1
|
Darbyshire AL, Wolthers KR. Characterization of a Structurally Distinct ATP-Dependent Reactivating Factor of Adenosylcobalamin-Dependent Lysine 5,6-Aminomutase. Biochemistry 2024; 63:913-925. [PMID: 38471967 DOI: 10.1021/acs.biochem.3c00653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Several anaerobic bacterial species, including the Gram-negative oral bacterium Fusobacterium nucleatum, ferment lysine to produce butyrate, acetate, and ammonia. The second step of the metabolic pathway─isomerization of β-l-lysine to erythro-3,5-diaminohexanoate─is catalyzed by the adenosylcobalamin (AdoCbl) and pyridoxal 5'-phosphate (PLP)-dependent enzyme, lysine 5,6-aminomutase (5,6-LAM). Similar to other AdoCbl-dependent enzymes, 5,6-LAM undergoes mechanism-based inactivation due to loss of the AdoCbl 5'-deoxyadenosyl moiety and oxidation of the cob(II)alamin intermediate to hydroxocob(III)alamin. Herein, we identified kamB and kamC, two genes responsible for ATP-dependent reactivation of 5,6-LAM. KamB and KamC, which are encoded upstream of the genes corresponding to α and β subunits of 5,6-LAM (kamD and kamE), co-purified following coexpression of the genes in Escherichia coli. KamBC exhibited a basal level of ATP-hydrolyzing activity that was increased 35% in a reaction mixture that facilitated 5,6-LAM turnover with β-l-lysine or d,l-lysine. Ultraviolet-visible (UV-vis) spectroscopic studies performed under anaerobic conditions revealed that KamBC in the presence of ATP/Mg2+ increased the steady-state concentration of the cob(II)alamin intermediate in the presence of excess β-l-lysine. Using a coupled UV-visible spectroscopic assay, we show that KamBC is able to reactivate 5,6-LAM through exchange of the damaged hydroxocob(III)alamin for AdoCbl. KamBC is also specific for 5,6-LAM as it had no effect on the rate of substrate-induced inactivation of the homologue, ornithine 4,5-aminomutase. Based on sequence homology, KamBC is structurally distinct from previously characterized B12 chaperones and reactivases, and correspondingly adds to the list of proteins that have evolved to maintain the cellular activity of B12 enzymes.
Collapse
Affiliation(s)
- Amanda L Darbyshire
- Department of Chemistry, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna V1V 1V7, Canada
| | - Kirsten R Wolthers
- Department of Chemistry, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna V1V 1V7, Canada
| |
Collapse
|
2
|
An Emerging Duck Egg-Reducing Syndrome Caused by a Novel Picornavirus Containing Seven Putative 2A Peptides. Viruses 2022; 14:v14050932. [PMID: 35632674 PMCID: PMC9144743 DOI: 10.3390/v14050932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/20/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Since 2016, frequent outbreaks of egg-reducing syndromes caused by an unknown virus in duck farms have resulted in huge economic losses in China. The causative virus was isolated and identified as a novel species in Avihepatovirus of the picornavirus family according to the current guidelines of the International Committee on Taxonomy of Viruses (ICVT), and was named the duck egg-reducing syndrome virus (DERSV). The DERSV was most closely related to wild duck avihepatovirus-like virus (WDALV) with 64.0%, 76.8%, 77.5%, and 70.7% of amino acid identities of P1, 2C, 3C, and 3D proteins, respectively. The DERSV had a typical picornavirus-like genomic structure, but with the longest 2A region in the reported picornaviruses so far. Importantly, the clinical symptoms were successfully observed by artificially infecting ducks with DERSV, even in the contact exposed ducks, which suggested that DERSV transmitted among ducks by direct contact. The antibody levels of DERSV were correlated with the emergence of the egg-reducing syndromes in ducks in field. These results indicate that DERSV is a novel emerging picornavirus causing egg-reducing syndrome in ducks.
Collapse
|
3
|
Kraithong T, Hartley S, Jeruzalmi D, Pakotiprapha D. A Peek Inside the Machines of Bacterial Nucleotide Excision Repair. Int J Mol Sci 2021; 22:ijms22020952. [PMID: 33477956 PMCID: PMC7835731 DOI: 10.3390/ijms22020952] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022] Open
Abstract
Double stranded DNA (dsDNA), the repository of genetic information in bacteria, archaea and eukaryotes, exhibits a surprising instability in the intracellular environment; this fragility is exacerbated by exogenous agents, such as ultraviolet radiation. To protect themselves against the severe consequences of DNA damage, cells have evolved at least six distinct DNA repair pathways. Here, we review recent key findings of studies aimed at understanding one of these pathways: bacterial nucleotide excision repair (NER). This pathway operates in two modes: a global genome repair (GGR) pathway and a pathway that closely interfaces with transcription by RNA polymerase called transcription-coupled repair (TCR). Below, we discuss the architecture of key proteins in bacterial NER and recent biochemical, structural and single-molecule studies that shed light on the lesion recognition steps of both the GGR and the TCR sub-pathways. Although a great deal has been learned about both of these sub-pathways, several important questions, including damage discrimination, roles of ATP and the orchestration of protein binding and conformation switching, remain to be addressed.
Collapse
Affiliation(s)
- Thanyalak Kraithong
- Doctor of Philosophy Program in Biochemistry (International Program), Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Silas Hartley
- Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031, USA;
- Doctor of Philosophy Programs in Biochemistry, Biology and Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - David Jeruzalmi
- Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031, USA;
- Doctor of Philosophy Programs in Biochemistry, Biology and Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
- Correspondence: (D.J.); (D.P.)
| | - Danaya Pakotiprapha
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Correspondence: (D.J.); (D.P.)
| |
Collapse
|
4
|
Krishnan A, Burroughs AM, Iyer LM, Aravind L. Comprehensive classification of ABC ATPases and their functional radiation in nucleoprotein dynamics and biological conflict systems. Nucleic Acids Res 2020; 48:10045-10075. [PMID: 32894288 DOI: 10.1093/nar/gkaa726] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022] Open
Abstract
ABC ATPases form one of the largest clades of P-loop NTPase fold enzymes that catalyze ATP-hydrolysis and utilize its free energy for a staggering range of functions from transport to nucleoprotein dynamics. Using sensitive sequence and structure analysis with comparative genomics, for the first time we provide a comprehensive classification of the ABC ATPase superfamily. ABC ATPases developed structural hallmarks that unambiguously distinguish them from other P-loop NTPases such as an alternative to arginine-finger-based catalysis. At least five and up to eight distinct clades of ABC ATPases are reconstructed as being present in the last universal common ancestor. They underwent distinct phases of structural innovation with the emergence of inserts constituting conserved binding interfaces for proteins or nucleic acids and the adoption of a unique dimeric toroidal configuration for DNA-threading. Specifically, several clades have also extensively radiated in counter-invader conflict systems where they serve as nodal nucleotide-dependent sensory and energetic components regulating a diversity of effectors (including some previously unrecognized) acting independently or together with restriction-modification systems. We present a unified mechanism for ABC ATPase function across disparate systems like RNA editing, translation, metabolism, DNA repair, and biological conflicts, and some unexpected recruitments, such as MutS ATPases in secondary metabolism.
Collapse
Affiliation(s)
- Arunkumar Krishnan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Lakshminarayan M Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
5
|
Case BC, Hartley S, Osuga M, Jeruzalmi D, Hingorani MM. The ATPase mechanism of UvrA2 reveals the distinct roles of proximal and distal ATPase sites in nucleotide excision repair. Nucleic Acids Res 2019; 47:4136-4152. [PMID: 30892613 PMCID: PMC6486640 DOI: 10.1093/nar/gkz180] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/02/2019] [Accepted: 03/18/2019] [Indexed: 01/20/2023] Open
Abstract
The UvrA2 dimer finds lesions in DNA and initiates nucleotide excision repair. Each UvrA monomer contains two essential ATPase sites: proximal (P) and distal (D). The manner whereby their activities enable UvrA2 damage sensing and response remains to be clarified. We report three key findings from the first pre-steady state kinetic analysis of each site. Absent DNA, a P2ATP-D2ADP species accumulates when the low-affinity proximal sites bind ATP and enable rapid ATP hydrolysis and phosphate release by the high-affinity distal sites, and ADP release limits catalytic turnover. Native DNA stimulates ATP hydrolysis by all four sites, causing UvrA2 to transition through a different species, P2ADP-D2ADP. Lesion-containing DNA changes the mechanism again, suppressing ATP hydrolysis by the proximal sites while distal sites cycle through hydrolysis and ADP release, to populate proximal ATP-bound species, P2ATP-Dempty and P2ATP-D2ATP. Thus, damaged and native DNA trigger distinct ATPase site activities, which could explain why UvrA2 forms stable complexes with UvrB on damaged DNA compared with weaker, more dynamic complexes on native DNA. Such specific coupling between the DNA substrate and the ATPase mechanism of each site provides new insights into how UvrA2 utilizes ATP for lesion search, recognition and repair.
Collapse
Affiliation(s)
- Brandon C Case
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA
| | - Silas Hartley
- Department of Chemistry and Biochemistry, City College of New York of the City University of New York, New York, NY 10031, USA.,Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Memie Osuga
- Department of Chemistry and Biochemistry, City College of New York of the City University of New York, New York, NY 10031, USA.,Hunter College High School, New York, NY 10128, USA
| | - David Jeruzalmi
- Department of Chemistry and Biochemistry, City College of New York of the City University of New York, New York, NY 10031, USA.,Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA.,Ph.D. Programs in Chemistry and Biology, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Manju M Hingorani
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA
| |
Collapse
|
6
|
Graham WJ, Putnam CD, Kolodner RD. The properties of Msh2-Msh6 ATP binding mutants suggest a signal amplification mechanism in DNA mismatch repair. J Biol Chem 2018; 293:18055-18070. [PMID: 30237169 PMCID: PMC6254361 DOI: 10.1074/jbc.ra118.005439] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 09/17/2018] [Indexed: 11/30/2022] Open
Abstract
DNA mismatch repair (MMR) corrects mispaired DNA bases and small insertion/deletion loops generated by DNA replication errors. After binding a mispair, the eukaryotic mispair recognition complex Msh2–Msh6 binds ATP in both of its nucleotide-binding sites, which induces a conformational change resulting in the formation of an Msh2–Msh6 sliding clamp that releases from the mispair and slides freely along the DNA. However, the roles that Msh2–Msh6 sliding clamps play in MMR remain poorly understood. Here, using Saccharomyces cerevisiae, we created Msh2 and Msh6 Walker A nucleotide–binding site mutants that have defects in ATP binding in one or both nucleotide-binding sites of the Msh2–Msh6 heterodimer. We found that these mutations cause a complete MMR defect in vivo. The mutant Msh2–Msh6 complexes exhibited normal mispair recognition and were proficient at recruiting the MMR endonuclease Mlh1–Pms1 to mispaired DNA. At physiological (2.5 mm) ATP concentration, the mutant complexes displayed modest partial defects in supporting MMR in reconstituted Mlh1–Pms1-independent and Mlh1–Pms1-dependent MMR reactions in vitro and in activation of the Mlh1–Pms1 endonuclease and showed a more severe defect at low (0.1 mm) ATP concentration. In contrast, five of the mutants were completely defective and one was mostly defective for sliding clamp formation at high and low ATP concentrations. These findings suggest that mispair-dependent sliding clamp formation triggers binding of additional Msh2–Msh6 complexes and that further recruitment of additional downstream MMR proteins is required for signal amplification of mispair binding during MMR.
Collapse
Affiliation(s)
| | - Christopher D Putnam
- From the Ludwig Institute for Cancer Research San Diego,; Departments of Medicine and
| | - Richard D Kolodner
- From the Ludwig Institute for Cancer Research San Diego,; Cellular and Molecular Medicine,; Moores-UCSD Cancer Center, and; Institute of Genomic Medicine, University of California School of Medicine, San Diego, La Jolla, California 92093-0669.
| |
Collapse
|
7
|
Friedhoff P, Li P, Gotthardt J. Protein-protein interactions in DNA mismatch repair. DNA Repair (Amst) 2015; 38:50-57. [PMID: 26725162 DOI: 10.1016/j.dnarep.2015.11.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 11/11/2015] [Accepted: 11/30/2015] [Indexed: 11/25/2022]
Abstract
The principal DNA mismatch repair proteins MutS and MutL are versatile enzymes that couple DNA mismatch or damage recognition to other cellular processes. Besides interaction with their DNA substrates this involves transient interactions with other proteins which is triggered by the DNA mismatch or damage and controlled by conformational changes. Both MutS and MutL proteins have ATPase activity, which adds another level to control their activity and interactions with DNA substrates and other proteins. Here we focus on the protein-protein interactions, protein interaction sites and the different levels of structural knowledge about the protein complexes formed with MutS and MutL during the mismatch repair reaction.
Collapse
Affiliation(s)
- Peter Friedhoff
- Institute for Biochemistry FB 08, Justus Liebig University, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany.
| | - Pingping Li
- Institute for Biochemistry FB 08, Justus Liebig University, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany
| | - Julia Gotthardt
- Institute for Biochemistry FB 08, Justus Liebig University, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany
| |
Collapse
|
8
|
Reyes GX, Schmidt TT, Kolodner RD, Hombauer H. New insights into the mechanism of DNA mismatch repair. Chromosoma 2015; 124:443-62. [PMID: 25862369 DOI: 10.1007/s00412-015-0514-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 03/23/2015] [Accepted: 03/23/2015] [Indexed: 12/20/2022]
Abstract
The genome of all organisms is constantly being challenged by endogenous and exogenous sources of DNA damage. Errors like base:base mismatches or small insertions and deletions, primarily introduced by DNA polymerases during DNA replication are repaired by an evolutionary conserved DNA mismatch repair (MMR) system. The MMR system, together with the DNA replication machinery, promote repair by an excision and resynthesis mechanism during or after DNA replication, increasing replication fidelity by up-to-three orders of magnitude. Consequently, inactivation of MMR genes results in elevated mutation rates that can lead to increased cancer susceptibility in humans. In this review, we summarize our current understanding of MMR with a focus on the different MMR protein complexes, their function and structure. We also discuss how recent findings have provided new insights in the spatio-temporal regulation and mechanism of MMR.
Collapse
Affiliation(s)
- Gloria X Reyes
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | - Tobias T Schmidt
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | - Richard D Kolodner
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, Moores-UCSD Cancer Center and Institute of Genomic Medicine, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA, 92093-0669, USA
| | - Hans Hombauer
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany.
| |
Collapse
|
9
|
Honda M, Okuno Y, Hengel SR, Martín-López JV, Cook CP, Amunugama R, Soukup RJ, Subramanyam S, Fishel R, Spies M. Mismatch repair protein hMSH2-hMSH6 recognizes mismatches and forms sliding clamps within a D-loop recombination intermediate. Proc Natl Acad Sci U S A 2014; 111:E316-25. [PMID: 24395779 PMCID: PMC3903253 DOI: 10.1073/pnas.1312988111] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
High fidelity homologous DNA recombination depends on mismatch repair (MMR), which antagonizes recombination between divergent sequences by rejecting heteroduplex DNA containing excessive nucleotide mismatches. The hMSH2-hMSH6 heterodimer is the first responder in postreplicative MMR and also plays a prominent role in heteroduplex rejection. Whether a similar molecular mechanism underlies its function in these two processes remains enigmatic. We have determined that hMSH2-hMSH6 efficiently recognizes mismatches within a D-loop recombination initiation intermediate. Mismatch recognition by hMSH2-hMSH6 is not abrogated by human replication protein A (HsRPA) bound to the displaced single-stranded DNA (ssDNA) or by HsRAD51. In addition, ATP-bound hMSH2-hMSH6 sliding clamps that are essential for downstream MMR processes are formed and constrained within the heteroduplex region of the D-loop. Moreover, the hMSH2-hMSH6 sliding clamps are stabilized on the D-loop by HsRPA bound to the displaced ssDNA. Our findings reveal similarities and differences in hMSH2-hMSH6 mismatch recognition and sliding-clamp formation between a D-loop recombination intermediate and linear duplex DNA.
Collapse
Affiliation(s)
- Masayoshi Honda
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242
| | - Yusuke Okuno
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Sarah R. Hengel
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242
| | - Juana V. Martín-López
- Department of Molecular Virology, Immunology, and Medical Genetics, Ohio State University Medical Center and Comprehensive Cancer Center, Columbus, OH 43210
| | - Christopher P. Cook
- Department of Molecular Virology, Immunology, and Medical Genetics, Ohio State University Medical Center and Comprehensive Cancer Center, Columbus, OH 43210
| | - Ravindra Amunugama
- Department of Molecular Virology, Immunology, and Medical Genetics, Ohio State University Medical Center and Comprehensive Cancer Center, Columbus, OH 43210
| | - Randal J. Soukup
- Department of Molecular Virology, Immunology, and Medical Genetics, Ohio State University Medical Center and Comprehensive Cancer Center, Columbus, OH 43210
| | - Shyamal Subramanyam
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Richard Fishel
- Department of Molecular Virology, Immunology, and Medical Genetics, Ohio State University Medical Center and Comprehensive Cancer Center, Columbus, OH 43210
- Human Genetics Institute, Ohio State University Medical Center, Columbus, OH 43210; and
- Physics Department, Ohio State University, Columbus, OH 43210
| | - Maria Spies
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
10
|
Shimada A, Kawasoe Y, Hata Y, Takahashi TS, Masui R, Kuramitsu S, Fukui K. MutS stimulates the endonuclease activity of MutL in an ATP-hydrolysis-dependent manner. FEBS J 2013; 280:3467-79. [PMID: 23679952 DOI: 10.1111/febs.12344] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 05/02/2013] [Accepted: 05/07/2013] [Indexed: 11/30/2022]
Abstract
In the initial steps of DNA mismatch repair, MutS recognizes a mismatched base and recruits the latent endonuclease MutL onto the mismatch-containing DNA in concert with other proteins. MutL then cleaves the error-containing strand to introduce an entry point for the downstream excision reaction. Because MutL has no intrinsic ability to recognize a mismatch and discriminate between newly synthesized and template strands, the endonuclease activity of MutL is strictly regulated by ATP-binding in order to avoid nonspecific degradation of the genomic DNA. However, the activation mechanism for its endonuclease activity remains unclear. In this study, we found that the coexistence of a mismatch, ATP and MutS unlocks the ATP-binding-dependent suppression of MutL endonuclease activity. Interestingly, ATPase-deficient mutants of MutS were unable to activate MutL. Furthermore, wild-type MutS activated ATPase-deficient mutants of MutL less efficiently than wild-type MutL. We concluded that ATP hydrolysis by MutS and MutL is involved in the mismatch-dependent activation of MutL endonuclease activity.
Collapse
Affiliation(s)
- Atsuhiro Shimada
- Department of Biological Sciences, Graduate School of Science, Osaka University, Suita, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Nucleotide excision repair (NER) has allowed bacteria to flourish in many different niches around the globe that inflict harsh environmental damage to their genetic material. NER is remarkable because of its diverse substrate repertoire, which differs greatly in chemical composition and structure. Recent advances in structural biology and single-molecule studies have given great insight into the structure and function of NER components. This ensemble of proteins orchestrates faithful removal of toxic DNA lesions through a multistep process. The damaged nucleotide is recognized by dynamic probing of the DNA structure that is then verified and marked for dual incisions followed by excision of the damage and surrounding nucleotides. The opposite DNA strand serves as a template for repair, which is completed after resynthesis and ligation.
Collapse
Affiliation(s)
- Caroline Kisker
- Rudolf-Virchow-Center for Experimental Biomedicine, University of Wuerzburg, 97080 Wuerzburg, Germany.
| | | | | |
Collapse
|
12
|
Esophageal cancer risk is associated with polymorphisms of DNA repair genes MSH2 and WRN in Chinese population. J Thorac Oncol 2012; 7:448-52. [PMID: 22173703 DOI: 10.1097/jto.0b013e31823c487a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Normal function of DNA repair system is essential for the removal of damage induced by many kinds of internal and environmental agents. Genetic polymorphisms in DNA repair genes associated with modified repair capacity may be related to the risk of developing esophageal cancer (EC). This article dealt whether single-nucleotide polymorphisms of DNA repair genes MSH2, WRN, and Ku70 potentially contributed to EC susceptibility. METHODS A hospital-based case-control study with 117 EC cases and 132 controls in a Chinese population was conducted. We genotyped three single-nucleotide polymorphisms MSH2 c.2063T>G, WRN c.4330T>C, and Ku70 c.-1310 C>G using polymerase chain reaction-based restriction fragment length polymorphism and then performed statistical analysis by calculating the adjusted odds ratios (OR) and 95% confidence intervals (95% CI). RESULTS Carriers of the MSH2 c.2063 G allele were at a higher risk of developing EC with the TT genotype as reference (OR = 4.53, 95% CI = 1.92-10.64, 33p = 0.001). Also for WRN c.4330T>C, individuals with at least one C allele (T/C or C/C) had a 2.21-fold increased risk for EC development compared with those who bore the T/T wild-type genotype (OR = 2.21, 95% CI = 1.06-4.59, 33p = 0.035). Moreover, statistically significant variant genotypic interaction was suggested between MSH2 and WRN as a result of a much increased predisposition to EC (33p = 0.016). No obvious correlation was observed between Ku70 c.-1310 CG and esophageal carcinogenesis (33p > 0.05). CONCLUSIONS Our findings indicated that genetic variants in DNA repair pathways may be involved in esophageal tumorigenesis. MSH2 c.2063 G allele and WRN c.4330 C allele, not Ku70 c.-1310 CG, conferred risk for the process of developing EC.
Collapse
|
13
|
The functions of MutL in mismatch repair: the power of multitasking. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 110:41-70. [PMID: 22749142 DOI: 10.1016/b978-0-12-387665-2.00003-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
DNA mismatch repair enhances genomic stability by correcting errors that have escaped polymerase proofreading. One of the critical steps in DNA mismatch repair is discriminating the new from the parental DNA strand as only the former needs repair. In Escherichia coli, the latent endonuclease MutH carries out this function. However, most prokaryotes and all eukaryotes lack a mutH gene. MutL is a key component of this system that mediates protein-protein interactions during mismatch recognition, strand discrimination, and strand removal. Hence, it had long been thought that the primary function of MutL was coordinating sequential mismatch repair steps. However, recent studies have revealed that most MutL homologs from organisms lacking MutH encode a conserved metal-binding motif associated with a weak endonuclease activity. As MutL homologs bearing this activity are found only in organisms relying on MutH-independent DNA mismatch repair, this finding unveils yet another crucial function of the MutL protein at the strand discrimination step. In this chapter, we review recent functional and structural work aimed at characterizing the multiple functions of MutL and discuss how the endonuclease activity of MutL is regulated by other repair factors.
Collapse
|
14
|
Medina-Arana V, Delgado L, González L, Bravo A, Díaz H, Salido E, Riverol D, González-Aguilera JJ, Fernández-Peralta AM. Adrenocortical carcinoma, an unusual extracolonic tumor associated with Lynch II syndrome. Fam Cancer 2011; 10:265-71. [PMID: 21225464 DOI: 10.1007/s10689-010-9416-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lynch syndrome (LS) is an autosomal dominant condition that predisposes to colorectal cancer and specific other tumors. Extracolonic tumors occur mainly in the endometrium, stomach, ovary, small intestine and urinary tract. The presence of rare tumors in patients belonging to families who have Lynch syndrome is always interesting, because the question arises whether these tumors should be considered as a coincidence or are related with the syndrome. In this last case, they are also the result of the defect in the mismatch repair system, opening the possibility of extending the tumor spectrum associated with the syndrome. Here we describe a patient from a Lynch syndrome family with a germline mutation c.2063T>G (p.M688R) in the MSH2 gene, who developed an adrenal cortical carcinoma, a tumor not usually associated with LS. We analyzed the adrenocortical tumour for microsatellite instability (MSI), LOH and the presence of the germline c.2063T>G (M688R) mutation. The adrenal cortical carcinoma showed the MSH2 mutation, loss of heterozygosity of the normal allele in the MSH2 gene and loss of immunohistochemical expression for MSH2 protein, but no microsatellite instability. Additionally, the adrenal cortical carcinoma did not harbour a TP53 mutation. The molecular study indicates that this adrenal cortical cancer is probably due to the mismatch repair defect.
Collapse
Affiliation(s)
- V Medina-Arana
- Servicio de Cirugía General y Digestiva, Hospital Universitario de Canarias, La Laguna, Tenerife, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Wagner K, Moolenaar GF, Goosen N. Role of the insertion domain and the zinc-finger motif of Escherichia coli UvrA in damage recognition and ATP hydrolysis. DNA Repair (Amst) 2011; 10:483-96. [PMID: 21393072 DOI: 10.1016/j.dnarep.2011.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 02/14/2011] [Accepted: 02/16/2011] [Indexed: 11/25/2022]
Abstract
UvrA is the initial DNA damage-sensing protein in bacterial nucleotide excision repair. Each protomer of the UvrA dimer contains two ATPase domains, that belong to the family of ATP-binding cassette domains. Three structural domains are inserted in these ATPase domains: the insertion domain (ID) and UvrB binding domain (in ATP domain I) and the zinc-finger motif (in ATP domain II). In this paper we analyze the function of the ID and the zinc finger motif in damage specific binding of Escherichia coli UvrA. We show that the ID is not essential for damage discrimination, but it does stabilize UvrA on the DNA, most likely by forming a clamp around the DNA helix. We present evidence that two conserved arginine residues in the ID contact the phosphate backbone of the DNA, leading to strand separation after the ATPase-driven movement of the ID's. Remarkably, deletion of the ID generated a phenotype in which UV-survival strongly depends on the presence of photolyase, indicating that UvrA and photolyase form a ternary complex on a CPD-lesion. The zinc-finger motif is shown to be important for the transfer of the damage recognition signal to the ATPase of UvrA. In the absence of this domain the coupling between DNA binding and ATP hydrolysis is completely lost. Mutation of the phenylalanine residue in the tip of the zinc-finger domain resulted in a protein in which the ATPase was already triggered when binding to an undamaged site. As the zinc-finger motif is connected to the DNA binding regions on the surface of UvrA, this strongly suggests that damage-specific binding to these regions results in a rearrangement of the zinc-finger motif, which in its turn activates the ATPase. We present a model how damage recognition is transmitted to activate ATP hydrolysis in ATP binding domain I of the protein.
Collapse
Affiliation(s)
- Koen Wagner
- Laboratory of Molecular Genetics, Leiden Institute of Chemistry, Leiden University, The Netherlands
| | | | | |
Collapse
|
16
|
Wagner K, Moolenaar GF, Goosen N. Role of the two ATPase domains of Escherichia coli UvrA in binding non-bulky DNA lesions and interaction with UvrB. DNA Repair (Amst) 2010; 9:1176-86. [PMID: 20864419 DOI: 10.1016/j.dnarep.2010.08.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 08/24/2010] [Accepted: 08/27/2010] [Indexed: 01/20/2023]
Abstract
The UvrA protein is the initial DNA damage-sensing protein in bacterial nucleotide excision repair and detects a wide variety of structurally unrelated lesions. After initial recognition of DNA damage, UvrA loads the UvrB protein onto the DNA. This protein then verifies the presence of a lesion, after which UvrA is released from the DNA. UvrA contains two ATPase domains, both belonging to the ABC ATPase superfamily. We have determined the activities of two mutants, in which a single domain was deactivated. Inactivation of either one ATPase domain in Escherichia coli UvrA results in a complete loss of ATPase activity, indicating that both domains function in a cooperative way. We could show that this ATPase activity is not required for the recognition of bulky lesions by UvrA, but it does promote the specific binding to the less distorting cyclobutane-pyrimidine dimer (CPD). The two ATPase mutants also show a difference in UvrB-loading, depending on the length of the DNA substrate. The ATPase domain I mutant was capable of loading UvrB on a lesion in a 50 bp fragment, but this loading was reduced on a longer substrate. For the ATPase domain II mutant the opposite was found: UvrB could not be loaded on a 50 bp substrate, but this loading was rescued when the length of the fragment was increased. This differential loading of UvrB by the two ATPase mutants could be related to different interactions between the UvrA and UvrB subunits.
Collapse
Affiliation(s)
- Koen Wagner
- Leiden Institute of Chemistry, Leiden University, The Netherlands
| | | | | |
Collapse
|
17
|
Tam SM, Samipak S, Britt A, Chetelat RT. Characterization and comparative sequence analysis of the DNA mismatch repair MSH2 and MSH7 genes from tomato. Genetica 2009; 137:341-54. [PMID: 19690966 PMCID: PMC2770637 DOI: 10.1007/s10709-009-9398-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 08/04/2009] [Indexed: 01/11/2023]
Abstract
DNA mismatch repair proteins play an essential role in maintaining genomic integrity during replication and genetic recombination. We successfully isolated a full length MSH2 and partial MSH7 cDNAs from tomato, based on sequence similarity between MutS and plant MSH homologues. Semi-quantitative RT-PCR reveals higher levels of mRNA expression of both genes in young leaves and floral buds. Genetic mapping placed MSH2 and MSH7 on chromosomes 6 and 7, respectively, and indicates that these genes exist as single copies in the tomato genome. Analysis of protein sequences and phylogeny of the plant MSH gene family show that these proteins are evolutionarily conserved, and follow the classical model of asymmetric protein evolution. Genetic manipulation of the expression of these MSH genes in tomato will provide a potentially useful tool for modifying genetic recombination and hybrid fertility between wide crosses.
Collapse
Affiliation(s)
- Sheh May Tam
- School of Science, Monash University Sunway Campus, Jalan Lagoon Selatan, 46150, Bandar Sunway, Selangor, Malaysia
| | | | | | | |
Collapse
|
18
|
Mukherjee S, Law SM, Feig M. Deciphering the mismatch recognition cycle in MutS and MSH2-MSH6 using normal-mode analysis. Biophys J 2009; 96:1707-20. [PMID: 19254532 DOI: 10.1016/j.bpj.2008.10.071] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Accepted: 10/24/2008] [Indexed: 11/24/2022] Open
Abstract
Postreplication DNA mismatch repair is essential for maintaining the integrity of genomic information in prokaryotes and eukaryotes. The first step in mismatch repair is the recognition of base-base mismatches and insertions/deletions by bacterial MutS or eukaryotic MSH2-MSH6. Crystal structures of both proteins bound to mismatch DNA reveal a similar molecular architecture but provide limited insight into the detailed molecular mechanism of long-range allostery involved in mismatch recognition and repair initiation. This study describes normal-mode calculations of MutS and MSH2-MSH6 with and without DNA. The results reveal similar protein flexibilities and suggest common dynamic and functional characteristics. A strongly correlated motion is present between the lever domain and ATPase domains, which suggests a pathway for long-range allostery from the N-terminal DNA binding domain to the C-terminal ATPase domains, as indicated by experimental studies. A detailed analysis of individual low-frequency modes of both MutS and MSH2-MSH6 shows changes in the DNA-binding domains coupled to the ATPase sites, which are interpreted in the context of experimental data to arrive at a complete molecular-level mismatch recognition cycle. Distinct conformational states are proposed for DNA scanning, mismatch recognition, repair initiation, and sliding along DNA after mismatch recognition. Hypotheses based on the results presented here form the basis for further experimental and computational studies.
Collapse
Affiliation(s)
- Shayantani Mukherjee
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | | | | |
Collapse
|
19
|
Hsieh P, Yamane K. DNA mismatch repair: molecular mechanism, cancer, and ageing. Mech Ageing Dev 2008; 129:391-407. [PMID: 18406444 PMCID: PMC2574955 DOI: 10.1016/j.mad.2008.02.012] [Citation(s) in RCA: 312] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2007] [Revised: 02/22/2008] [Accepted: 02/28/2008] [Indexed: 02/09/2023]
Abstract
DNA mismatch repair (MMR) proteins are ubiquitous players in a diverse array of important cellular functions. In its role in post-replication repair, MMR safeguards the genome correcting base mispairs arising as a result of replication errors. Loss of MMR results in greatly increased rates of spontaneous mutation in organisms ranging from bacteria to humans. Mutations in MMR genes cause hereditary nonpolyposis colorectal cancer, and loss of MMR is associated with a significant fraction of sporadic cancers. Given its prominence in mutation avoidance and its ability to target a range of DNA lesions, MMR has been under investigation in studies of ageing mechanisms. This review summarizes what is known about the molecular details of the MMR pathway and the role of MMR proteins in cancer susceptibility and ageing.
Collapse
Affiliation(s)
- Peggy Hsieh
- Genetics & Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
20
|
Pakotiprapha D, Inuzuka Y, Bowman BR, Moolenaar GF, Goosen N, Jeruzalmi D, Verdine GL. Crystal structure of Bacillus stearothermophilus UvrA provides insight into ATP-modulated dimerization, UvrB interaction, and DNA binding. Mol Cell 2008; 29:122-33. [PMID: 18158267 PMCID: PMC2692698 DOI: 10.1016/j.molcel.2007.10.026] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Revised: 09/05/2007] [Accepted: 10/10/2007] [Indexed: 10/22/2022]
Abstract
The nucleotide excision repair pathway corrects many structurally unrelated DNA lesions. Damage recognition in bacteria is performed by UvrA, a member of the ABC ATPase superfamily whose functional form is a dimer with four nucleotide-binding domains (NBDs), two per protomer. In the 3.2 A structure of UvrA from Bacillus stearothermophilus, we observe that the nucleotide-binding sites are formed in an intramolecular fashion and are not at the dimer interface as is typically found in other ABC ATPases. UvrA also harbors two unique domains; we show that one of these is required for interaction with UvrB, its partner in lesion recognition. In addition, UvrA contains three zinc modules, the number and ligand sphere of which differ from previously published models. Structural analysis, biochemical experiments, surface electrostatics, and sequence conservation form the basis for models of ATP-modulated dimerization, UvrA-UvrB interaction, and DNA binding during the search for lesions.
Collapse
Affiliation(s)
- Danaya Pakotiprapha
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Yoshihiko Inuzuka
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Brian R. Bowman
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Geri F. Moolenaar
- Department of Laboratory of Molecular Genetics, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - Nora Goosen
- Department of Laboratory of Molecular Genetics, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - David Jeruzalmi
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Gregory L. Verdine
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA
| |
Collapse
|
21
|
Dürr H, Flaus A, Owen-Hughes T, Hopfner KP. Snf2 family ATPases and DExx box helicases: differences and unifying concepts from high-resolution crystal structures. Nucleic Acids Res 2006; 34:4160-7. [PMID: 16935875 PMCID: PMC1616948 DOI: 10.1093/nar/gkl540] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Proteins with sequence similarity to the yeast Snf2 protein form a large family of ATPases that act to alter the structure of a diverse range of DNA–protein structures including chromatin. Snf2 family enzymes are related in sequence to DExx box helicases, yet they do not possess helicase activity. Recent biochemical and structural studies suggest that the mechanism by which these enzymes act involves ATP-dependent translocation on DNA. Crystal structures suggest that these enzymes travel along the minor groove, a process that can generate the torque or energy in remodelling processes. We review the recent structural and biochemical findings which suggest a common mechanistic basis underlies the action of many of both Snf2 family and DExx box helicases.
Collapse
Affiliation(s)
- Harald Dürr
- Gene Center, University of MunichFeodor-Lynen-Strasse 25, D-81377 Munich, Germany
- Department of Chemistry and Biochemistry, University of MunichFeodor-Lynen-Strasse 25, D-81377 Munich, Germany
| | - Andrew Flaus
- Division of Gene Regulation and Expression, School of Life Sciences, University of DundeeDundee DD1 5EH, UK
| | - Tom Owen-Hughes
- Division of Gene Regulation and Expression, School of Life Sciences, University of DundeeDundee DD1 5EH, UK
- To whom correspondence should be addressed. Tel: +49 89 218076953; Fax: +49 89 218076999;
| | - Karl-Peter Hopfner
- Gene Center, University of MunichFeodor-Lynen-Strasse 25, D-81377 Munich, Germany
- Department of Chemistry and Biochemistry, University of MunichFeodor-Lynen-Strasse 25, D-81377 Munich, Germany
- Correspondence may also be addressed to: Tom Owen-Hughes.Tel: +44 1382 385796; Fax: +44 1382 388072;
| |
Collapse
|
22
|
Abstract
By removing biosynthetic errors from newly synthesized DNA, mismatch repair (MMR) improves the fidelity of DNA replication by several orders of magnitude. Loss of MMR brings about a mutator phenotype, which causes a predisposition to cancer. But MMR status also affects meiotic and mitotic recombination, DNA-damage signalling, apoptosis and cell-type-specific processes such as class-switch recombination, somatic hypermutation and triplet-repeat expansion. This article reviews our current understanding of this multifaceted DNA-repair system in human cells.
Collapse
Affiliation(s)
- Josef Jiricny
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| |
Collapse
|
23
|
|
24
|
Joseph N, Duppatla V, Rao DN. Prokaryotic DNA Mismatch Repair. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2006; 81:1-49. [PMID: 16891168 DOI: 10.1016/s0079-6603(06)81001-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nimesh Joseph
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | | |
Collapse
|
25
|
Lin DP, Wang Y, Scherer SJ, Clark AB, Yang K, Avdievich E, Jin B, Werling U, Parris T, Kurihara N, Umar A, Kucherlapati R, Lipkin M, Kunkel TA, Edelmann W. An Msh2 point mutation uncouples DNA mismatch repair and apoptosis. Cancer Res 2004; 64:517-22. [PMID: 14744764 DOI: 10.1158/0008-5472.can-03-2957] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mutations in the human DNA mismatch repair gene MSH2 are associated with hereditary nonpolyposis colorectal cancer as well as a significant proportion of sporadic colorectal cancer. The inactivation of MSH2 results in the accumulation of somatic mutations in the genome of tumor cells and resistance to the genotoxic effects of a variety of chemotherapeutic agents. Here we show that the DNA repair and DNA damage-induced apoptosis functions of Msh2 can be uncoupled using mice that carry the G674A missense mutation in the conserved ATPase domain. As a consequence, although Msh2(G674A) homozygous mutant mice are highly tumor prone, the onset of tumorigenesis is delayed as compared with Msh2-null mice. In addition, tumors that carry the mutant allele remain responsive to treatment with a chemotherapeutic agent. Our results indicate that Msh2-mediated apoptosis is an important component of tumor suppression and that certain MSH2 missense mutations can cause mismatch repair deficiency while retaining the signaling functions that confer sensitivity to chemotherapeutic agents.
Collapse
Affiliation(s)
- Diana P Lin
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Bell JS, Harvey TI, Sims AM, McCulloch R. Characterization of components of the mismatch repair machinery in Trypanosoma brucei. Mol Microbiol 2004; 51:159-73. [PMID: 14651619 DOI: 10.1046/j.1365-2958.2003.03804.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Mismatch repair is one of a number of DNA repair pathways that cells possess to deal with damage to their genome. Mismatch repair is concerned with the recognition and correction of incorrectly paired bases, which can be base-base mismatches or insertions or deletions of a few bases, and appears to have been conserved throughout evolution. Primarily, this is concerned with increasing the fidelity of DNA replication, but also has important roles in the regulation of homologous recombination and the correction of chemical damage. In this study, we describe five genes in the protistan parasite Trypanosoma brucei that are likely to be involved in nuclear mismatch repair. The predicted T. brucei mismatch repair genes are diverged compared with their likely counterparts in the other eukaryotes examined to date. To demonstrate that these do indeed encode a functional nuclear mismatch repair system, we made T. brucei null mutants in two of the genes, MSH2 and MLH1, that are likely to be central to the functioning of the mismatch repair machinery. These mutations resulted in increased rates of sequence variation at a number of microsatellite loci in the parasite genome, and led to increased tolerance to the alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine, both phenotypes consistent with mismatch repair impairment.
Collapse
Affiliation(s)
- Joanna S Bell
- The Wellcome Centre for Molecular Parasitology, University of Glasgow, Anderson College, 56 Dumbarton Road, Glasgow G11 6NU, UK
| | | | | | | |
Collapse
|
27
|
Abstract
DNA mismatch repair (MMR) guards the integrity of the genome in virtually all cells. It contributes about 1000-fold to the overall fidelity of replication and targets mispaired bases that arise through replication errors, during homologous recombination, and as a result of DNA damage. Cells deficient in MMR have a mutator phenotype in which the rate of spontaneous mutation is greatly elevated, and they frequently exhibit microsatellite instability at mono- and dinucleotide repeats. The importance of MMR in mutation avoidance is highlighted by the finding that defects in MMR predispose individuals to hereditary nonpolyposis colorectal cancer. In addition to its role in postreplication repair, the MMR machinery serves to police homologous recombination events and acts as a barrier to genetic exchange between species.
Collapse
Affiliation(s)
- Mark J Schofield
- Genetics and Biochemistry Branch, National Institute of Diabetes, and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
28
|
Moncalian G, Lengsfeld B, Bhaskara V, Hopfner KP, Karcher A, Alden E, Tainer JA, Paull TT. The rad50 signature motif: essential to ATP binding and biological function. J Mol Biol 2004; 335:937-51. [PMID: 14698290 DOI: 10.1016/j.jmb.2003.11.026] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The repair of double-strand breaks in DNA is an essential process in all organisms, and requires the coordinated activities of evolutionarily conserved protein assemblies. One of the most critical of these is the Mre11/Rad50 (M/R) complex, which is present in all three biological kingdoms, but is not well-understood at the biochemical level. Previous structural analysis of a Rad50 homolog from archaebacteria illuminated the catalytic core of the enzyme, an ATP-binding domain related to the ABC transporter family of ATPases. Here, we present the crystallographic structure of the Rad50 mutant S793R. This missense signature motif mutation changes the key serine residue in the signature motif that is conserved among Rad50 homologs and ABC ATPases. The S793R mutation is analogous to the mutation S549R in the cystic fibrosis transmembrane conductance regulator (CFTR) that results in cystic fibrosis. We show here that the serine to arginine change in the Rad50 protein prevents ATP binding and disrupts the communication among the other ATP-binding loops. This structural change, in turn, alters the communication between Rad50 monomers and thus prevents Rad50 dimerization. The equivalent mutation was made in the human Rad50 gene, and the resulting mutant protein did form a complex with Mre11 and Nbs1, but was specifically deficient in all ATP-dependent enzymatic activities. This signature motif structure-function homology extends to yeast, because the same mutation introduced into the Saccharomyces cerevisiae RAD50 gene generated an allele that failed to complement a rad50 deletion strain in DNA repair assays in vivo. These structural and biochemical results extend our understanding of the Rad50 catalytic domain and validate the use of the signature motif mutant to test the role of Rad50 ATP binding in diverse organisms.
Collapse
Affiliation(s)
- Gabriel Moncalian
- The Scripps Research Institute, 10550 North Torrey Pines Rd., MB4, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Yang W, Junop MS, Ban C, Obmolova G, Hsieh P. DNA mismatch repair: from structure to mechanism. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 65:225-32. [PMID: 12760036 DOI: 10.1101/sqb.2000.65.225] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- W Yang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
30
|
Lamers MH, Winterwerp HH, Sixma TK. The alternating ATPase domains of MutS control DNA mismatch repair. EMBO J 2003; 22:746-56. [PMID: 12554674 PMCID: PMC140748 DOI: 10.1093/emboj/cdg064] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
DNA mismatch repair is an essential safeguard of genomic integrity by removing base mispairings that may arise from DNA polymerase errors or from homologous recombination between DNA strands. In Escherichia coli, the MutS enzyme recognizes mismatches and initiates repair. MutS has an intrinsic ATPase activity crucial for its function, but which is poorly understood. We show here that within the MutS homodimer, the two chemically identical ATPase sites have different affinities for ADP, and the two sites alternate in ATP hydrolysis. A single residue, Arg697, located at the interface of the two ATPase domains, controls the asymmetry. When mutated, the asymmetry is lost and mismatch repair in vivo is impaired. We propose that asymmetry of the ATPase domains is an essential feature of mismatch repair that controls the timing of the different steps in the repair cascade.
Collapse
Affiliation(s)
| | | | - Titia K. Sixma
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
Corresponding author e-mail:
| |
Collapse
|
31
|
Iyer LM, Aravind L. The catalytic domains of thiamine triphosphatase and CyaB-like adenylyl cyclase define a novel superfamily of domains that bind organic phosphates. BMC Genomics 2002; 3:33. [PMID: 12456267 PMCID: PMC138802 DOI: 10.1186/1471-2164-3-33] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2002] [Accepted: 11/27/2002] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The CyaB protein from Aeromonas hydrophila has been shown to possess adenylyl cyclase activity. While orthologs of this enzyme have been found in some bacteria and archaea, it shows no detectable relationship to the classical nucleotide cyclases. Furthermore, the actual biological functions of these proteins are not clearly understood because they are also present in organisms in which there is no evidence for cyclic nucleotide signaling. RESULTS We show that the CyaB like adenylyl cyclase and the mammalian thiamine triphosphatases define a novel superfamily of catalytic domains called the CYTH domain that is present in all three superkingdoms of life. Using multiple alignments and secondary structure predictions, we define the catalytic core of these enzymes to contain a novel alpha+beta scaffold with 6 conserved acidic residues and 4 basic residues. Using contextual information obtained from the analysis of gene neighborhoods and domain fusions, we predict that members of this superfamily may play a central role in the interface between nucleotide and polyphosphate metabolism. Additionally, based on contextual information, we identify a novel domain (called CHAD) that is predicted to functionally interact with the CYTH domain-containing enzymes in bacteria and archaea. The CHAD is predicted to be an alpha helical domain, and contains conserved histidines that may be critical for its function. CONCLUSIONS The phyletic distribution of the CYTH domain suggests that it is an ancient enzymatic domain that was present in the Last Universal Common Ancestor and was involved in nucleotide or organic phosphate metabolism. Based on the conservation of catalytic residues, we predict that CYTH domains are likely to chelate two divalent cations, and exhibit a reaction mechanism that is dependent on two metal ions, analogous to nucleotide cyclases, polymerases and certain phosphoesterases. Our analysis also suggests that the experimentally characterized members of this superfamily, namely adenylyl cyclase and thiamine triphosphatase, are secondary derivatives of proteins that performed an ancient role in polyphosphate and nucleotide metabolism.
Collapse
Affiliation(s)
- Lakshminarayan M Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
32
|
Pezza RJ, Villarreal MA, Montich GG, Argaraña CE. Vanadate inhibits the ATPase activity and DNA binding capability of bacterial MutS. A structural model for the vanadate-MutS interaction at the Walker A motif. Nucleic Acids Res 2002; 30:4700-8. [PMID: 12409461 PMCID: PMC135828 DOI: 10.1093/nar/gkf606] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
MutS, a member of the ABC ATPases superfamily, is a mismatch DNA-binding protein constituent of the DNA post-replicative mismatch repair system (MMRS). In this work, it is shown that the ATPase activity of Pseudomonas aeruginosa and Escherichia coli MutS is inhibited by ortho- and decavanadate. Structural comparison of the region involved in the ATP binding of E.coli MutS with the corresponding region of other ABC ATPases inhibited by vanadate, including the myosin- orthovanadate-Mg complex, showed that they are highly similar. From these results it is proposed that the orthovanadate inhibition of MutS ATPase can take place by a similar mechanism to that described for other ATPases. Docking of decavanadate on the ATP-binding region of MutS showed that the energetically more favorable interaction of this compound would take place with the complex MutS- ADP-Mg, suggesting that the inhibitory effect could be produced by a steric impediment of the protein ATP/ADP exchange. Besides the effect observed on the ATPase activity, vanadate also affects the DNA-binding capability of the protein, and partially inhibits the oligomerization of MutS and the temperature-induced inactivation of the protein. From the results obtained, and considering that vanadate is an intracellular trace component, this compound could be considered as a new modulator of the MMRS.
Collapse
Affiliation(s)
- Roberto J Pezza
- Centro de Investigaciones en Química Biológica de Córdoba, UNC-CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | | | | | | |
Collapse
|
33
|
Lu J, Manchak J, Klimke W, Davidson C, Firth N, Skurray RA, Frost LS. Analysis and characterization of the IncFV plasmid pED208 transfer region. Plasmid 2002; 48:24-37. [PMID: 12206753 DOI: 10.1016/s0147-619x(02)00007-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
pED208 is a transfer-derepressed mutant of the IncFV plasmid, F(0)lac, which has an IS2 element inserted in its traY gene, resulting in constitutive overexpression of its transfer (tra) region. The pED208 transfer region, which encodes proteins responsible for pilus synthesis and conjugative plasmid transfer, was sequenced and found to be very similar to the F tra region in terms of its organization although most pED208 tra proteins share only about 45% amino acid identity. All the essential genes for F transfer had homologs within the pED208 transfer region with the exception of traQ, which encodes the chaperone for stable F-pilin expression. F(0)lac appears to have a fertility inhibition system different than the FinOP system of other F-like plasmids, and its transfer efficiency was increased in the presence of F or R100, suggesting that it could be mobilized by these plasmids. The F-like transfer systems specified by F, R100, and F(0)lac were highly specific for their cognate origins of transfer (oriT) as measured by their abilities to mobilize chimeric oriT-containing plasmids.
Collapse
Affiliation(s)
- Jun Lu
- Department of Biological Sciences, CW405 Biological Sciences Building, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
| | | | | | | | | | | | | |
Collapse
|
34
|
D'Amours D, Jackson SP. The Mre11 complex: at the crossroads of dna repair and checkpoint signalling. Nat Rev Mol Cell Biol 2002; 3:317-27. [PMID: 11988766 DOI: 10.1038/nrm805] [Citation(s) in RCA: 677] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Mre11 complex is a multisubunit nuclease that is composed of Mre11, Rad50 and Nbs1/Xrs2. Mutations in the genes that encode components of this complex result in DNA- damage sensitivity, genomic instability, telomere shortening and aberrant meiosis. The molecular defect that underlies these phenotypes has long been thought to be related to a DNA repair deficiency. However, recent studies have uncovered functions for the Mre11 complex in checkpoint signalling and DNA replication.
Collapse
Affiliation(s)
- Damien D'Amours
- Wellcome Trust and Cancer Research, UK Institute of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | | |
Collapse
|
35
|
Leipe DD, Wolf YI, Koonin EV, Aravind L. Classification and evolution of P-loop GTPases and related ATPases. J Mol Biol 2002; 317:41-72. [PMID: 11916378 DOI: 10.1006/jmbi.2001.5378] [Citation(s) in RCA: 886] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sequences and available structures were compared for all the widely distributed representatives of the P-loop GTPases and GTPase-related proteins with the aim of constructing an evolutionary classification for this superclass of proteins and reconstructing the principal events in their evolution. The GTPase superclass can be divided into two large classes, each of which has a unique set of sequence and structural signatures (synapomorphies). The first class, designated TRAFAC (after translation factors) includes enzymes involved in translation (initiation, elongation, and release factors), signal transduction (in particular, the extended Ras-like family), cell motility, and intracellular transport. The second class, designated SIMIBI (after signal recognition particle, MinD, and BioD), consists of signal recognition particle (SRP) GTPases, the assemblage of MinD-like ATPases, which are involved in protein localization, chromosome partitioning, and membrane transport, and a group of metabolic enzymes with kinase or related phosphate transferase activity. These two classes together contain over 20 distinct families that are further subdivided into 57 subfamilies (ancient lineages) on the basis of conserved sequence motifs, shared structural features, and domain architectures. Ten subfamilies show a universal phyletic distribution compatible with presence in the last universal common ancestor of the extant life forms (LUCA). These include four translation factors, two OBG-like GTPases, the YawG/YlqF-like GTPases (these two subfamilies also consist of predicted translation factors), the two signal-recognition-associated GTPases, and the MRP subfamily of MinD-like ATPases. The distribution of nucleotide specificity among the proteins of the GTPase superclass indicates that the common ancestor of the entire superclass was a GTPase and that a secondary switch to ATPase activity has occurred on several independent occasions during evolution. The functions of most GTPases that are traceable to LUCA are associated with translation. However, in contrast to other superclasses of P-loop NTPases (RecA-F1/F0, AAA+, helicases, ABC), GTPases do not participate in NTP-dependent nucleic acid unwinding and reorganizing activities. Hence, we hypothesize that the ancestral GTPase was an enzyme with a generic regulatory role in translation, with subsequent diversification resulting in acquisition of diverse functions in transport, protein trafficking, and signaling. In addition to the classification of previously known families of GTPases and related ATPases, we introduce several previously undetected families and describe new functional predictions.
Collapse
Affiliation(s)
- Detlef D Leipe
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | | | |
Collapse
|
36
|
Brun F, Gonneau M, Doutriaux MP, Laloue M, Nogué F. Cloning of the PpMSH-2 cDNA of Physcomitrella patens, a moss in which gene targeting by homologous recombination occurs at high frequency. Biochimie 2001; 83:1003-8. [PMID: 11879728 DOI: 10.1016/s0300-9084(01)01350-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In the moss Physcomitrella patens integrative transformants from homologous recombination are obtained at an efficiency comparable to that found for yeast. This property, unique in the plant kingdom, allows the knockout of specific genes. It also makes the moss a convenient model to study the regulation of homologous recombination in plants. We used degenerate oligonucleotides designed from AtMSH2 from Arabidopsis thaliana and other known MutS homologues to isolate the P. patens MSH2 (PpMSH2) cDNA. The deduced sequence of the PpMSH2 protein is respectively 60.8% and 59.6% identical to the maize and A. thaliana MSH2. Phylogenic studies show that PpMSH2 is closely related to the group of plant MSH2 proteins. Southern analysis reveals that the gene exists as a single copy in the P. patens genome.
Collapse
Affiliation(s)
- F Brun
- Laboratoire de Biologie Cellulaire, INRA, route de St.-Cyr, 78026 Versailles, France
| | | | | | | | | |
Collapse
|
37
|
Inohara N, Nuñez G. The NOD: a signaling module that regulates apoptosis and host defense against pathogens. Oncogene 2001; 20:6473-81. [PMID: 11607846 DOI: 10.1038/sj.onc.1204787] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nods, a growing family of proteins containing a nucleotide-binding oligomerization domain (NOD), are involved in the regulation of programmed cell death (PCD) and immune responses. Members of the family include Apaf-1, Ced-4, Nod1, Nod2, and the cytosolic products of plant disease resistance genes. The NOD module is homologous to the ATP-binding cassette (ABC) found in a large number of proteins with diverse biological function. The centrally located NOD promotes activation of effector molecules through self-association and induced proximity of binding partners. The C-terminal domain of Nods serves as a sensor for intracellular ligands, whereas the N-terminal domain mediates binding to dowstream effector molecules and activation of diverse signaling pathways. Thus, Nods activate, through the NOD module, diverse signaling pathways involved in the elimination of cells via PCD and the host defense against pathogens.
Collapse
Affiliation(s)
- N Inohara
- Department of Pathology and Comprehensive Cancer Center, The University of Michigan Medical School, Ann Arbor, Michigan, MI 48109, USA
| | | |
Collapse
|
38
|
Abstract
DNA mismatch repair (MMR) safeguards the integrity of the genome. In its role in postreplicative repair, this repair pathway corrects base-base and insertion/deletion (I/D) mismatches that have escaped the proofreading function of replicative polymerases. In its absence, cells assume a mutator phenotype in which the rate of spontaneous mutation is greatly elevated. The discovery that defects in mismatch repair segregate with certain cancer predisposition syndromes highlights its essential role in mutation avoidance. Recently, three-dimensional structures of MutS, a key repair protein that recognizes mismatches, have been determined by X-ray crystallography. This article provides an overview of the structural features of MutS proteins and discusses how the structural data together with biochemical and genetic studies reveal new insights into the molecular mechanisms of mismatch repair.
Collapse
Affiliation(s)
- P Hsieh
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 10 Rm. 9D06, 10 Center Dr. MSC 1810, Bethesda, MD 20892-1810, USA.
| |
Collapse
|
39
|
Schofield MJ, Nayak S, Scott TH, Du C, Hsieh P. Interaction of Escherichia coli MutS and MutL at a DNA Mismatch. J Biol Chem 2001; 276:28291-9. [PMID: 11371566 DOI: 10.1074/jbc.m103148200] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MutS and MutL are both required to activate downstream events in DNA mismatch repair. We examined the rate of dissociation of MutS from a mismatch using linear heteroduplex DNAs or heteroduplexes blocked at one or both ends by four-way DNA junctions in the presence and absence of MutL. In the presence of ATP, dissociation of MutS from linear heteroduplexes or heteroduplexes blocked at only one end occurs within 15 s. When both duplex ends are blocked, MutS remains associated with the DNA in complexes with half-lives of 30 min. DNase I footprinting of MutS complexes is consistent with migration of MutS throughout the DNA duplex region. When MutL is present, it associates with MutS and prevents ATP-dependent migration away from the mismatch in a manner that is dependent on the length of the heteroduplex. The rate and extent of mismatch-provoked cleavage at hemimethylated GATC sites by MutH in the presence of MutS, MutL, and ATP are the same whether the mismatch and GATC sites are in cis or in trans. These results suggest that a MutS-MutL complex in the vicinity of a mismatch is involved in activating MutH.
Collapse
Affiliation(s)
- M J Schofield
- Genetics and Biochemistry Branch, NIDDKD, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
40
|
Biswas I, Obmolova G, Takahashi M, Herr A, Newman MA, Yang W, Hsieh P. Disruption of the helix-u-turn-helix motif of MutS protein: loss of subunit dimerization, mismatch binding and ATP hydrolysis. J Mol Biol 2001; 305:805-16. [PMID: 11162093 DOI: 10.1006/jmbi.2000.4367] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The DNA mismatch repair protein, MutS, is a dimeric protein that recognizes mismatched bases and has an intrinsic ATPase activity. Here, a series of Taq MutS proteins having C-terminal truncations in the vicinity of a highly conserved helix-u-turn-helix (HuH) motif are assessed for subunit oligomerization, ATPase activity and DNA mismatch binding. Those proteins containing an intact HuH region are dimers; those without the HuH region are predominantly monomers in solution. Steady-state kinetics of truncated but dimeric MutS proteins reveals only modest decreases in their ATPase activity compared to full-length protein. In contrast, disruption of the HuH region results in a greatly attenuated ATPase activity. In addition, only dimeric MutS proteins are proficient for mismatch binding. Finally, an analysis of the mismatch repair competency of truncated Escherichia coli MutS proteins in a rifampicin mutator assay confirms that the HuH region is critical for in vivo function. These findings indicate that dimerization is critical for both the ATPase and DNA mismatch binding activities of MutS, and corroborate several key features of the MutS structure recently deduced from X-ray crystallographic studies.
Collapse
Affiliation(s)
- I Biswas
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Junop MS, Obmolova G, Rausch K, Hsieh P, Yang W. Composite active site of an ABC ATPase: MutS uses ATP to verify mismatch recognition and authorize DNA repair. Mol Cell 2001; 7:1-12. [PMID: 11172706 DOI: 10.1016/s1097-2765(01)00149-6] [Citation(s) in RCA: 217] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The MutS protein initiates DNA mismatch repair by recognizing mispaired and unpaired bases embedded in duplex DNA and activating endo- and exonucleases to remove the mismatch. Members of the MutS family also possess a conserved ATPase activity that belongs to the ATP binding cassette (ABC) superfamily. Here we report the crystal structure of a ternary complex of MutS-DNA-ADP and assays of initiation of mismatch repair in conjunction with perturbation of the composite ATPase active site by mutagenesis. These studies indicate that MutS has to bind both ATP and the mismatch DNA simultaneously in order to activate the other mismatch repair proteins. We propose that the MutS ATPase activity plays a proofreading role in DNA mismatch repair, verification of mismatch recognition, and authorization of repair.
Collapse
Affiliation(s)
- M S Junop
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
42
|
Abstract
High-resolution crystal structures have recently been solved for the mismatch binding protein MutS of Escherichia coli and its Thermus aquaticus homologue; they show how these factors recognise such structurally diverse substrates as base-base mismatches and insertion/deletion loops.
Collapse
Affiliation(s)
- J Jiricny
- Institute of Medical Radiobiology of the University of Zürich and the Paul Scherrer Institute, August Forel-Strasse 7, CH-8008, Zürich, Switzerland.
| |
Collapse
|
43
|
Obmolova G, Ban C, Hsieh P, Yang W. Crystal structures of mismatch repair protein MutS and its complex with a substrate DNA. Nature 2000; 407:703-10. [PMID: 11048710 DOI: 10.1038/35037509] [Citation(s) in RCA: 504] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
DNA mismatch repair is critical for increasing replication fidelity in organisms ranging from bacteria to humans. MutS protein, a member of the ABC ATPase superfamily, recognizes mispaired and unpaired bases in duplex DNA and initiates mismatch repair. Mutations in human MutS genes cause a predisposition to hereditary nonpolyposis colorectal cancer as well as sporadic tumours. Here we report the crystal structures of a MutS protein and a complex of MutS with a heteroduplex DNA containing an unpaired base. The structures reveal the general architecture of members of the MutS family, an induced-fit mechanism of recognition between four domains of a MutS dimer and a heteroduplex kinked at the mismatch, a composite ATPase active site composed of residues from both MutS subunits, and a transmitter region connecting the mismatch-binding and ATPase domains. The crystal structures also provide a molecular framework for understanding hereditary nonpolyposis colorectal cancer mutations and for postulating testable roles of MutS.
Collapse
Affiliation(s)
- G Obmolova
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
44
|
Ford KG. The dNTPase enzyme activity is inhibited by nucleic acids and contains a heat-insensitive component. Biochem Biophys Res Commun 2000; 276:823-9. [PMID: 11027554 DOI: 10.1006/bbrc.2000.3550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The dNTpase enzyme has previously been shown to specifically hydrolyse monodeoxyribonucleoside triphosphates (dNTPs). The remnant nucleotide resulting from this hydrolysis lacks the terminal phosphate and is covalently attached as part of a 3 kDa species, which we have termed the product nucleotide binding particle or "PNBP." PNBP is resistant to numerous nucleases and RNases, suggesting that it is not a nucleic acid polymer. Given that the exclusive specificity of dNTPase for dNTPs suggests some associative cellular role for the enzyme in polynucleotide maintenance, the interaction of dNTPase with various nucleic acids has now been examined. It is demonstrated that dNTPase activity is significantly inhibited by addition of single-stranded DNA or tRNA, but not rRNA. The data presented also suggest that thio-dATP can substitute for conventional phosphoester dATP in the enzymatic reaction. It is also demonstrated that the dNTPase enzyme comprises both heat/proteolysis/denaturant stable and heat/proteolysis/denaturant-sensitive components and we propose that this stable component may be the precursor to liganded PNBP.
Collapse
Affiliation(s)
- K G Ford
- Department of Molecular Medicine, Guy's, King's, and St. Thomas' School of Medicine and Dentistry, Rayne Institute, 123 Coldharbour Lane, London, SE5 9NU, United Kingdom
| |
Collapse
|
45
|
Yamamoto A, Schofield MJ, Biswas I, Hsieh P. Requirement for Phe36 for DNA binding and mismatch repair by Escherichia coli MutS protein. Nucleic Acids Res 2000; 28:3564-9. [PMID: 10982877 PMCID: PMC110738 DOI: 10.1093/nar/28.18.3564] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2000] [Revised: 07/26/2000] [Accepted: 07/26/2000] [Indexed: 02/05/2023] Open
Abstract
The MutS family of DNA repair proteins recognizes base pair mismatches and insertion/deletion mismatches and targets them for repair in a strand-specific manner. Photocrosslinking and mutational studies previously identified a highly conserved Phe residue at the N-terminus of Thermus aquaticus MutS protein that is critical for mismatch recognition in vitro. Here, a mutant Escherichia coli MutS protein harboring a substitution of Ala for the corresponding Phe36 residue is assessed for proficiency in mismatch repair in vivo and DNA binding and ATP hydrolysis in vitro. The F36A protein is unable to restore mismatch repair proficiency to a mutS strain as judged by mutation to rifampicin or reversion of a specific point mutation in lacZ. The F36A protein is also severely deficient for binding to heteroduplexes containing an unpaired thymidine or a G:T mismatch although its intrinsic ATPase activity and subunit oligomerization are very similar to that of the wild-type MutS protein. Thus, the F36A mutation appears to confer a defect specific for recognition of insertion/deletion and base pair mismatches.
Collapse
Affiliation(s)
- A Yamamoto
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1810, USA
| | | | | | | |
Collapse
|
46
|
Iaccarino I, Marra G, Dufner P, Jiricny J. Mutation in the magnesium binding site of hMSH6 disables the hMutSalpha sliding clamp from translocating along DNA. J Biol Chem 2000; 275:2080-6. [PMID: 10636912 DOI: 10.1074/jbc.275.3.2080] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In human cells, binding of base/base mismatches and small insertion/deletion loops is mediated by hMutSalpha, a heterodimer of hMSH2 and hMSH6. In the presence of ATP and magnesium, hMutSalpha dissociates from the mismatch by following the DNA contour in the form of a sliding clamp. This process is enabled by a conformational change of the heterodimer, which is driven by the binding of ATP and magnesium in the Walker type A and B motifs of the polypeptides, respectively. We show that a purified recombinant hMutSalpha variant, hMutSalpha 6DV, which contains an aspartate to valine substitution in the Walker type B motif of the hMSH6 subunit, fails to undergo the conformational change compatible with translocation. Instead, its direct dissociation from the mismatch-containing DNA substrate in the presence of ATP and magnesium precludes the assembly of a functional mismatch repair complex. The "translocation-prone" conformation of wild type hMutSalpha could be observed solely under conditions that favor hydrolysis of the nucleotide and mismatch repair in vitro. Thus, whereas magnesium could be substituted with manganese, ATP could not be replaced with its slowly or nonhydrolyzable homologues ATP-gammaS or AMPPNP, respectively. The finding that ATP induces different conformational changes in hMutSalpha in the presence and in the absence of magnesium helps explain the functional differences between hMutSalpha variants incapable of binding ATP as compared with those unable to bind the metal ion.
Collapse
Affiliation(s)
- I Iaccarino
- Institute of Medical Radiobiology of the University of Zürich and the Paul Scherrer Institute, August Forel Strasse 7, CH-8008 Zürich, Switzerland
| | | | | | | |
Collapse
|
47
|
Drotschmann K, Clark AB, Tran HT, Resnick MA, Gordenin DA, Kunkel TA. Mutator phenotypes of yeast strains heterozygous for mutations in the MSH2 gene. Proc Natl Acad Sci U S A 1999; 96:2970-5. [PMID: 10077621 PMCID: PMC15879 DOI: 10.1073/pnas.96.6.2970] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heterozygosity for germ-line mutations in the DNA mismatch repair gene MSH2 predisposes humans to cancer. Here we use a highly sensitive reporter to describe a spontaneous mutator phenotype in diploid yeast cells containing a deletion of only one MSH2 allele. We also identify five MSH2 missense mutations that have dominant mutator effects in heterozygous cells when expressed at normal levels from the natural MSH2 promoter. For example, a 230-fold mutator effect is observed in an MSH2/msh2 diploid strain in which Gly693, which is invariant in MutS homologs and involved in ATP hydrolysis, is changed to alanine. DNA binding data suggest that mismatch repair is suppressed by binding of a mutant Msh2-Msh6 heterodimer to a mismatch with subsequent inability to dissociate from the mismatch in the presence of ATP. A dominant mutator effect also is observed in yeast when Gly693 is changed to serine. An early onset colorectal tumor is heterozygous for the analogous Gly --> Ser mutation in hMSH2, and a second hMSH2 mutation was not found, suggesting that this missense mutation may predispose to cancer via a dominant mutator effect. The mutator effects of the deletion mutant and the Gly --> Ala missense mutant in yeast MSH2 are enhanced by heterozygosity for a missense mutation in DNA polymerase delta that reduces its proofreading activity but is not a mutator in the heterozygous state. The synergistic effects of heterozygosity for mutations in two different genes that act in series to correct replication errors may be relevant to cancer predisposition.
Collapse
Affiliation(s)
- K Drotschmann
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, P.O. Box 12233, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
The discovery of viruses heralded an exciting new era for research in the medical and biological sciences. It has been realized that the cellular receptor guiding a virus to a target cell cannot be the sole determinant of a virus's pathogenic potential. Comparative analyses of the structures of genomes and their products have placed the picornaviruses into a large “picorna-like” virus family, in which they occupy a prominent place. Most human picornavirus infections are self-limiting, yet the enormously high rate of picornavirus infections in the human population can lead to a significant incidence of disease complications that may be permanently debilitating or even fatal. Picornaviruses employ one of the simplest imaginable genetic systems: they consist of single-stranded RNA that encodes only a single multidomain polypeptide, the polyprotein. The RNA is packaged into a small, rigid, naked, and icosahedral virion whose proteins are unmodified except for a myristate at the N-termini of VP4. The RNA itself does not contain modified bases. The key to ultimately understanding picornaviruses may be to rationalize the huge amount of information about these viruses from the perspective of evolution. It is possible that the replicative apparatus of picornaviruses originated in the precellular world and was subsequently refined in the course of thousands of generations in a slowly evolving environment. Picornaviruses cultivated the art of adaptation, which has allowed them to “jump” into new niches offered in the biological world.
Collapse
|
49
|
Neuwald AF, Aravind L, Spouge JL, Koonin EV. AAA+: A Class of Chaperone-Like ATPases Associated with the Assembly, Operation, and Disassembly of Protein Complexes. Genome Res 1999. [DOI: 10.1101/gr.9.1.27] [Citation(s) in RCA: 716] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Using a combination of computer methods for iterative database searches and multiple sequence alignment, we show that protein sequences related to the AAA family of ATPases are far more prevalent than reported previously. Among these are regulatory components of Lon and Clp proteases, proteins involved in DNA replication, recombination, and restriction (including subunits of the origin recognition complex, replication factor C proteins, MCM DNA-licensing factors and the bacterial DnaA, RuvB, and McrB proteins), prokaryotic NtrC-related transcription regulators, the Bacillus sporulation protein SpoVJ, Mg2+, and Co2+ chelatases, theHalobacterium GvpN gas vesicle synthesis protein, dynein motor proteins, TorsinA, and Rubisco activase. Alignment of these sequences, in light of the structures of the clamp loader δ′ subunit ofEscherichia coli DNA polymerase III and the hexamerization component of N-ethylmaleimide-sensitive fusion protein, provides structural and mechanistic insights into these proteins, collectively designated the AAA+ class. Whole-genome analysis indicates that this class is ancient and has undergone considerable functional divergence prior to the emergence of the major divisions of life. These proteins often perform chaperone-like functions that assist in the assembly, operation, or disassembly of protein complexes. The hexameric architecture often associated with this class can provide a hole through which DNA or RNA can be thread; this may be important for assembly or remodeling of DNA–protein complexes.
Collapse
|
50
|
Aravind L, Leipe DD, Koonin EV. Toprim--a conserved catalytic domain in type IA and II topoisomerases, DnaG-type primases, OLD family nucleases and RecR proteins. Nucleic Acids Res 1998; 26:4205-13. [PMID: 9722641 PMCID: PMC147817 DOI: 10.1093/nar/26.18.4205] [Citation(s) in RCA: 320] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Iterative profile searches and structural modeling show that bacterial DnaG-type primases, small primase-like proteins from bacteria and archaea, type IA and type II topoisomerases, bacterial and archaeal nucleases of the OLD family and bacterial DNA repair proteins of the RecR/M family contain a common domain, designated Toprim (topoisomerase-primase) domain. The domain consists of approximately 100 amino acids and has two conserved motifs, one of which centers at a conserved glutamate and the other one at two conserved aspartates (DxD). Examination of the structure of Topo IA and Topo II and modeling of the Toprim domains of the primases reveal a compact beta/alpha fold, with the conserved negatively charged residues juxtaposed, and inserts seen in Topo IA and Topo II. The conserved glutamate may act as a general base in nucleotide polymerization by primases and in strand rejoining by topoisomerases and as a general acid in strand cleavage by topoisomerases and nucleases. The role of this glutamate in catalysis is supported by site-directed mutagenesis data on primases and Topo IA. The DxD motif may coordinate Mg2+that is required for the activity of all Toprim-containing enzymes. The common ancestor of all life forms could encode a prototype Toprim enzyme that might have had both nucleotidyl transferase and polynucleotide cleaving activity.
Collapse
Affiliation(s)
- L Aravind
- Department of Biology, Texas A&M University, College Station, TX 70843, USA, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | |
Collapse
|