1
|
Szabó M, Murányi G, Kiss J. IncC helper dependent plasmid-like replication of Salmonella Genomic Island 1. Nucleic Acids Res 2021; 49:832-846. [PMID: 33406256 PMCID: PMC7826253 DOI: 10.1093/nar/gkaa1257] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/24/2020] [Accepted: 12/17/2020] [Indexed: 12/16/2022] Open
Abstract
The Salmonella genomic island 1 (SGI1) and its variants are mobilized by IncA and IncC conjugative plasmids. SGI1-family elements and their helper plasmids are effective transporters of multidrug resistance determinants. SGI1 exploits the transfer apparatus of the helper plasmid and hijacks its activator complex, AcaCD, to trigger the expression of several SGI1 genes. In this way, SGI1 times its excision from the chromosome to the helper entry and expresses mating pore components that enhance SGI1 transfer. The SGI1-encoded T4SS components and the FlhDC-family activator proved to be interchangeable with their IncC-encoded homologs, indicating multiple interactions between SGI1 and its helpers. As a new aspect of this crosstalk, we report here the helper-induced replication of SGI1, which requires both activators, AcaCD and FlhDCSGI1, and significantly increases the stability of SGI1 when coexists with the helper plasmid. We have identified the oriVSGI1 and shown that S004-repA operon encodes for a translationally coupled leader protein and an IncN2/N3-related RepA that are expressed under the control of the AcaCD-responsive promoter PS004. This replicon transiently maintains SGI1 as a 4–8-copy plasmid, not only stabilizing the island but also contributing to the fast displacement of the helper plasmid.
Collapse
Affiliation(s)
- Mónika Szabó
- Agricultural Biotechnology Institute, National Agricultural Research and Innovation Centre, Gödöllő H2100, Hungary
| | - Gábor Murányi
- Agricultural Biotechnology Institute, National Agricultural Research and Innovation Centre, Gödöllő H2100, Hungary
| | - János Kiss
- Agricultural Biotechnology Institute, National Agricultural Research and Innovation Centre, Gödöllő H2100, Hungary
| |
Collapse
|
2
|
Wang J, Wang ZY, Wang Y, Sun F, Li W, Wu H, Shen PC, Pan ZM, Jiao X. Emergence of 16S rRNA Methylase Gene rmtB in Salmonella Enterica Serovar London and Evolution of RmtB-Producing Plasmid Mediated by IS 26. Front Microbiol 2021; 11:604278. [PMID: 33519749 PMCID: PMC7843705 DOI: 10.3389/fmicb.2020.604278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/08/2020] [Indexed: 11/23/2022] Open
Abstract
This study aimed to characterize 16S rRNA methylase genes among Salmonella and to elucidate the structure and evolution of rmtB-carrying plasmids. One hundred fifty-eight Salmonella isolates from one pig slaughterhouse were detected as containing 16S rRNA methylase genes; two (1.27%) Salmonella London isolates from slaughtered pigs were identified to carry rmtB. They were resistant to gentamicin, amikacin, streptomycin, ampicillin, tetracycline, florfenicol, ciprofloxacin, and sulfamethoxazole/trimethoprim. The complete sequences of RmtB-producing isolates were obtained by PacBio single-molecule real-time sequencing. The isolate HA1-SP5 harbored plasmids pYUHAP5-1 and pYUHAP5-2. pYUHAP5-1 belonged to the IncFIBK plasmid and showed high similarity to multiple IncFIBK plasmids from Salmonella London in China. The rmtB-carrying plasmid pYUHAP5-2 contained a typical IncN-type backbone; the variable region comprising several resistance genes and an IncX1 plasmid segment was inserted in the resolvase gene resP and bounded by IS26. The sole plasmid in HA3-IN1 designated as pYUHAP1 was a cointegrate of plasmids from pYUHAP5-1-like and pYUHAP5-2-like, possibly mediated by IS26 via homologous recombination or conservative transposition. The structure differences between pYUHAP1 and its corresponding part of pYUHAP5-1 and pYUHAP5-2 may result from insertion, deletion, or recombination events mediated by mobile elements (IS26, ISCR1, and ISKpn43). This is the first report of rmtB in Salmonella London. IncN plasmids are efficient vectors for rmtB distribution and are capable of evolving by reorganization and cointegration. Our results further highlight the important role of mobile elements, particularly IS26, in the dissemination of resistance genes and plasmid evolution.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Zhen-Yu Wang
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yan Wang
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Fan Sun
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Wei Li
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, China
| | - Han Wu
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Peng-Cheng Shen
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Zhi-Ming Pan
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xinan Jiao
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
3
|
Evolution and Comparative Genomics of F33:A-:B- Plasmids Carrying blaCTX-M-55 or blaCTX-M-65 in Escherichia coli and Klebsiella pneumoniae Isolated from Animals, Food Products, and Humans in China. mSphere 2018; 3:3/4/e00137-18. [PMID: 30021873 PMCID: PMC6052338 DOI: 10.1128/msphere.00137-18] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Worldwide spread of antibiotic resistance genes among Enterobacteriaceae isolates is of great concern. F33:A−:B− plasmids are important vectors of resistance genes, such as blaCTX-M-55/-65, blaNDM-1, fosA3, and rmtB, among E. coli isolates from various sources in China. We determined and compared the complete sequences of 17 F33:A−:B− plasmids from various sources. These plasmids appear to have evolved from the same ancestor by mobile element-mediated rearrangement, acquisition, and/or loss of resistance modules and similar IncN1, IncI1, and/or IncX1 plasmid backbone segments. Our findings highlight the evolutionary potential of F33:A−:B− plasmids as efficient vectors to capture and diffuse clinically relevant resistance genes. To understand the underlying evolution process of F33:A−:B− plasmids among Enterobacteriaceae isolates of various origins in China, the complete sequences of 17 blaCTX-M-harboring F33:A−:B− plasmids obtained from Escherichia coli and Klebsiella pneumoniae isolates from different sources (animals, animal-derived food, and human clinics) in China were determined. F33:A−:B− plasmids shared similar plasmid backbones comprising replication, leading, and conjugative transfer regions and differed by the numbers of repeats in yddA and traD and by the presence of group II intron, except that pHNAH9 lacked a large segment of the leading and transfer regions. The variable regions of F33:A−B− plasmids were distinct and were inserted downstream of the addiction system pemI/pemK, identified as the integration hot spot among F33:A−B− plasmids. The variable region contained resistance genes and mobile elements or contained segments from other types of plasmids, such as IncI1, IncN1, and IncX1. Three plasmids encoding CTX-M-65 were very similar to our previously described pHN7A8 plasmid. Four CTX-M-55-producing plasmids contained multidrug resistance regions related to that of F2:A−B− plasmid pHK23a from Hong Kong. Five plasmids with IncN and/or IncX replication regions and IncI1-backbone fragments had variable regions related to those of pE80 and p42-2. The remaining five plasmids with IncN replicons and an IncI1 segment also possessed closely related variable regions. The diversity in variable regions was presumably associated with rearrangements, insertions, and/or deletions mediated by mobile elements, such as IS26 and IS1294. IMPORTANCE Worldwide spread of antibiotic resistance genes among Enterobacteriaceae isolates is of great concern. F33:A−:B− plasmids are important vectors of resistance genes, such as blaCTX-M-55/-65, blaNDM-1, fosA3, and rmtB, among E. coli isolates from various sources in China. We determined and compared the complete sequences of 17 F33:A−:B− plasmids from various sources. These plasmids appear to have evolved from the same ancestor by mobile element-mediated rearrangement, acquisition, and/or loss of resistance modules and similar IncN1, IncI1, and/or IncX1 plasmid backbone segments. Our findings highlight the evolutionary potential of F33:A−:B− plasmids as efficient vectors to capture and diffuse clinically relevant resistance genes.
Collapse
|
4
|
Eikmeyer F, Hadiati A, Szczepanowski R, Wibberg D, Schneiker-Bekel S, Rogers LM, Brown CJ, Top EM, Pühler A, Schlüter A. The complete genome sequences of four new IncN plasmids from wastewater treatment plant effluent provide new insights into IncN plasmid diversity and evolution. Plasmid 2012; 68:13-24. [PMID: 22326849 DOI: 10.1016/j.plasmid.2012.01.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 11/16/2011] [Accepted: 01/20/2012] [Indexed: 10/14/2022]
Abstract
The dissemination of antibiotic resistance genes among bacteria often occurs by means of plasmids. Wastewater treatment plants (WWTP) were previously recognized as hot spots for the horizontal transfer of genetic material. One of the plasmid groups that is often associated with drug resistance is the incompatibility group IncN. The aim of this study was to gain insights into the diversity and evolutionary history of IncN plasmids by determining and comparing the complete genome sequences of the four novel multi-drug resistance plasmids pRSB201, pRSB203, pRSB205 and pRSB206 that were exogenously isolated from the final effluent of a municipal WWTP. Their sizes range between 42,875 bp and 56,488 bp and they share a common set of backbone modules that encode plasmid replication initiation, conjugative transfer, and plasmid maintenance and control. All plasmids are transferable at high rates between Escherichia coli strains, but did not show a broad host range. Different genes conferring resistances to ampicillin, streptomycin, spectinomycin, sulfonamides, tetracycline and trimethoprim were identified in accessory modules inserted in these plasmids. Comparative analysis of the four WWTP IncN plasmids and IncN plasmids deposited in the NCBI database enabled the definition of a core set of backbone genes for this group. Moreover, this approach revealed a close phylogenetic relationship between the IncN plasmids isolated from environmental and clinical samples. Phylogenetic analysis also suggests the existence of host-specific IncN plasmid subgroups. In conclusion, IncN plasmids likely contribute to the dissemination of resistance determinants between environmental bacteria and clinical strains. This is of particular importance since multi-drug resistance IncN plasmids have been previously identified in members of the Enterobacteriaceae that cause severe infections in humans.
Collapse
Affiliation(s)
- Felix Eikmeyer
- Institute for Genome Research and Systems Biology, Center for Biotechnology, Bielefeld University, D-33594 Bielefeld, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Fong R, Vroom JA, Hu Z, Hutchinson CR, Huang J, Cohen SN, Cohen S, Kao CM, Kao C. Characterization of a large, stable, high-copy-number Streptomyces plasmid that requires stability and transfer functions for heterologous polyketide overproduction. Appl Environ Microbiol 2006; 73:1296-307. [PMID: 17142363 PMCID: PMC1828658 DOI: 10.1128/aem.01888-06] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A major limitation to improving small-molecule pharmaceutical production in streptomycetes is the inability of high-copy-number plasmids to tolerate large biosynthetic gene cluster inserts. A recent finding has overcome this barrier. In 2003, Hu et al. discovered a stable, high-copy-number, 81-kb plasmid that significantly elevated production of the polyketide precursor to the antibiotic erythromycin in a heterologous Streptomyces host (J. Ind. Microbiol. Biotechnol. 30:516-522, 2003). Here, we have identified mechanisms by which this SCP2*-derived plasmid achieves increased levels of metabolite production and examined how the 45-bp deletion mutation in the plasmid replication origin increased plasmid copy number. A plasmid intramycelial transfer gene, spd, and a partition gene, parAB, enhance metabolite production by increasing the stable inheritance of large plasmids containing biosynthetic genes. Additionally, high product titers required both activator (actII-ORF4) and biosynthetic genes (eryA) at high copy numbers. DNA gel shift experiments revealed that the 45-bp deletion abolished replication protein (RepI) binding to a plasmid site which, in part, supports an iteron model for plasmid replication and copy number control. Using the new information, we constructed a large high-copy-number plasmid capable of overproducing the polyketide 6-deoxyerythronolide B. However, this plasmid was unstable over multiple culture generations, suggesting that other SCP2* genes may be required for long-term, stable plasmid inheritance.
Collapse
Affiliation(s)
- Ryan Fong
- Department of Chemical Engineering, Stanford University, CA 94305, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Zoueva OP, Iyer VN, Matula TI, Kozlowski M. Analysis of pCU1 replication origins: dependence of oriS on the plasmid-encoded replication initiation protein RepA. Plasmid 2003; 49:152-9. [PMID: 12726768 DOI: 10.1016/s0147-619x(02)00151-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The broad-host-range replicon of the plasmid pCU1 has three origins of vegetative replication called oriB, oriS, and oriV. In the multi-origin replicon, individual origins can distinguish among replication factors provided by the host. It has been found that during replication in Escherichia coli polA(-) host, oriS was the only active origin of a mutant pCU1 derivative bearing a mutation in the gene encoding replication initiation protein RepA. To further investigate the capacity of oriS to function in an E. coli polA(-) host we constructed a number of clones of the basic replicon of pCU1 containing oriS as the only replication origin. An oriS construct created with pUC18 could transform the polA(-) strain when RepA was supplied in trans. When the oriS region (between nucleotides 290 and 832) was ligated to an antibiotic resistance Omega fragment, the construct could be recovered as a plasmid from polA(+) strain if functional RepA was provided in trans. Our results therefore indicate that the basic replicon of pCU1, containing oriS as the sole origin, does require RepA to initiate plasmid replication in E. coli
Collapse
Affiliation(s)
- O P Zoueva
- Health Canada, Biologics and Genetics Therapies Directorate, Center for Biologics Research, Banting Bldg, 2201C, Tunney's Pasture, Ross Avenue, Ont, K1A 0L2, Ottawa, Canada
| | | | | | | |
Collapse
|
7
|
Pagotto F, Dillon JA. Multiple origins and replication proteins influence biological properties of beta-lactamase-producing plasmids from Neisseria gonorrhoeae. J Bacteriol 2001; 183:5472-81. [PMID: 11544207 PMCID: PMC95436 DOI: 10.1128/jb.183.19.5472-5481.2001] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The beta-lactamase-producing Asia-type plasmid pJD4 of Neisseria gonorrhoeae is a 7.4-kb, broad-host-range plasmid. It is part of a family of plasmids which are structurally related yet vary in size, found in both N. gonorrhoeae and Haemophilus ducreyi. Branch-point analysis by electron microscopy indicates that pJD4 carries three clustered but distinguishable origins of replication, which we named ori1, ori2, and ori3. Although pJD4 belongs to incompatibility (Inc) group W, it also carries a silent IncFII determinant which is expressed when ori2 and ori3 are absent. The Africa-type plasmid pJD5, a naturally occurring deletion derivative of pJD4, carries only ori1, belongs to the IncFII group, and, in contrast to pJD4, requires DNA polymerase I (Pol I) for replication. Plasmids constructed from pJD4 which lack ori1 but carry ori2 and ori3 do not require Pol I and are incompatible with IncW plasmids, suggesting that the ori2 or ori3 region contains the IncW determinant. We have cloned a replication initiation protein (RepB) that is necessary for ori2 and ori3 to function. This Rep protein is distinct from RepA, which is necessary for ori1. Thus, pJD4 is unique because it is the smallest plasmid characterized containing three origins of replication and two unique Rep proteins.
Collapse
Affiliation(s)
- F Pagotto
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | | |
Collapse
|
8
|
Papp PP, Elö P, Semsey S, Orosz L. Footprinting studies of specific complexes formed by RepA, a replication initiator of plasmid pCU1, and its binding site. J Bacteriol 2000; 182:5409-15. [PMID: 10986243 PMCID: PMC110983 DOI: 10.1128/jb.182.19.5409-5415.2000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The basic replicon of plasmid pCU1 contains three different replication origins. Replication initiated from the oriB origin requires pCU1-encoded protein RepA. Previously, information analysis of 19 natural RepA binding sequences predicted a 20-bp sequence as a RepA binding site. Guanines contacting RepA in the major groove of DNA have also been determined. In this study, we used the missing-nucleoside method to determine all of the bases relevant to RepA binding. The importance of some thymine bases was also confirmed by a missing-thymine site interference assay. Participation of the 5-methyl groups of two thymines (at positions -6 and 7) in RepA binding was pointed out by a missing-thymine methyl site interference assay. Phosphate groups of the DNA backbone which strongly interfered with RepA binding upon ethylation were also identified. The pattern of contacting positions mapped by hydroxyl radical protection footprinting indicates that RepA binds to one face of B-form DNA. The length of the binding site was found to be 20 bp by dissociation rate measurement of complexes formed between RepA and a variety of binding sequences. The symmetry of the binding site and that of the contacting bases, particularly the reacting 5-methyl groups of two thymines, suggest that pCU1-encoded RepA may contact its site as a homodimer.
Collapse
Affiliation(s)
- P P Papp
- Institute for Molecular Genetics, Agricultural Biotechnology Center, Gödöllö, Szent-Györgyi A. 4., H-2100, Hungary.
| | | | | | | |
Collapse
|
9
|
Delver EP, Belogurov AA. Organization of the leading region of IncN plasmid pKM101 (R46): a regulation controlled by CUP sequence elements. J Mol Biol 1997; 271:13-30. [PMID: 9300052 DOI: 10.1006/jmbi.1997.1124] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Analysis of the nucleotide sequence of the 13.8 kb leading region of the IncN plasmid pKM101 (a deletion derivative of R46) revealed eight copies of highly conserved repetitive elements, CUP (Conserved UPstream), and at least nine novel open reading frames (ORFs). Appropriate protein products were identified for eight ORFs and the analysis of their deduced amino acid sequences revealed similarities with some well-known proteins (KorA of RK2/RP4, RecX and PsiB) that may play a role in the adaptation of promiscuous plasmids to the new host. Comparison of CUP elements revealed that the CUP core is 417 nucleotides long and consists of two portions that markedly differ in GC content. The larger portion (307 nucleotides) of the core is about 74% GC and contains at least one NotI site, while the other (110 nucleotides) is only about 40% GC. The remarkable features of CUP elements is that five of them are oriented in the same direction and fused in a similar mode to the open reading frames (ORFs) that are able to encode unrelated proteins. The spacings between the right boundary of the CUP core and the potential ATG start codons of these ORFs are slightly different in length (16 to 18 bp), highly divergent in sequence but in all cases contain the conserved hexamer 5'-AGGAGT-3' at the position that is typical for the ribosome binding site of Escherichia coli. The A+T-rich portion of the CUP sequences contains the strong negatively regulated promoter and appears to function as a genetic switch that coordinately controls the expression of CUP-fused genes during the conjugal transfer. These findings suggest that seven plasmid genes fused to the CUP elements including repA and two ard genes encoding positively acting replication protein and antirestriction proteins, respectively, may be members of one regulatory network based on the CUP elements and two plasmid-encoded regulatory proteins ArdK and ArdR. At least, the ArdK protein may act as a typical repressor by binding to the promoter region of the CUP sequence. Most of the structural and functional features of organization of the CUP-controlled regulatory network are associated with the idea that the CUP elements may be involved in the natural genetic engineering process of organizing various functionally related genes in one regulon.
Collapse
Affiliation(s)
- E P Delver
- Department of Genetic Engineering, Cardiology Research Center, Moscow, Russia
| | | |
Collapse
|
10
|
Mellado E, Asturias JA, Nieto JJ, Timmis KN, Ventosa A. Characterization of the basic replicon of pCM1, a narrow-host-range plasmid from the moderate halophile Chromohalobacter marismortui. J Bacteriol 1995; 177:3443-50. [PMID: 7768853 PMCID: PMC177047 DOI: 10.1128/jb.177.12.3443-3450.1995] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The moderately halophilic bacterium Chromohalobacter marismortui contains a 17.5-kb narrow-host-range plasmid, pCM1, which shows interesting properties for the development of cloning vectors for the genetic manipulation of this important group of extremophiles. Plasmid pCM1 can stably replicate and is maintained in most gram-negative moderate halophiles tested. The replication origin has been identified and sequenced, and the minimal pCM1 replicon has been localized to a 1,600-bp region which includes two functionally discrete regions, the oriV region and the repA gene. oriV, located on a 700-bp fragment, contains four iterons 20 bp in length adjacent to a DnaA box that is dispensable but required for efficient replication of pCM1, and it requires trans-acting functions. The repA gene, which encodes a replication protein of 289 residues, is similar to the replication proteins of other gram-negative bacteria.
Collapse
Affiliation(s)
- E Mellado
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Spain
| | | | | | | | | |
Collapse
|
11
|
Papp PP, Iyer VN. Determination of the binding sites of RepA, a replication initiator protein of the basic replicon of the IncN group plasmid pCU1. J Mol Biol 1995; 246:595-608. [PMID: 7877179 DOI: 10.1016/s0022-2836(05)80109-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A 2kb DNA region of the broad-host-range plasmid pCU1 carries all of the information essential for the stable maintenance of the plasmid and to express the same host-range specificity. It was predicted that the protein required to initiate replication from at least one of the three origins of the plasmid is encoded by the longest open-reading frame (ORF239) of the three overlapping in-frame ORFs located within the 2 kb region. The product of ORF239 has been named RepA. The initiator protein was overexpressed, purified and used for in vitro binding studies. Gel mobility shift experiments were performed to localize RepA binding sites. The DNA sequence protected by the bound RepA molecule(s) was determined by DNase I footprinting and 19 of a 20 bp long sequence that is part of the protected sequence were located in two clusters flanking the repA gene. A plasmid created by linking a 310 bp fragment (nucleotides 238 to 547) of the 2 kb region to the antibiotic resistance genes carried by the omega fragment, can be maintained stably if the RepA protein is supplied in trans. We conclude that this 310 bp DNA fragment, which consists of a short G+C and a long A+T rich region and the cluster of five RepA binding sites, carries a functional origin of the plasmid-protein dependent replication. The position of this origin indicates that it is oriB, one of the three origins previously identified by electron microscopy. The second cluster of RepA binding sites is downstream of the repA gene and consists of 14 sites that are in inverted orientation compared with the binding sites located in the oriB region. They are part of the region that was shown formerly to be involved in controlling the copy number of the plasmid. In contrast to oriB, binding of RepA to neither the oriS nor oriV region was detected.
Collapse
Affiliation(s)
- P P Papp
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | | |
Collapse
|
12
|
Kim HY, Banerjee SK, Iyer VN. The incN plasmid replicon: two pathways of DNA polymerase I-independent replication. J Bacteriol 1994; 176:7735-9. [PMID: 8002601 PMCID: PMC197234 DOI: 10.1128/jb.176.24.7735-7739.1994] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The 2,053-bp broad-host-range incompatibility group N replicon of plasmid pCU1 has two components: a region of 1,200 bp that is sufficient for its replication in Escherichia coli PolA+ and PolA- hosts and a regulatory region called the group I iteron region that contains 13 39-bp iterons. Within the 1,200-bp region, there are three replication origins, two of which, called oriB and oriS, function in PolA+ and PolA- hosts and a third, called oriV, which functions only in PolA+ hosts. The region also specifies a protein called RepA. We now show that both oriB and oriS can function in a delta polA strain but that in such a strain, only oriB has an absolute requirement for RepA. oriS can function without RepA and polymerase I provided that the iteron region is deleted and that in this circumstance, it is the only origin, the usage of which is detected. The requirements for oriB usage can thus be distinguished from those for oriS usage. The oriB region can be recovered as a plasmid only if RepA is provided in trans. These complex features of this replicon are also shown to be shared by the IncN replicons of other antibiotic resistance plasmids. Functionally distinguishable origins in a small replicon may be a way of endowing such a replicon with a broad host range.
Collapse
Affiliation(s)
- H Y Kim
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
13
|
da Silva-Tatley FM, Steyn LM. Characterization of a replicon of the moderately promiscuous plasmid, pGSH5000, with features of both the mini-replicon of pCU1 and the ori-2 of F. Mol Microbiol 1993; 7:805-23. [PMID: 8469120 DOI: 10.1111/j.1365-2958.1993.tb01171.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The dominant, polA1-independent replicon of pGSH500, rep beta (1.8 kb), consists of a cis-acting oriV region of 245 bp; a repB gene that is essential for autonomous replication and 18, 30 to 36 bp iterons which constitute the inc/cop region. The molecular organization of rep beta resembles that of mini-pCU1 (IncN). Furthermore, there is a 58% identity between the Rep proteins of these replicons. RepB also shows a 31% identity with RepE of mini-F. In addition, an 80% identity over 200 bp was identified between the cis-acting beta oriV region and the equivalent region of ori-2 (mini-F). Replicons with deletions of repB could be complemented by Rep (pCU1) and RepE (mini-F) in trans, supporting the hypothesis that rep beta is a natural hybrid between a pCU1-like and F-like replicon.
Collapse
Affiliation(s)
- F M da Silva-Tatley
- Department of Medical Microbiology, Medical School, University of Cape Town, Observatory, South Africa
| | | |
Collapse
|
14
|
Banerjee SK, Luck BT, Kim HY, Iyer VN. Three clustered origins of replication in a promiscuous-plasmid replicon and their differential use in a PolA+ strain and a delta PolA strain of Escherichia coli K-12. J Bacteriol 1992; 174:8139-43. [PMID: 1459961 PMCID: PMC207553 DOI: 10.1128/jb.174.24.8139-8143.1992] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A 1,197-bp region of the broad-host-range plasmid pCU1 is adequate for its replication. Analysis of replicating molecules containing this region reveals three clustered origins of vegetative replication and replication proceeds bidirectionally from each in a theta mode. In an Escherichia coli polymerase I deletion mutant, utilization of one of these three origins was not detected. The potentiality for origin utilization may therefore be a determinant of replicon host range.
Collapse
Affiliation(s)
- S K Banerjee
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
15
|
Okumura MS, Kado CI. The region essential for efficient autonomous replication of pSa in Escherichia coli. MOLECULAR & GENERAL GENETICS : MGG 1992; 235:55-63. [PMID: 1435731 DOI: 10.1007/bf00286181] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Comparative analyses were made between plasmid pSa17, a deletion derivative of pSa that is capable of replicating efficiently in Escherichia coli and plasmid pSa3, a derivative that is defective for replication. By comparing the restriction maps of these two derivatives, the regions essential for replication and for stable maintenance of the plasmid were determined. A 2.5 kb DNA segment bearing the origin of DNA replication of pSa17 was sequenced. A 36 kDa RepA protein was encoded in the region essential for replication. Downstream of the RepA coding region was a characteristic sequence including six 17 bp direct repeats, the possible binding sites of RepA protein, followed by AT-rich and GC-rich sequences. Furthermore, an 8 bp incomplete copy of the 17 bp repeat was found in the promoter region of the repA gene. Based on the hypothesis that RepA protein binds to this partial sequence as well as to intact 17 bp sequences, an autoregulatory system for the synthesis of RepA protein may be operative. Another open reading frame (ORF) was found in the region required for the stability of the plasmid. The putative protein encoded in this ORF showed significant homology to several site-specific recombination proteins. A possible role of this putative protein in stable maintenance of the plasmid is discussed.
Collapse
Affiliation(s)
- M S Okumura
- Department of Plant Pathology, University of California, Davis 95616
| | | |
Collapse
|
16
|
Affiliation(s)
- B R Krishnan
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
17
|
Krishnan BR, Fobert PR, Seitzer U, Iyer VN. Mutations within the replicon of the IncN plasmid pCU1 that affect its Escherichia coli polA-independence but not its autonomous replication ability. Gene 1990; 91:1-7. [PMID: 2205534 DOI: 10.1016/0378-1119(90)90155-k] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The minimal replicon of the incompatibility N group plasmid pCU1 is contained within a 2-kb DNA region of the plasmid. The ability of this region and of the deletion derivatives thereof, that are capable of autonomous maintenance, to direct polypeptide synthesis was examined. Two proteins of 27 and 5.5 kDa are encoded by the minimal replicon. Polypeptide chain-terminating mutations within the predicted open reading frame for the 27-kDa polypeptide abolished the synthesis of this polypeptide and also the Escherichia coli polA-independence phenotype of the pCU1 replicon. However, these mutations did not affect the autonomous replication ability of the pCU1 replicon in wild-type E. coli and the expression of incompatibility towards the parental plasmid.
Collapse
Affiliation(s)
- B R Krishnan
- Biology Department, Carleton University, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
18
|
Abstract
Bacterial plasmids are obligate and intracellular genetic elements that replicate and are maintained autonomously from the chromosome. They are ubiquitous. Some of them are relatively more promiscuous than others. Plasmid genetic systems that contribute to relative promiscuity or chastity in naturally occurring plasmids are described and discussed. Both the promiscuity and the chastity of plasmid-based genetic systems have applications in bacterial molecular genetics, in the production of recombinant DNA products and in the breeding and use of desirable bacteria. The role of these systems in such applications is considered.
Collapse
Affiliation(s)
- V N Iyer
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|