represented by E. coli GroEL and GroES, are essential molecular chaperones for protein folding. The double-ring assembly of GroEL is required to function with GroES, and a single-ring GroEL variant GroELSR forms a stable complex with GroES, arresting the chaperoning reaction cycle. GroES I25 interacts with GroEL; however, mutations of I25 abolish GroES-GroEL interaction due to the seven-fold mutational amplification in heptameric GroES. To weaken GroELSR-GroES interaction in a controlled manner, we used groES 7, a gene linking seven copies of groES, to incorporate I25 mutations in selected GroES modules in GroES7. We generated GroES7 variants with different numbers of GroESI25A or GroESI25D modules and different arrangements of the mutated modules, and biochemically characterized their interactions with GroELSR. GroES7 variants with two mutated modules participated in GroELSR-mediated protein folding in vitro. GroES7 variants with two or three mutated modules collaborated with GroELSR to perform chaperone function in vivo: three GroES7 variants functioned with GroELSR under both normal and heat-shock conditions. Our studies on functional single-ring bacterial chaperonin systems are informative to the single-ring human mitochondrial chaperonin mtHsp60-mtHsp10, and will provide insights into how the double-ring bacterial system has evolved to the single-ring mtHsp60-mtHsp10.
Collapse
|
14
|
Illingworth M, Salisbury J, Li W, Lin D, Chen L. Effective ATPase activity and moderate chaperonin-cochaperonin interaction are important for the functional single-ring chaperonin system. Biochem Biophys Res Commun 2015; 466:15-20. [PMID: 26271593 DOI: 10.1016/j.bbrc.2015.08.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 08/09/2015] [Indexed: 11/16/2022]
Abstract
Escherichia coli chaperonin GroEL and its cochaperonin GroES are essential for cell growth as they assist folding of cellular proteins. The double-ring assembly of GroEL is required for the chaperone function, and a single-ring variant GroEL(SR) is inactive with GroES. Mutations in GroEL(SR) (A92T, D115N, E191G, and A399T) have been shown to render GroEL(SR)-GroES functional, but the molecular mechanism of activation is unclear. Here we examined various biochemical properties of these functional GroEL(SR)-GroES variants, including ATP hydrolysis rate, chaperonin-cochaperonin interaction, and in vitro protein folding activity. We found that, unlike the diminished ATPase activity of the inactive GroEL(SR)-GroES, all four single-ring variants hydrolyzed ATP at a level comparable to that of the double-ring GroEL-GroES. The chaperonin-cochaperonin interaction in these single-ring systems was weaker, by at least a 50-fold reduction, than the highly stable inactive GroEL(SR)-GroES. Strikingly, only GroEL(SR)D115N-GroES and GroEL(SR)A399T-GroES assisted folding of malate dehydrogenase (MDH), a commonly used folding substrate. These in vitro results are interesting considering that all four of the single-ring systems were able to substitute GroEL-GroES to support cell growth, suggesting that the precise action of chaperonin on MDH folding may not represent that on the intrinsic cellular substrates. Our findings that both effective ATP hydrolysis rate and moderate chaperonin-cochaperonin interaction are important factors for functional single-ring GroEL(SR)-GroES are reminiscent of the naturally occurring single-ring human mitochondrial chaperonin mtHsp60-mtHsp10. Differences in biochemical properties between the single- and double-ring chaperonin systems may be exploited in designing molecules for selective targeting.
Collapse
Affiliation(s)
- Melissa Illingworth
- Department of Molecular and Cellular Biochemistry, 212 S. Hawthorne Dr., Simon Hall 305B, Indiana University, Bloomington, IN 47405, USA
| | - Jared Salisbury
- Department of Molecular and Cellular Biochemistry, 212 S. Hawthorne Dr., Simon Hall 305B, Indiana University, Bloomington, IN 47405, USA
| | - Wenqian Li
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, China
| | - Donghai Lin
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, China
| | - Lingling Chen
- Department of Molecular and Cellular Biochemistry, 212 S. Hawthorne Dr., Simon Hall 305B, Indiana University, Bloomington, IN 47405, USA; Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
15
|
Comparative Biochemical Characterization of Two GroEL Homologs from the CyanobacteriumSynechococcus elongatusPCC 7942. Biosci Biotechnol Biochem 2014; 74:2273-80. [DOI: 10.1271/bbb.100493] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Yamamoto YY, Abe Y, Moriya K, Arita M, Noguchi K, Ishii N, Sekiguchi H, Sasaki YC, Yohda M. Inter-ring communication is dispensable in the reaction cycle of group II chaperonins. J Mol Biol 2014; 426:2667-78. [PMID: 24859336 DOI: 10.1016/j.jmb.2014.05.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/09/2014] [Accepted: 05/15/2014] [Indexed: 10/25/2022]
Abstract
Chaperonins are ubiquitous molecular chaperones with the subunit molecular mass of 60kDa. They exist as double-ring oligomers with central cavities. An ATP-dependent conformational change of the cavity induces the folding of an unfolded protein that is captured in the cavity. In the group I chaperonins, which are present in eubacteria and eukaryotic organelles, inter-ring communication takes important role for the reaction cycle. However, there has been limited study on the inter-ring communication in the group II chaperonins that exist in archaea and the eukaryotic cytosol. In this study, we have constructed the asymmetric ring complex of a group II chaperonin using circular permutated covalent mutants. Although one ring of the asymmetric ring complex lacks ATPase or ATP binding activity, the other wild-type ring undergoes an ATP-dependent conformational change and maintains protein-folding activity. The results clearly demonstrate that inter-ring communication is dispensable in the reaction cycle of group II chaperonins.
Collapse
Affiliation(s)
- Yohei Y Yamamoto
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Naka, Koganei, Tokyo 184-8588, Japan
| | - Yuki Abe
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Naka, Koganei, Tokyo 184-8588, Japan
| | - Kazuki Moriya
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Naka, Koganei, Tokyo 184-8588, Japan
| | - Mayuno Arita
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Naka, Koganei, Tokyo 184-8588, Japan
| | - Keiichi Noguchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Naka, Koganei, Tokyo 184-8588, Japan
| | - Noriyuki Ishii
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8566, Japan
| | - Hiroshi Sekiguchi
- Japan Synchrotron Radiation Research Institute, Sayo, Hyogo 679-5198, Japan; CREST Sasaki Team, Japan Science and Technology Agency, Tokyo 102-0076, Japan
| | - Yuji C Sasaki
- CREST Sasaki Team, Japan Science and Technology Agency, Tokyo 102-0076, Japan; Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Masafumi Yohda
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Naka, Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|
17
|
Vilasi S, Carrotta R, Mangione MR, Campanella C, Librizzi F, Randazzo L, Martorana V, Marino Gammazza A, Ortore MG, Vilasi A, Pocsfalvi G, Burgio G, Corona D, Palumbo Piccionello A, Zummo G, Bulone D, Conway de Macario E, Macario AJL, San Biagio PL, Cappello F. Human Hsp60 with its mitochondrial import signal occurs in solution as heptamers and tetradecamers remarkably stable over a wide range of concentrations. PLoS One 2014; 9:e97657. [PMID: 24830947 PMCID: PMC4022648 DOI: 10.1371/journal.pone.0097657] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 04/21/2014] [Indexed: 11/23/2022] Open
Abstract
It has been established that Hsp60 can accumulate in the cytosol in various pathological conditions, including cancer and chronic inflammatory diseases. Part or all of the cytosolic Hsp60 could be naïve, namely, bear the mitochondrial import signal (MIS), but neither the structure nor the in solution oligomeric organization of this cytosolic molecule has still been elucidated. Here we present a detailed study of the structure and self-organization of naïve cytosolic Hsp60 in solution. Results were obtained by different biophysical methods (light and X ray scattering, single molecule spectroscopy and hydrodynamics) that all together allowed us to assay a wide range of concentrations of Hsp60. We found that Naïve Hsp60 in aqueous solution is assembled in very stable heptamers and tetradecamers at all concentrations assayed, without any trace of monomer presence.
Collapse
Affiliation(s)
- Silvia Vilasi
- Institute of Biophysics, National Research Council, Palermo, Italy
| | - Rita Carrotta
- Institute of Biophysics, National Research Council, Palermo, Italy
| | | | - Claudia Campanella
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
| | - Fabio Librizzi
- Institute of Biophysics, National Research Council, Palermo, Italy
| | | | | | - Antonella Marino Gammazza
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
| | - Maria Grazia Ortore
- Department of Life and Environmental Sciences and National Interuniversity Consortium for the Physical Sciences of Matter, Marche Polytechnic University, Ancona, Italy
| | - Annalisa Vilasi
- Institute of Biosciences and Bioresources, National Research Council, Napoli, Italy
| | - Gabriella Pocsfalvi
- Institute of Biosciences and Bioresources, National Research Council, Napoli, Italy
| | - Giosalba Burgio
- Department of biological chemical and pharmaceutical sciences and technologies, University of Palermo, Palermo, Italy
| | - Davide Corona
- Department of biological chemical and pharmaceutical sciences and technologies, University of Palermo, Palermo, Italy
| | - Antonio Palumbo Piccionello
- Institute of Biophysics, National Research Council, Palermo, Italy
- Department of biological chemical and pharmaceutical sciences and technologies, University of Palermo, Palermo, Italy
| | - Giovanni Zummo
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy
| | - Donatella Bulone
- Institute of Biophysics, National Research Council, Palermo, Italy
| | - Everly Conway de Macario
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore, and Institute of Marine and Environmental Technology, Columbus Center, Baltimore, Maryland, United States of America
| | - Alberto J. L. Macario
- Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore, and Institute of Marine and Environmental Technology, Columbus Center, Baltimore, Maryland, United States of America
| | | | - Francesco Cappello
- Institute of Biophysics, National Research Council, Palermo, Italy
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
| |
Collapse
|
18
|
Billerbeck S, Calles B, Müller CL, de Lorenzo V, Panke S. Towards functional orthogonalisation of protein complexes: individualisation of GroEL monomers leads to distinct quasihomogeneous single rings. Chembiochem 2013; 14:2310-21. [PMID: 24151180 DOI: 10.1002/cbic.201300332] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Indexed: 11/10/2022]
Abstract
The essential molecular chaperonin GroEL is an example of a functionally highly versatile cellular machine with a wide variety of in vitro applications ranging from protein folding to drug release. Directed evolution of new functions for GroEL is considered difficult, due to its structure as a complex homomultimeric double ring and the absence of obvious molecular engineering strategies. In order to investigate the potential to establish an orthogonal GroEL system in Escherichia coli, which might serve as a basis for GroEL evolution, we first successfully individualised groEL genes by inserting different functional peptide tags into a robustly permissive site identified by transposon mutagenesis. These peptides allowed fundamental aspects of the intracellular GroEL complex stoichiometry to be studied and revealed that GroEL single-ring complexes, which assembled in the presence of several functionally equivalent but biochemically distinct monomers, each consist almost exclusively of only one type of monomer. At least in the case of GroEL, individualisation of monomers thus leads to individualisation of homomultimeric protein complexes, effectively providing the prerequisites for evolving an orthogonal intracellular GroEL folding machine.
Collapse
Affiliation(s)
- Sonja Billerbeck
- Department for Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel (Switzerland); Current address: Department of Chemistry, Columbia University, 550 West 120th Street, New York, NY 10027 (USA)
| | | | | | | | | |
Collapse
|
19
|
Vitlin Gruber A, Nisemblat S, Zizelski G, Parnas A, Dzikowski R, Azem A, Weiss C. P. falciparum cpn20 is a bona fide co-chaperonin that can replace GroES in E. coli. PLoS One 2013; 8:e53909. [PMID: 23326533 PMCID: PMC3542282 DOI: 10.1371/journal.pone.0053909] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 12/04/2012] [Indexed: 02/05/2023] Open
Abstract
Human malaria is among the most ubiquitous and destructive tropical, parasitic diseases in the world today. The causative agent, Plasmodium falciparum, contains an unusual, essential organelle known as the apicoplast. Inhibition of this degenerate chloroplast results in second generation death of the parasite and is the mechanism by which antibiotics function in treating malaria. In order to better understand the biochemistry of this organelle, we have cloned a putative, 20 kDa, co-chaperonin protein, Pf-cpn20, which localizes to the apicoplast. Although this protein is homologous to the cpn20 that is found in plant chloroplasts, its ability to function as a co-chaperonin was questioned in the past. In the present study, we carried out a structural analysis of Pf-cpn20 using circular dichroism and analytical ultracentrifugation and then used two different approaches to investigate the ability of this protein to function as a co-chaperonin. In the first approach, we purified recombinant Pf-cpn20 and tested its ability to act as a co-chaperonin for GroEL in vitro, while in the second, we examined the ability of Pf-cpn20 to complement an E. coli depletion of the essential bacterial co-chaperonin GroES. Our results demonstrate that Pf-cpn20 is fully functional as a co-chaperonin in vitro. Moreover, the parasitic co-chaperonin is able to replace GroES in E. coli at both normal and heat-shock temperatures. Thus, Pf-cpn20 functions as a co-chaperonin in chaperonin-mediated protein folding. The ability of the malarial protein to function in E. coli suggests that this simple system can be used as a tool for further analyses of Pf-cpn20 and perhaps other chaperone proteins from P. falciparum.
Collapse
Affiliation(s)
- Anna Vitlin Gruber
- George E. Wise Faculty of Life Sciences, Department of Biochemistry and Molecular Biology, Tel Aviv University, Ramat Aviv, Israel
| | | | | | | | | | | | | |
Collapse
|
20
|
Parnas A, Nisemblat S, Weiss C, Levy-Rimler G, Pri-Or A, Zor T, Lund PA, Bross P, Azem A. Identification of elements that dictate the specificity of mitochondrial Hsp60 for its co-chaperonin. PLoS One 2012; 7:e50318. [PMID: 23226518 PMCID: PMC3514286 DOI: 10.1371/journal.pone.0050318] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 10/18/2012] [Indexed: 01/28/2023] Open
Abstract
Type I chaperonins (cpn60/Hsp60) are essential proteins that mediate the folding of proteins in bacteria, chloroplast and mitochondria. Despite the high sequence homology among chaperonins, the mitochondrial chaperonin system has developed unique properties that distinguish it from the widely-studied bacterial system (GroEL and GroES). The most relevant difference to this study is that mitochondrial chaperonins are able to refold denatured proteins only with the assistance of the mitochondrial co-chaperonin. This is in contrast to the bacterial chaperonin, which is able to function with the help of co-chaperonin from any source. The goal of our work was to determine structural elements that govern the specificity between chaperonin and co-chaperonin pairs using mitochondrial Hsp60 as model system. We used a mutagenesis approach to obtain human mitochondrial Hsp60 mutants that are able to function with the bacterial co-chaperonin, GroES. We isolated two mutants, a single mutant (E321K) and a double mutant (R264K/E358K) that, together with GroES, were able to rescue an E. coli strain, in which the endogenous chaperonin system was silenced. Although the mutations are located in the apical domain of the chaperonin, where the interaction with co-chaperonin takes place, none of the residues are located in positions that are directly responsible for co-chaperonin binding. Moreover, while both mutants were able to function with GroES, they showed distinct functional and structural properties. Our results indicate that the phenotype of the E321K mutant is caused mainly by a profound increase in the binding affinity to all co-chaperonins, while the phenotype of R264K/E358K is caused by a slight increase in affinity toward co-chaperonins that is accompanied by an alteration in the allosteric signal transmitted upon nucleotide binding. The latter changes lead to a great increase in affinity for GroES, with only a minor increase in affinity toward the mammalian mitochondrial co-chaperonin.
Collapse
Affiliation(s)
- Avital Parnas
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
| | - Shahar Nisemblat
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
| | - Celeste Weiss
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
| | - Galit Levy-Rimler
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
| | - Amir Pri-Or
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
| | - Tsaffrir Zor
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
| | - Peter A. Lund
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Peter Bross
- Research Unit for Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Abdussalam Azem
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
21
|
Fan M, Rao T, Zacco E, Ahmed MT, Shukla A, Ojha A, Freeke J, Robinson CV, Benesch JL, Lund PA. The unusual mycobacterial chaperonins: evidence for in vivo oligomerization and specialization of function. Mol Microbiol 2012; 85:934-44. [PMID: 22834700 DOI: 10.1111/j.1365-2958.2012.08150.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The pathogen Mycobacterium tuberculosis expresses two chaperonins, one (Cpn60.1) dispensable and one (Cpn60.2) essential. These proteins have been reported not to form oligomers despite the fact that oligomerization of chaperonins is regarded as essential for their function. We show here that the Cpn60.2 homologue from Mycobacterium smegmatis also fails to oligomerize under standard conditions. However, we also show that the Cpn60.2 proteins from both organisms can replace the essential groEL gene of Escherichia coli, and that they can function with E. coli GroES cochaperonin, as well as with their cognate cochaperonin proteins, strongly implying that they form oligomers in vivo. We show that the Cpn60.1 proteins, but not the Cpn60.2 proteins, can complement for loss of the M. smegmatis cpn60.1 gene. We investigated the oligomerization of the Cpn60.2 proteins using analytical ultracentrifugation and mass spectroscopy. Both form monomers under standard conditions, but they form higher order oligomers in the presence of kosmotropes and ADP or ATP. Under these conditions, their ATPase activity is significantly enhanced. We conclude that the essential mycobacterial chaperonins, while unstable compared to many other bacterial chaperonins, do act as oligomers in vivo, and that there has been specialization of function of the mycobacterial chaperonins following gene duplication.
Collapse
Affiliation(s)
- MingQi Fan
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Piggot TJ, Sessions RB, Burston SG. Toward a detailed description of the pathways of allosteric communication in the GroEL chaperonin through atomistic simulation. Biochemistry 2012; 51:1707-18. [PMID: 22289022 DOI: 10.1021/bi201237a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
GroEL, along with its coprotein GroES, is essential for ensuring the correct folding of unfolded or newly synthesized proteins in bacteria. GroEL is a complex, allosteric molecule, composed of two heptameric rings stacked back to back, that undergoes large structural changes during its reaction cycle. These structural changes are driven by the cooperative binding and subsequent hydrolysis of ATP, by GroEL. Despite numerous previous studies, the precise mechanisms of allosteric communication and the associated structural changes remain elusive. In this paper, we describe a series of all-atom, unbiased, molecular dynamics simulations over relatively long (50-100 ns) time scales of a single, isolated GroEL subunit and also a heptameric GroEL ring, in the presence and absence of ATP. Combined with results from a distance restraint-biased simulation of the single ring, the atomistic details of the earliest stages of ATP-driven structural changes within this complex molecule are illuminated. Our results are in broad agreement with previous modeling studies of isolated subunits and with a coarse-grained, forcing simulation of the single ring. These are the first reported all-atom simulations of the GroEL single-ring complex and provide a unique insight into the role of charged residues K80, K277, R284, R285, and E388 at the subunit interface in transmission of the allosteric signal. These simulations also demonstrate the feasibility of performing all-atom simulations of very large systems on sufficiently long time scales on typical high performance computing facilities to show the origins of the earliest events in biologically relevant processes.
Collapse
Affiliation(s)
- Thomas J Piggot
- School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | | | | |
Collapse
|
23
|
Luo H, Zhang P, Robb FT. Oligomerization of an archaeal group II chaperonin is mediated by N-terminal salt bridges. Biochem Biophys Res Commun 2011; 413:389-94. [DOI: 10.1016/j.bbrc.2011.08.112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 08/23/2011] [Indexed: 11/30/2022]
|
24
|
Shahar A, Melamed-Frank M, Kashi Y, Shimon L, Adir N. The dimeric structure of the Cpn60.2 chaperonin of Mycobacterium tuberculosis at 2.8 Å reveals possible modes of function. J Mol Biol 2011; 412:192-203. [PMID: 21802426 DOI: 10.1016/j.jmb.2011.07.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 07/13/2011] [Accepted: 07/14/2011] [Indexed: 11/25/2022]
Abstract
Mycobacterium tuberculosis expresses two proteins (Cpn60.1 and Cpn60.2) that belong to the chaperonin (Cpn) family of heat shock proteins. Studies have shown that the two proteins have different functional roles in the bacterial life cycle and that Cpn60.2 is essential for cell viability and may be involved in M. tuberculosis pathogenicity. Cpn60.2 does not form a tetradecameric double ring, which is typical of other Cpns. We have determined the crystal structure of recombinant Cpn60.2 to 2.8 Å resolution by molecular replacement; the asymmetric unit (AU) contains a dimer, which is consistent with size-exclusion high-performance liquid chromatography and dynamic light-scattering measurements of the soluble recombinant protein. However, we suggest that the actual Cpn60.2 dimer may be different from that identified within the AU on the basis of surface contact stability, solvation free-energy gain, and functional aspects. Unlike the dimer found in the AU, which is formed through apical domain interactions, the dimeric form we propose here provides a free apical domain that is required for normal chaperone activity and may be involved in M. tuberculosis association with macrophages and arthrosclerosis plaque formation. Here we describe in detail the structural aspects that lead to Cpn60.2 dimer formation and prevent the formation of heptameric rings and tetradecameric double rings.
Collapse
Affiliation(s)
- Anat Shahar
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | | | | | | | | |
Collapse
|
25
|
Illingworth M, Ramsey A, Zheng Z, Chen L. Stimulating the substrate folding activity of a single ring GroEL variant by modulating the cochaperonin GroES. J Biol Chem 2011; 286:30401-30408. [PMID: 21757689 DOI: 10.1074/jbc.m111.255935] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In mediating protein folding, chaperonin GroEL and cochaperonin GroES form an enclosed chamber for substrate proteins in an ATP-dependent manner. The essential role of the double ring assembly of GroEL is demonstrated by the functional deficiency of the single ring GroEL(SR). The GroEL(SR)-GroES is highly stable with minimal ATPase activity. To restore the ATP cycle and the turnover of the folding chamber, we sought to weaken the GroEL(SR)-GroES interaction systematically by concatenating seven copies of groES to generate groES(7). GroES Ile-25, Val-26, and Leu-27, residues on the GroEL-GroES interface, were substituted with Asp on different groES modules of groES(7). GroES(7) variants activate ATP activity of GroEL(SR), but only some restore the substrate folding function of GroEL(SR), indicating a direct role of GroES in facilitating substrate folding through its dynamics with GroEL. Active GroEL(SR)-GroES(7) systems may resemble mammalian mitochondrial chaperonin systems.
Collapse
Affiliation(s)
- Melissa Illingworth
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405
| | - Andrew Ramsey
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405
| | - Zhida Zheng
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405
| | - Lingling Chen
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405.
| |
Collapse
|
26
|
Williams TA, Codoñer FM, Toft C, Fares MA. Two chaperonin systems in bacterial genomes with distinct ecological roles. Trends Genet 2009; 26:47-51. [PMID: 20036437 DOI: 10.1016/j.tig.2009.11.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 11/27/2009] [Accepted: 11/30/2009] [Indexed: 10/20/2022]
Abstract
Bacterial chaperonins are essential to cell viability and have a role in endosymbiosis, which leads to increased biological complexity. However, the extent to which chaperonins promote ecological innovation is unknown. We screened 622 bacterial genomes for genes encoding chaperonins, and found archaeal-like chaperonins in bacteria that inhabit archaeal ecological niches. We found that chaperonins encoded in pathogenic bacteria are the most functionally divergent. We identified the molecular basis of the dramatic structural changes in mitochondrial GROEL, a highly derived chaperonin gene. Our analysis suggests that chaperonins are important capacitors of evolutionary and ecological change.
Collapse
Affiliation(s)
- Tom A Williams
- Department of Genetics, University of Dublin, Trinity College, Dublin, Ireland
| | | | | | | |
Collapse
|
27
|
Kovács E, Sun Z, Liu H, Scott DJ, Karsisiotis AI, Clarke AR, Burston SG, Lund PA. Characterisation of a GroEL single-ring mutant that supports growth of Escherichia coli and has GroES-dependent ATPase activity. J Mol Biol 2009; 396:1271-83. [PMID: 20006619 DOI: 10.1016/j.jmb.2009.11.074] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 11/26/2009] [Accepted: 11/30/2009] [Indexed: 11/30/2022]
Abstract
Binding and folding of substrate proteins by the molecular chaperone GroEL alternates between its two seven-membered rings in an ATP-regulated manner. The association of ATP and GroES to a polypeptide-bound ring of GroEL encapsulates the folding proteins in the central cavity of that ring (cis ring) and allows it to fold in a protected environment where the risk of aggregation is reduced. ATP hydrolysis in the cis ring changes the potentials within the system such that ATP binding to the opposite (trans) ring triggers the release of all ligands from the cis ring of GroEL through a complex network of allosteric communication between the rings. Inter-ring allosteric communication thus appears indispensable for the function of GroEL, and an engineered single-ring version (SR1) cannot substitute for GroEL in vivo. We describe here the isolation and characterisation of an active single-ring form of the GroEL protein (SR-A92T), which has an exceptionally low ATPase activity that is strongly stimulated by the addition of GroES. Dissection of the kinetic pathway of the ATP-induced structural changes in this active single ring can be explained by the fact that the mutation effectively blocks progression through the full allosteric pathway of the GroEL reaction cycle, thus trapping an early allosteric intermediate. Addition of GroES is able to overcome this block by binding this intermediate and pulling the allosteric pathway to completion via mass action, explaining how bacterial cells expressing this protein as their only chaperonin are viable.
Collapse
Affiliation(s)
- Eszter Kovács
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Liu H, Kovács E, Lund PA. Characterisation of mutations in GroES that allow GroEL to function as a single ring. FEBS Lett 2009; 583:2365-71. [PMID: 19545569 DOI: 10.1016/j.febslet.2009.06.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 06/05/2009] [Accepted: 06/15/2009] [Indexed: 11/27/2022]
Affiliation(s)
- Han Liu
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | | | | |
Collapse
|
29
|
Yang Z, Májek P, Bahar I. Allosteric transitions of supramolecular systems explored by network models: application to chaperonin GroEL. PLoS Comput Biol 2009; 5:e1000360. [PMID: 19381265 PMCID: PMC2664929 DOI: 10.1371/journal.pcbi.1000360] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Accepted: 03/13/2009] [Indexed: 11/19/2022] Open
Abstract
Identification of pathways involved in the structural transitions of biomolecular systems is often complicated by the transient nature of the conformations visited across energy barriers and the multiplicity of paths accessible in the multidimensional energy landscape. This task becomes even more challenging in exploring molecular systems on the order of megadaltons. Coarse-grained models that lend themselves to analytical solutions appear to be the only possible means of approaching such cases. Motivated by the utility of elastic network models for describing the collective dynamics of biomolecular systems and by the growing theoretical and experimental evidence in support of the intrinsic accessibility of functional substates, we introduce a new method, adaptive anisotropic network model (aANM), for exploring functional transitions. Application to bacterial chaperonin GroEL and comparisons with experimental data, results from action minimization algorithm, and previous simulations support the utility of aANM as a computationally efficient, yet physically plausible, tool for unraveling potential transition pathways sampled by large complexes/assemblies. An important outcome is the assessment of the critical inter-residue interactions formed/broken near the transition state(s), most of which involve conserved residues.
Collapse
Affiliation(s)
- Zheng Yang
- Department of Computational Biology, School of Medicine, University of
Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Physics and Astronomy, School of Arts & Sciences,
University of Pittsburgh, Pittsburgh, Pennsylvania, United States of
America
| | - Peter Májek
- Department of Computer Science, Cornell University, Ithaca, New York,
United States of America
| | - Ivet Bahar
- Department of Computational Biology, School of Medicine, University of
Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
30
|
Huang CY, Lee CY, Wu HC, Kuo MH, Lai CY. Interactions of chaperonin with a weakly active anthranilate synthase from the aphid endosymbiont Buchnera aphidicola. MICROBIAL ECOLOGY 2008; 56:696-703. [PMID: 18478288 DOI: 10.1007/s00248-008-9389-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 01/30/2008] [Accepted: 03/10/2008] [Indexed: 05/26/2023]
Abstract
The endosymbiotic bacterium Buchnera provides its aphid host with essential amino acids. Buchnera is typical of intracellular symbiotic and parasitic microorganisms in having a small effective population size, which is believed to accelerate genetic drift and reduce the stability of gene products. It is hypothesized that Buchnera mitigates protein instability with an increased production of the chaperonins GroESL. In this paper, we report the expression and functional analysis of trpE, a plasmid-borne fast-evolving gene encoding the tryptophan biosynthesis enzyme anthranilate synthase. We overcame the problem of low enzyme stability by using an anthranilate synthase-deficient mutant of E. coli as the expression host and the method of genetic complementation for detection of the enzyme activity. We showed that the Buchnera anthranilate synthase was only weakly active at the temperature of 26 degrees C but became inactive at the higher temperatures of 32 degrees C and 37 degrees C and that the coexpression with chaperonin genes groESL of E. coli enhanced the function of the Buchnera enzyme. These findings are consistent with the proposed role of groESL in the Buchnera-aphid symbiosis.
Collapse
Affiliation(s)
- Chia-Ying Huang
- Department of Biology, National Changhua University of Education, 1 Jin Der Road, Changhua 50007, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
31
|
Tehver R, Thirumalai D. Kinetic model for the coupling between allosteric transitions in GroEL and substrate protein folding and aggregation. J Mol Biol 2008; 377:1279-95. [PMID: 18313071 PMCID: PMC2364733 DOI: 10.1016/j.jmb.2008.01.059] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 01/16/2008] [Accepted: 01/20/2008] [Indexed: 10/22/2022]
Abstract
The bacterial chaperonin GroEL and the co-chaperonin GroES assist in the folding of a number of structurally unrelated substrate proteins (SPs). In the absence of chaperonins, SP folds by the kinetic partitioning mechanism (KPM), according to which a fraction of unfolded molecules reaches the native state directly, while the remaining fraction gets trapped in a potentially aggregation-prone misfolded state. During the catalytic reaction cycle, GroEL undergoes a series of allosteric transitions (T<-->R-->R"-->T) triggered by SP capture, ATP binding and hydrolysis, and GroES binding. We developed a general kinetic model that takes into account the coupling between the rates of the allosteric transitions and the folding and aggregation of the SP. Our model, in which the GroEL allosteric rates and SP-dependent folding and aggregation rates are independently varied without prior assumption, quantitatively fits the GroEL concentration-dependent data on the yield of native ribulose bisphosphate carboxylase/oxygenase (Rubisco) as a function of time. The extracted kinetic parameters for the GroEL reaction cycle are consistent with the available values from independent experiments. In addition, we also obtained physically reasonable parameters for the kinetic steps in the reaction cycle that are difficult to measure. If experimental values for GroEL allosteric rates are used, the time-dependent changes in native-state yield at eight GroEL concentrations can be quantitatively fit using only three SP-dependent parameters. The model predicts that the differences in the efficiencies (as measured by yields of the native state) of GroEL, single-ring mutant (SR1), and variants of SR1, in the rescue of mitochondrial malate dehydrogenase, citrate synthase, and Rubisco, are related to the large variations in the allosteric transition rates. We also show that GroEL/S mutants that efficiently fold one SP at the expense of all others are due to a decrease in the rate of a key step in the reaction cycle, which implies that wild-type GroEL has evolved as a compromise between generality and specificity. We predict that, under maximum loading conditions and saturating ATP concentration, the efficiency of GroEL (using parameters for Rubisco) depends predominantly on the rate of R-->R" transition, while the equilibrium constant of the T<-->R has a small effect only. Both under sub- and superstoichiometric GroEL concentrations, enhanced efficiency is achieved by rapid turnover of the reaction cycle, which is in accord with the predictions of the iterative annealing mechanism. The effects are most dramatic at substoichiometric conditions (most relevant for in vivo situations) when SP aggregation can outcompete capture of SP by chaperonins.
Collapse
Affiliation(s)
- Riina Tehver
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|
32
|
Hu Y, Henderson B, Lund PA, Tormay P, Ahmed MT, Gurcha SS, Besra GS, Coates ARM. A Mycobacterium tuberculosis mutant lacking the groEL homologue cpn60.1 is viable but fails to induce an inflammatory response in animal models of infection. Infect Immun 2008; 76:1535-46. [PMID: 18227175 PMCID: PMC2292875 DOI: 10.1128/iai.01078-07] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Revised: 09/12/2007] [Accepted: 12/05/2007] [Indexed: 12/25/2022] Open
Abstract
The causative agent of tuberculosis, Mycobacterium tuberculosis, has two chaperonin (Cpn60) proteins and one cochaperonin (Cpn10) protein. We show here that cpn60.2 and cpn10, but not cpn60.1, are essential for cell survival. A mutant lacking Cpn60.1 was indistinguishable from the wild-type organism in plate and broth culture and within murine macrophages, although it showed increased sensitivity to high temperature (55 degrees C). However, infection of mice with the Deltacpn60.1 mutant revealed a major difference from the wild-type organism. In spite of having equal numbers of bacteria in infected sites, the Deltacpn60.1 mutant failed to produce granulomatous inflammation in either mice or guinea pigs. This was associated with reduced cytokine expression in infected animals and macrophages. Cell wall lipid acid composition was not altered in the mutant strain. Thus, it appears that Cpn60.1 is an important agent in the regulation of the cytokine-dependent granulomatous response in M. tuberculosis infection.
Collapse
Affiliation(s)
- Yanmin Hu
- Medical Microbiology, Centre of Infection, Division of Cellular and Molecular Medicine, St. George's University of London, London SW17 ORE, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
33
|
van Duijn E, Heck AJR, van der Vies SM. Inter-ring communication allows the GroEL chaperonin complex to distinguish between different substrates. Protein Sci 2007; 16:956-65. [PMID: 17456746 PMCID: PMC2206630 DOI: 10.1110/ps.062713607] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The productive folding of substrate proteins by the GroEL complex of Escherichia coli requires the activity of both the chaperonin rings. These heptameric rings were shown to regulate the chaperonins' affinity for substrates and co-chaperonin via inter-ring communications; however, the molecular details of the interactions are not well understood. We have investigated the effect of substrate binding on inter-ring communications of the chaperonin complex, both the double-ring GroEL as well as the single-ring SR1 chaperonin in complex with four different substrates by using mass spectrometry. This approach shows that whereas SR1 is unable to distinguish between Rubisco, gp23, gp5, and MDH, GroEL shows clear differences upon binding these substrates. The most distinctive binding behavior is observed for Rubisco, which only occupies one GroEL ring. Both bacteriophage capsid proteins (gp23 and gp5) as well as MDH are able to bind to the two GroEL rings simultaneously. Our data suggest that inter-ring communication allows the chaperonin complex to differentiate between substrates. Using collision induced dissociation in the gas phase, differences between the chaperonin(substrate) complexes are observed only when both rings are present. The data indicate that the size of the substrate is an important factor that determines the degree of stabilization of the chaperonin complex.
Collapse
Affiliation(s)
- Esther van Duijn
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, Free University, Amsterdam, The Netherlands
| | | | | |
Collapse
|
34
|
Zheng W, Brooks BR, Thirumalai D. Allosteric transitions in the chaperonin GroEL are captured by a dominant normal mode that is most robust to sequence variations. Biophys J 2007; 93:2289-99. [PMID: 17557788 PMCID: PMC1965427 DOI: 10.1529/biophysj.107.105270] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The Escherichia coli chaperonin GroEL, which helps proteins to fold, consists of two heptameric rings stacked back-to-back. During the reaction cycle GroEL undergoes a series of allosteric transitions triggered by ligand (substrate protein, ATP, and the cochaperonin GroES) binding. Based on an elastic network model of the bullet-shaped double-ring chaperonin GroEL-(ADP)(7)-GroES structure (R''T state), we perform a normal mode analysis to explore the energetically favorable collective motions encoded in the R''T structure. By comparing each normal mode with the observed conformational changes in the R''T --> TR'' transition, a single dominant normal mode provides a simple description of this highly intricate allosteric transition. A detailed analysis of this relatively high-frequency mode describes the structural and dynamic changes that underlie the positive intra-ring and negative inter-ring cooperativity. The dynamics embedded in the dominant mode entails highly concerted structural motions with approximate preservation of sevenfold symmetry within each ring and negatively correlated ones between the two rings. The dominant normal mode (in comparison with the other modes) is robust to parametric perturbations caused by sequence variations, which validates its functional importance. Response of the dominant mode to local changes that mimic mutations using the structural perturbation method technique leads to a wiring diagram that identifies a network of key residues that regulate the allosteric transitions. Many of these residues are located in intersubunit interfaces, and may therefore play a critical role in transmitting allosteric signals between subunits.
Collapse
Affiliation(s)
- Wenjun Zheng
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | |
Collapse
|
35
|
|
36
|
Endo A, Sasaki M, Maruyama A, Kurusu Y. Temperature adaptation of Bacillus subtilis by chromosomal groEL replacement. Biosci Biotechnol Biochem 2006; 70:2357-62. [PMID: 17031040 DOI: 10.1271/bbb.50689] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We investigated a temperature adaptation of Bacillus subtilis 168 in which chromosomal groEL was replaced with a psychrophilic groEL. This strain can grow at 50 degrees C but not at 51 degrees C, a temperature at which wild-type B. subtilis can grow. Using in vivo random mutagenesis by the B. subtilis mutator strain (mutS, mutM, mutY), two thermo-adaptants were isolated from the groEL substituted strain at 52 degrees C. They contained novel amino acid alterations in their ATP binding motif (T93I) and the inter-monomer contact (R285H) region of GroEL. These results suggest that GroEL participates in bacterial temperature adaptation.
Collapse
Affiliation(s)
- Ayako Endo
- Laboratory of Molecular Microbiology, College of Agriculture, Ibaraki University, Japan
| | | | | | | |
Collapse
|
37
|
Horovitz A, Willison KR. Allosteric regulation of chaperonins. Curr Opin Struct Biol 2005; 15:646-51. [PMID: 16249079 DOI: 10.1016/j.sbi.2005.10.001] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Revised: 07/28/2005] [Accepted: 10/14/2005] [Indexed: 12/31/2022]
Abstract
Chaperonins are molecular machines that facilitate protein folding by undergoing energy (ATP)-dependent movements that are coordinated in time and space by complex allosteric regulation. Recently, progress has been made in describing the various functional (allosteric) states of these machines, the pathways by which they interconvert, and the coupling between allosteric transitions and protein folding reactions. However, various mechanistic issues remain to be resolved.
Collapse
Affiliation(s)
- Amnon Horovitz
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel.
| | | |
Collapse
|
38
|
Bakkes PJ, Faber BW, van Heerikhuizen H, van der Vies SM. The T4-encoded cochaperonin, gp31, has unique properties that explain its requirement for the folding of the T4 major capsid protein. Proc Natl Acad Sci U S A 2005; 102:8144-9. [PMID: 15919824 PMCID: PMC1149413 DOI: 10.1073/pnas.0500048102] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2005] [Accepted: 04/04/2005] [Indexed: 12/30/2022] Open
Abstract
The morphogenesis of bacteriophage T4 requires a specialized bacteriophage-encoded molecular chaperone (gp31) that is essential for the folding of the T4 major capsid protein (gp23). gp31 is related to GroES, the chaperonin of the Escherichia coli host because it displays a similar overall structure and properties. Why GroES is unable to fold the T4 capsid protein in conjunction with GroEL is unknown. Here we show that gp23 binds to the GroEL heptameric ring opposite to the ring that is bound by gp31 (the so-called trans-ring), while no binding to the trans-ring of the GroEL-GroES complex is observed. Although gp23 can be enclosed within the folding cage of the GroEL-gp31 complex, encapsulation within the GroEL-GroES complex is not possible. So it appears that folding of the T4 major capsid protein requires a gp31-dependent cis-folding mechanism likely inside an enlarged "Anfinsen cage" provided by GroEL and gp31.
Collapse
Affiliation(s)
- Patrick J Bakkes
- Section of Biochemistry and Molecular Biology, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
39
|
Schiener J, Witt S, Hayer-Hartl M, Guckenberger R. How to orient the functional GroEL-SR1 mutant for atomic force microscopy investigations. Biochem Biophys Res Commun 2005; 328:477-83. [PMID: 15694372 DOI: 10.1016/j.bbrc.2005.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Indexed: 11/17/2022]
Abstract
We present high-resolution atomic force microscopy (AFM) imaging of the single-ring mutant of the chaperonin GroEL (SR-EL) from Escherichia coli in buffer solution. The native GroEL is generally unsuitable for AFM scanning as it is easily being bisected by forces exerted by the AFM tip. The single-ring mutant of GroEL with its simplified composition, but unaltered capability of binding substrates and the co-chaperone GroES, is a more suited system for AFM studies. We worked out a scheme to systematically investigate both the apical and the equatorial faces of SR-EL, as it binds in a preferred orientation to hydrophilic mica and hydrophobic highly ordered pyrolytic graphite. High-resolution topographical imaging and the interaction of the co-chaperone GroES were used to assign the orientations of SR-EL in comparison with the physically bisected GroEL. The usage of SR-EL facilitates single molecule studies on the folding cycle of the GroE system using AFM.
Collapse
Affiliation(s)
- Jens Schiener
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | | | | | | |
Collapse
|
40
|
Abstract
In the year 2003 there was a 17% increase in the number of publications citing work performed using optical biosensor technology compared with the previous year. We collated the 962 total papers for 2003, identified the geographical regions where the work was performed, highlighted the instrument types on which it was carried out, and segregated the papers by biological system. In this overview, we spotlight 13 papers that should be on everyone's 'must read' list for 2003 and provide examples of how to identify and interpret high-quality biosensor data. Although we still find that the literature is replete with poorly performed experiments, over-interpreted results and a general lack of understanding of data analysis, we are optimistic that these shortcomings will be addressed as biosensor technology continues to mature.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
41
|
Poso D, Clarke AR, Burston SG. A kinetic analysis of the nucleotide-induced allosteric transitions in a single-ring mutant of GroEL. J Mol Biol 2004; 338:969-77. [PMID: 15111060 DOI: 10.1016/j.jmb.2004.03.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2004] [Revised: 03/08/2004] [Accepted: 03/09/2004] [Indexed: 11/16/2022]
Abstract
The function of GroE requires a complex system of allosteric communication driven by protein-nucleotide interactions. These rearrangements couple the binding and hydrolysis of ATP to an overall reaction cycle in which substrate proteins are bound, encapsulated and released. Positive cooperativity with respect to ATP binding occurs within one heptameric ring of GroEL, while negative cooperativity between the two rings generates an inherent asymmetry between the two rings. A previously engineered mutant of GroEL in which the ring-ring contacts are broken gives rise to a single-ring version of the wild-type chaperonin (SR1). We have studied the kinetics of the nucleotide-induced conformational changes in a single-tryptophan variant of SR1 (Y485W-SR1) and compared the resulting data with those we reported previously for the double-ring, single-tryptophan variant of wild-type GroEL (Y485W-GroEL). Remarkably, the parting of the rings does not have a major effect on the conformational changes occurring within the heptameric ring and a kinetic model is presented to describe the sequence of structural rearrangements that occur upon ATP binding to the SR1 molecule. The observation that both the ATP-induced and ADP-induced conformational rearrangements occur more rapidly in the SR1 than they do in wild-type GroEL, indicates that intra-ring conformational changes in the double-ring structure must overcome conformational constraints provided by the presence of the second ring. Lastly, the data presented here imply a role for inter-ring allostery in controlling the dissociation-association behaviour of the GroES co-protein in the overall reaction cycle.
Collapse
Affiliation(s)
- Daniel Poso
- Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK.
| | | | | |
Collapse
|
42
|
Poso D, Clarke AR, Burston SG. Identification of a major inter-ring coupling step in the GroEL reaction cycle. J Biol Chem 2004; 279:38111-7. [PMID: 15169772 DOI: 10.1074/jbc.m401730200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It has been shown previously that the double-ring structure of GroEL can be converted to a single-ring species by site-directed amino acid replacements at the ring interface and that the resultant molecule retains many of the crucial chaperonin properties; it is structurally stable, hydrolytically active, and can bind both the co-chaperonin, GroES, and unfolded substrate proteins. By comparing the behavior of the double- and single-ring structures in response to nucleotide binding and hydrolysis, we elucidate steps in the ATP-driven reaction cycle at which there is conformational coupling between the rings. Remarkably, the parting of the rings has little effect either on the thermodynamic properties of ATP binding or on the ATP-induced conformational changes prior to hydrolysis. However, there is a marked effect on the rate-limiting process in the steady-state cycle; a step that is coincident with bond cleavage in ATP. The effect of the ring-ring interaction is to increase its activation enthalpy from 42.0 to 94.2 kJ/mol. These results show that the major conformational coupling step, where structural rearrangements in one ring are propagated to the other, is the slowest process the ATPase cycle of GroEL.
Collapse
Affiliation(s)
- Daniel Poso
- Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom.
| | | | | |
Collapse
|