1
|
Quaglia A, Roberts EA, Torbenson M. Developmental and Inherited Liver Disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2024:122-294. [DOI: 10.1016/b978-0-7020-8228-3.00003-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
2
|
Mohan S, Mayers M, Weaver M, Baudet H, De Biase I, Goldstein J, Mao R, McGlaughon J, Moser A, Pujol A, Suchy S, Yuzyuk T, Braverman NE. Evaluating the strength of evidence for genes implicated in peroxisomal disorders using the ClinGen clinical validity framework and providing updates to the peroxisomal disease nomenclature. Mol Genet Metab 2023; 139:107604. [PMID: 37236006 PMCID: PMC10484331 DOI: 10.1016/j.ymgme.2023.107604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/09/2023] [Accepted: 05/01/2023] [Indexed: 05/28/2023]
Abstract
Peroxisomal disorders are heterogeneous in nature, with phenotypic overlap that is indistinguishable without molecular testing. Newborn screening and gene sequencing for a panel of genes implicated in peroxisomal diseases are critical tools for the early and accurate detection of these disorders. It is therefore essential to evaluate the clinical validity of the genes included in sequencing panels for peroxisomal disorders. The Peroxisomal Gene Curation Expert Panel (GCEP) assessed genes frequently included on clinical peroxisomal testing panels using the Clinical Genome Resource (ClinGen) gene-disease validity curation framework and classified gene-disease relationships as Definitive, Strong, Moderate, Limited, Disputed, Refuted, or No Known Disease Relationship. Subsequent to gene curation, the GCEP made recommendations to update the disease nomenclature and ontology in the Monarch Disease Ontology (Mondo) database. Thirty-six genes were assessed for the strength of evidence supporting their role in peroxisomal disease, leading to 36 gene-disease relationships, after two genes were removed for their lack of a role in peroxisomal disease and two genes were curated for two different disease entities each. Of these, 23 were classified as Definitive (64%), one as Strong (3%), eight as Moderate (23%), two as Limited (5%), and two as No known disease relationship (5%). No contradictory evidence was found to classify any relationships as Disputed or Refuted. The gene-disease relationship curations are publicly available on the ClinGen website (https://clinicalgenome.org/affiliation/40049/). The changes to peroxisomal disease nomenclature are displayed on the Mondo website (http://purl.obolibrary.org/obo/MONDO_0019053). The Peroxisomal GCEP-curated gene-disease relationships will inform clinical and laboratory diagnostics and enhance molecular testing and reporting. As new data will emerge, the gene-disease classifications asserted by the Peroxisomal GCEP will be re-evaluated periodically.
Collapse
Affiliation(s)
- Shruthi Mohan
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, NC, USA
| | - Megan Mayers
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, NC, USA
| | - Meredith Weaver
- American College of Medical Genetics and Genomics, Bethesda, MD, USA
| | - Heather Baudet
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, NC, USA
| | | | - Jennifer Goldstein
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, NC, USA
| | - Rong Mao
- ARUP Laboratories, Salt Lake City, UT, USA
| | | | - Ann Moser
- Kennedy Krieger Institute, Baltimore, MD, USA
| | - Aurora Pujol
- Bellvitge Biomedical Research Institute (IDIBELL Instituto de Investigación Biomédica de Bellvitge), Barcelona, Spain
| | | | | | - Nancy E Braverman
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.
| |
Collapse
|
3
|
Ott J, Sehr J, Schmidt N, Schliebs W, Erdmann R. Comparison of human PEX knockout cell lines suggests a dual role of PEX1 in peroxisome biogenesis. Biol Chem 2023; 404:209-219. [PMID: 36534601 DOI: 10.1515/hsz-2022-0223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
For the biogenesis and maintenance of peroxisomes several proteins, called peroxins, are essential. Malfunctions of these proteins lead to severe diseases summarized as peroxisome biogenesis disorders. The different genetic background of patient-derived cell lines and the residual expression of mutated PEX genes impede analysis of the whole spectrum of cellular functions of affected peroxins. To overcome these difficulties, we have generated a selected PEX knockout resource of HEK T-REx293 cells using the CRISPR/Cas9 technique. Comparative analyses of whole cell lysates revealed PEX-KO specific alterations in the steady-state level of peroxins and variations in the import efficacy of matrix proteins with a Type 2 peroxisomal targeting signal. One of the observed differences concerned PEX1 as in the complete absence of the protein, the number of peroxisomal ghosts is significantly increased. Upon expression of PEX1, import competence and abundance of peroxisomes was adjusted to the level of normal HEK cells. In contrast, expression of an alternatively spliced PEX1 isoform lacking 321 amino acids of the N-terminal region failed to rescue the peroxisomal import defects but reduced the number of peroxisomal vesicles. All in all, the data suggest a novel 'moonlighting' function of human PEX1 in the regulation of pre-peroxisomal vesicles.
Collapse
Affiliation(s)
- Julia Ott
- Department of Systems Biochemistry, Institute for Biochemistry and Pathobiochemistry, Ruhr University Bochum, D-44780 Bochum, Germany
| | - Jessica Sehr
- Department of Systems Biochemistry, Institute for Biochemistry and Pathobiochemistry, Ruhr University Bochum, D-44780 Bochum, Germany
| | - Nadine Schmidt
- Department of Systems Biochemistry, Institute for Biochemistry and Pathobiochemistry, Ruhr University Bochum, D-44780 Bochum, Germany
| | - Wolfgang Schliebs
- Department of Systems Biochemistry, Institute for Biochemistry and Pathobiochemistry, Ruhr University Bochum, D-44780 Bochum, Germany
| | - Ralf Erdmann
- Department of Systems Biochemistry, Institute for Biochemistry and Pathobiochemistry, Ruhr University Bochum, D-44780 Bochum, Germany
| |
Collapse
|
4
|
Walia A, Birath AL, Buchman CA. Cochlear implantation and audiological findings in a child with Zellweger spectrum disorder. OTOLARYNGOLOGY CASE REPORTS 2023. [DOI: 10.1016/j.xocr.2023.100513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
5
|
The Key Role of Peroxisomes in Follicular Growth, Oocyte Maturation, Ovulation, and Steroid Biosynthesis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7982344. [PMID: 35154572 PMCID: PMC8831076 DOI: 10.1155/2022/7982344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/04/2022] [Indexed: 02/06/2023]
Abstract
The absence of peroxisomes can cause disease in the human reproductive system, including the ovaries. The available peroxisomal gene-knockout female mouse models, which exhibit pathological changes in the ovary and reduced fertility, are listed in this review. Our review article provides the first systematic presentation of peroxisomal regulation and its possible functions in the ovary. Our immunofluorescence results reveal that peroxisomes are present in all cell types in the ovary; however, peroxisomes exhibit different numerical abundances and strong heterogeneity in their protein composition among distinct ovarian cell types. The peroxisomal compartment is strongly altered during follicular development and during oocyte maturation, which suggests that peroxisomes play protective roles in oocytes against oxidative stress and lipotoxicity during ovulation and in the survival of oocytes before conception. In addition, the peroxisomal compartment is involved in steroid synthesis, and peroxisomal dysfunction leads to disorder in the sexual hormone production process. However, an understanding of the cellular and molecular mechanisms underlying these physiological and pathological processes is lacking. To date, no effective treatment for peroxisome-related disease has been developed, and only supportive methods are available. Thus, further investigation is needed to resolve peroxisome deficiency in the ovary and eventually promote female fertility.
Collapse
|
6
|
A Retrospective Study of Hearing Loss in Patients Diagnosed with Peroxisome Biogenesis Disorders in the Zellweger Spectrum. Ear Hear 2022; 43:582-591. [PMID: 34534157 PMCID: PMC8881323 DOI: 10.1097/aud.0000000000001126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Peroxisome Biogenesis Disorders in the Zellweger Spectrum (PBD-ZSD) are autosomal recessive disorders characterized by defects in peroxisome function, biosynthesis, and/or assembly. Despite its frequent documentation, hearing loss associated with PBD-ZSD has not been extensively characterized. The purpose of this retrospective natural history study was to better characterize the hearing loss associated with PBD-ZSD and to provide additional insight into the evaluation and management of PBD-ZSD patients with hearing loss. DESIGN Audiological data from medical records of 42 patients with PBD-ZSD or D-bifunctional protein deficiency were collected from an ongoing longitudinal retrospective natural history study. An initial dataset of 300 audiograms and/or audiometric test results from the 42 patients were used to characterize the degree of hearing loss, type of hearing loss, relationships between air and bone conduction thresholds, age-related changes in hearing loss, and benefit with amplification. RESULTS The majority of PBD-ZSD patients in this study presented with moderately-severe to severe hearing loss and relatively slow rates of longitudinal changes in hearing sensitivity. Improvements in hearing thresholds were observed with use of hearing aid amplification. Though bone conduction data were limited, air-bone gaps and air conduction threshold fluctuations observed in several patients suggest there may be an increased occurrence of mixed hearing losses in PBD-ZSD populations. CONCLUSION The results of this retrospective study provide insight into the hearing loss associated with PBD-ZSD, but also emphasize the need for more complete assessments of hearing loss type and middle ear function in these patients. The addition of more comprehensive datasets to the ongoing natural history study will enhance our understanding of the pathophysiology underlying PBD-ZSD and guide the development of targeted evaluation and management recommendations for patients with PBD-ZSD.
Collapse
|
7
|
Fallatah W, Schouten M, Yergeau C, Di Pietro E, Engelen M, Waterham HR, Poll-The BT, Braverman N. Clinical, biochemical, and molecular characterization of mild (nonclassic) rhizomelic chondrodysplasia punctata. J Inherit Metab Dis 2021; 44:1021-1038. [PMID: 33337545 DOI: 10.1002/jimd.12349] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/27/2020] [Accepted: 12/08/2020] [Indexed: 01/12/2023]
Abstract
Rhizomelic chondrodysplasia punctata (RCDP) is a heterogenous group of disorders due to defects in genes encoding peroxisomal proteins required for plasmalogen (PL) biosynthesis, specifically PEX7 and PEX5 receptors, or GNPAT, AGPS and FAR1 enzymes. Most patients have congenital cataract and skeletal dysplasia. In the classic form, there is profound growth restriction and psychomotor delays, with most patients not advancing past infantile developmental milestones. Disease severity correlates to erythrocyte PL levels, which are almost undetectable in severe (classic) RCDP. In milder (nonclassic) forms, residual PL levels are associated with improved growth and development. However, the clinical course of this milder group remains largely unknown as only a few cases were reported. Using as inclusion criteria the ability to communicate and walk, we identified 16 individuals from five countries, ages 5-37 years, and describe their clinical, biochemical and molecular profiles. The average age at diagnosis was 2.6 years and most had cataract, growth deficiency, joint contractures, and developmental delays. Other major symptoms were learning disability (87%), behavioral issues (56%), seizures (43%), and cardiac defects (31%). All patients had decreased C16:0 PL levels that were higher than in classic RCDP, and up to 43% of average controls. Plasma phytanic acid levels were elevated in most patients. There were several common, and four novel, PEX7, and GNPAT hypomorphic alleles in this cohort. These results can be used to support earlier diagnosis and improve management in patients with mild RCDP.
Collapse
Affiliation(s)
- Wedad Fallatah
- Department of Human Genetics, McGill University, Research Institute of the McGill University Health Centre, Montreal, Québec, Canada
- Department of Medical Genetics, King Abdul-Aziz University, Jeddah, Saudi Arabia
| | - Monica Schouten
- Department of Pediatric Neurology, Emma Children's Hospital, Amsterdam UMC - location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Christine Yergeau
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, Québec, Canada
| | - Erminia Di Pietro
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, Québec, Canada
| | - Marc Engelen
- Department of Pediatric Neurology, Emma Children's Hospital, Amsterdam UMC - location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC - location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Bwee Tien Poll-The
- Department of Pediatric Neurology, Emma Children's Hospital, Amsterdam UMC - location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Nancy Braverman
- Department of Human Genetics and Pediatrics, Child Health and Human Development Program, McGill University, Research Institute of the McGill University Health Centre, Montreal, Québec, Canada
| |
Collapse
|
8
|
Masih S, Moirangthem A, Phadke SR. Twins with PEX7 related intellectual disability and cataract: Highlighting phenotypes of peroxisome biogenesis disorder 9B. Am J Med Genet A 2021; 185:1504-1508. [PMID: 33586206 DOI: 10.1002/ajmg.a.62110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/26/2020] [Accepted: 01/15/2021] [Indexed: 01/13/2023]
Abstract
Peroxisome biogenesis disorders (PBDs) are a group of autosomal recessive disorders caused due to impaired peroxisome assembly affecting the formation of functional peroxisomes. PBDs are caused by a mutation in PEX gene family resulting in disease manifestation with extreme variability ranging from the onset of profound neurologic symptoms in newborns to progressive degenerative disease in adults. Disease causing variations in PEX7 is known to cause severe rhizomelic chondrodysplasia punctata type 1 and PBD 9B, an allelic disorder resulting in a milder phenotype, often indistinguishable from that of classic Refsum disease. This case report highlights the variability of PEX7 related phenotypes and suggests that other than RCDP1 and late onset phenotype similar to Refsum disease, some cases present with cataract and neurodevelopmetal abnormalities during childhood without chondrodysplasia or rhizomelia. This report also underlines the importance of considering PBD 9B in children presenting with neurodevelopmental abnormalities especially if they have congenital cataract.
Collapse
Affiliation(s)
- Suzena Masih
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Amita Moirangthem
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Shubha R Phadke
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
9
|
Lu P, Ma L, Sun J, Gong X, Cai C. A Chinese newborn with Zellweger syndrome and compound heterozygous mutations novel in the PEX1 gene: a case report and literature review. Transl Pediatr 2021; 10:446-453. [PMID: 33708531 PMCID: PMC7944177 DOI: 10.21037/tp-20-167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this study, we report a male newborn with severe Zellweger spectrum disorder (ZSDs) presenting asphyxia, hypotonia, poor feeding, and dysmorphic facial features. Despite intensive supportive treatment, the boy's condition deteriorated progressively. The patient's diagnosis was made by delayed results after his death. His genetic analysis showed that the boy carried novel compound heterozygous mutation in PEX1 gene (c.2050C > T and c.782_783del). We conducted a literature search and identified 316 patients with ZSD caused by mutations in the PEX1 gene. The p.G843D and p.I700Yfs*42 were the most commonly reported mutations. Among the 316 patients, clinical manifestations were available in 265 patients. The segregation of these patients' manifestation showed that patients with missense PEX1 mutations have a milder phenotype than those with truncating mutations, while the common p.G843D mutations are milder than other missense mutations. Nearly all truncating mutations in PEX1 except for those with premature stop codons near the end of the gene were associated with a severe disease phenotype. These results indicated that all domains of PEX1 were important in the maintenance of normal peroxisome function. The correlation between severity of the disease and type of mutations in PEX1 can be helpful in predicting prognosis among patients with ZSD caused by mutated PEX1.
Collapse
Affiliation(s)
- Pei Lu
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Li Ma
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jingjing Sun
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaohui Gong
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Cheng Cai
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
10
|
Bamford NS. Chondrodysplasia Punctata: A Clue to the Zellweger Spectrum Disorders. Pediatr Neurol 2019; 95:84-85. [PMID: 30898411 DOI: 10.1016/j.pediatrneurol.2019.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 01/21/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Nigel S Bamford
- Departments of Pediatrics, Neurology, Cellular and Molecular Physiology, Yale University, New Haven, Connecticut.
| |
Collapse
|
11
|
Soliman K, Göttfert F, Rosewich H, Thoms S, Gärtner J. Super-resolution imaging reveals the sub-diffraction phenotype of Zellweger Syndrome ghosts and wild-type peroxisomes. Sci Rep 2018; 8:7809. [PMID: 29773809 PMCID: PMC5958128 DOI: 10.1038/s41598-018-24119-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/22/2018] [Indexed: 11/12/2022] Open
Abstract
Peroxisomes are ubiquitous cell organelles involved in many metabolic and signaling functions. Their assembly requires peroxins, encoded by PEX genes. Mutations in PEX genes are the cause of Zellweger Syndrome spectrum (ZSS), a heterogeneous group of peroxisomal biogenesis disorders (PBD). The size and morphological features of peroxisomes are below the diffraction limit of light, which makes them attractive for super-resolution imaging. We applied Stimulated Emission Depletion (STED) microscopy to study the morphology of human peroxisomes and peroxisomal protein localization in human controls and ZSS patients. We defined the peroxisome morphology in healthy skin fibroblasts and the sub-diffraction phenotype of residual peroxisomal structures (‘ghosts’) in ZSS patients that revealed a relation between mutation severity and clinical phenotype. Further, we investigated the 70 kDa peroxisomal membrane protein (PMP70) abundance in relationship to the ZSS sub-diffraction phenotype. This work improves the morphological definition of peroxisomes. It expands current knowledge about peroxisome biogenesis and ZSS pathoethiology to the sub-diffraction phenotype including key peroxins and the characteristics of ghost peroxisomes.
Collapse
Affiliation(s)
- Kareem Soliman
- Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, Georg August University Göttingen, Robert-Koch-Strasse 40, 37075, Göttingen, Germany.,Optical Nanoscopy, Laser-Laboratorium Göttingen e.V., 37077, Göttingen, Germany
| | - Fabian Göttfert
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077, Göttingen, Germany
| | - Hendrik Rosewich
- Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, Georg August University Göttingen, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
| | - Sven Thoms
- Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, Georg August University Göttingen, Robert-Koch-Strasse 40, 37075, Göttingen, Germany.
| | - Jutta Gärtner
- Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, Georg August University Göttingen, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
| |
Collapse
|
12
|
Hannah-Shmouni F, Stratakis CA. An overview of inborn errors of metabolism manifesting with primary adrenal insufficiency. Rev Endocr Metab Disord 2018; 19:53-67. [PMID: 29956047 PMCID: PMC6204320 DOI: 10.1007/s11154-018-9447-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Primary adrenal insufficiency (PAI) results from an inability to produce adequate amounts of steroid hormones from the adrenal cortex. The most common causes of PAI are autoimmune adrenalitis (Addison's disease), infectious diseases, adrenalectomy, neoplasia, medications, and various rare genetic syndromes and inborn errors of metabolism that typically present in childhood although late-onset presentations are becoming increasingly recognized. The prevalence of PAI in Western countries is approximately 140 cases per million, with an incidence of 4 per 1,000,000 per year. Several pitfalls in the genetic diagnosis of patients with PAI exist. In this review, we provide an in-depth discussion and overview on the inborn errors of metabolism manifesting with PAI, including genetic diagnosis, genotype-phenotype relationships and counseling of patients and their families with a focus on various enzymatic deficiencies of steroidogenesis.
Collapse
Affiliation(s)
- Fady Hannah-Shmouni
- Section on Endocrinology & Genetics, The Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Building 10, CRC, Room 1-3330, 10 Center Dr., MSC1103, Bethesda, MD, 20892, USA
| | - Constantine A Stratakis
- Section on Endocrinology & Genetics, The Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Building 10, CRC, Room 1-3330, 10 Center Dr., MSC1103, Bethesda, MD, 20892, USA.
| |
Collapse
|
13
|
Warren M, Mierau G, Wartchow EP, Shimada H, Yano S. Histologic and ultrastructural features in early and advanced phases of Zellweger spectrum disorder (infantile Refsum disease). Ultrastruct Pathol 2018; 42:220-227. [PMID: 29482424 DOI: 10.1080/01913123.2018.1440272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Zellweger spectrum disorders (ZSD) are rare autosomal recessive inherited metabolic disorders and include severe (Zellweger syndrome) and milder phenotypes [neonatal adrenoleukodystrophy and infantile Refsum disease (IRD)]. ZSD are characterized by impaired peroxisomal functions and lack of peroxisomes detected by electron microscopy (EM). ZSD are caused by mutations in any of the 14 PEX genes. Patients with ZSD commonly demonstrate nonspecific hepatic symptoms within the first year, often without clinical suspicion of ZSD. Thus, recognition of pathologic findings in the liver is critical for the early diagnosis. We herein demonstrate the histologic and ultrastructural features in liver biopsies in the early and advanced phases from a 16-year-old male with IRD. The initial biopsy at 5 months of age showed a lack of peroxisomes by EM, and this finding played a critical role in the early diagnosis. In contrast, the second biopsy at 14 years of age, after long-term diet therapy, demonstrated significant disease progression with near-cirrhotic liver. In addition to lack of peroxisomes, EM revealed abundant trilamellar inclusions within large angulated lysosomes in many of the hepatocytes and Kupffer cells. Mitochondrial abnormalities were identified only in the second biopsy and were mainly identified in damaged cells; thus they were likely nonspecific secondary changes. This is the first report demonstrating histological and ultrastructural features of liver biopsies in the early and advanced phases from a child with ZSD. Trilamellar inclusions are considered to be an ultrastructural hallmark of ZSD, but they may not be apparent in the early phases.
Collapse
Affiliation(s)
- Mikako Warren
- a Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Keck School of Medicine , University of Southern California , Los Angeles , California , USA
| | - Gary Mierau
- b Department of Pathology , Children's Hospital Colorado , Aurora , Colorado , USA
| | - Eric P Wartchow
- b Department of Pathology , Children's Hospital Colorado , Aurora , Colorado , USA
| | - Hiroyuki Shimada
- a Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Keck School of Medicine , University of Southern California , Los Angeles , California , USA
| | - Shoji Yano
- c Genetics Division, Department of Pediatrics, Keck School of Medicine , University of Southern California , Los Angeles , California , USA
| |
Collapse
|
14
|
Quaglia A, Roberts EA, Torbenson M. Developmental and Inherited Liver Disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2018:111-274. [DOI: 10.1016/b978-0-7020-6697-9.00003-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
15
|
Falkenberg KD, Braverman NE, Moser AB, Steinberg SJ, Klouwer FCC, Schlüter A, Ruiz M, Pujol A, Engvall M, Naess K, van Spronsen F, Körver-Keularts I, Rubio-Gozalbo ME, Ferdinandusse S, Wanders RJA, Waterham HR. Allelic Expression Imbalance Promoting a Mutant PEX6 Allele Causes Zellweger Spectrum Disorder. Am J Hum Genet 2017; 101:965-976. [PMID: 29220678 DOI: 10.1016/j.ajhg.2017.11.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/14/2017] [Indexed: 01/14/2023] Open
Abstract
Zellweger spectrum disorders (ZSDs) are autosomal-recessive disorders that are caused by defects in peroxisome biogenesis due to bi-allelic mutations in any of 13 different PEX genes. Here, we identified seven unrelated individuals affected with an apparent dominant ZSD in whom a heterozygous mutant PEX6 allele (c.2578C>T [p.Arg860Trp]) was overrepresented due to allelic expression imbalance (AEI). We demonstrated that AEI of PEX6 is a common phenomenon and is correlated with heterozygosity for a frequent variant in the 3' untranslated region (UTR) of the mutant allele, which disrupts the most distal of two polyadenylation sites. Asymptomatic parents, who were heterozygous for PEX c.2578C>T, did not show AEI and were homozygous for the 3' UTR variant. Overexpression models confirmed that the overrepresentation of the pathogenic PEX6 c.2578T variant compared to wild-type PEX6 c.2578C results in a peroxisome biogenesis defect and thus constitutes the cause of disease in the affected individuals. AEI promoting the overrepresentation of a mutant allele might also play a role in other autosomal-recessive disorders, in which only one heterozygous pathogenic variant is identified.
Collapse
Affiliation(s)
- Kim D Falkenberg
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
| | - Nancy E Braverman
- Department of Pediatrics and Human Genetics, Research Institute of the McGill University Health Center and McGill University, Montreal, QC H4A 3J1, Canada
| | - Ann B Moser
- Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Steven J Steinberg
- Institute of Genetic Medicine and Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Femke C C Klouwer
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands; Department of Pediatric Neurology, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
| | - Agatha Schlüter
- Neurometabolic Diseases Laboratory, Institute of Neuropathology, IDIBELL, Barcelona 08908, Spain; CIBERER U759, Center for Biomedical Research on Rare Diseases, Valencia 46010, Spain
| | - Montserrat Ruiz
- Neurometabolic Diseases Laboratory, Institute of Neuropathology, IDIBELL, Barcelona 08908, Spain; CIBERER U759, Center for Biomedical Research on Rare Diseases, Valencia 46010, Spain
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, Institute of Neuropathology, IDIBELL, Barcelona 08908, Spain; CIBERER U759, Center for Biomedical Research on Rare Diseases, Valencia 46010, Spain; Catalan Institution of Research and Advanced Studies (ICREA), Barcelona 08010, Spain
| | - Martin Engvall
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm 171 77, Sweden; Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm 171 76, Sweden
| | - Karin Naess
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm 171 77, Sweden; Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Stockholm 171 77, Sweden
| | - FrancJan van Spronsen
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Groningen 9700 RB, the Netherlands
| | - Irene Körver-Keularts
- Department of Pediatrics, Maastricht University Medical Center, Maastricht 6211 LK, the Netherlands
| | - M Estela Rubio-Gozalbo
- Department of Pediatrics, Maastricht University Medical Center, Maastricht 6211 LK, the Netherlands; Laboratory Genetic Metabolic Diseases, Maastricht University Medical Center, Maastricht 6211 LK, the Netherlands
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
| | - Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands.
| |
Collapse
|
16
|
Blomqvist M, Ahlberg K, Lindgren J, Ferdinandusse S, Asin-Cayuela J. Identification of a novel mutation in PEX10 in a patient with attenuated Zellweger spectrum disorder: a case report. J Med Case Rep 2017; 11:218. [PMID: 28784167 PMCID: PMC5547663 DOI: 10.1186/s13256-017-1365-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 06/23/2017] [Indexed: 12/05/2022] Open
Abstract
Background The peroxisome biogenesis disorders, which are caused by mutations in any of 13 different PEX genes, include the Zellweger spectrum disorders. Severe defects in one of these PEX genes result in the absence of functional peroxisomes which is seen in classical Zellweger syndrome. These patients present with hypotonia and seizures shortly after birth. Other typical symptoms are dysmorphic features, liver disease, retinal degeneration, sensorineural deafness, polycystic kidneys, and the patient does not reach any developmental milestones. Case presentation We report a case of a patient with Zellweger spectrum disorder due to a novel mutation in the PEX10 gene, presenting with a mild late-onset neurological phenotype. The patient, an Assyrian girl originating from Iraq, presented with sensorineural hearing impairment at the age of 5 followed by sensorimotor polyneuropathy, cognitive delay, impaired gross and fine motor skills, and tremor and muscle weakness in her teens. Analyses of biochemical markers for peroxisomal disease suggested a mild peroxisomal defect and functional studies in fibroblasts confirmed the existence of a peroxisome biogenesis disorder. Diagnosis was confirmed by next generation sequencing analysis, which showed a novel homozygous mutation (c.530 T > G (p.Leu177Arg) (NM_153818.1)) in the PEX10 gene predicted to be pathogenic. Conclusions This case highlights the importance of performing biochemical, functional, and genetic peroxisomal screening in patients with clinical presentations milder than those usually observed in Zellweger spectrum disorders.
Collapse
Affiliation(s)
- Maria Blomqvist
- Institute of Biomedicine, Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden.
| | - Karin Ahlberg
- Paediatric Clinic, Central Hospital, S-65185, Karlstad, Sweden
| | - Julia Lindgren
- Institute of Biomedicine, Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Jorge Asin-Cayuela
- Institute of Biomedicine, Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| |
Collapse
|
17
|
Ge MM, Hu L, Li Z, Cheng G, Yan K, Kong Y, Wang H, Yang L, Zhou W. Novel compound heterozygous mutations in the PEX1 gene in two Chinese newborns with Zellweger syndrome based on whole exome sequencing. Clin Chim Acta 2017; 470:24-28. [PMID: 28432012 DOI: 10.1016/j.cca.2017.04.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/16/2017] [Accepted: 04/18/2017] [Indexed: 11/18/2022]
Abstract
Peroxisome biogenesis disorders (PBDs) represent a spectrum of human genetic disorders that are characterized by damaged peroxisome assembly. In the newborn period, the characteristics of affected patients include dysmorphic facial features, neonatal hypotonia, seizures, ocular abnormalities, poor feeding, liver cysts with hepatic dysfunction and skeletal defects. These can be caused by a defect in at least 14 different PEX genes. In this study, whole-exome sequencing (WES) was performed on samples from two Chinese newborns with clinical features of Zellweger syndrome. WES identified two novel mutations (c.2416+1G>T and c.2489delT) in patient 1 and another two novel mutations (c.1483+1G>A and c.1727dupG) in patient 2 in the PEX1 gene. All four mutations have a serious influence on the protein function, which also highlights the power of WES, particularly in clinically challenging cases.
Collapse
Affiliation(s)
- Meng-Meng Ge
- Department of Neonates, Children's Hospital of Fudan University, Shanghai, China
| | - LiYuan Hu
- Department of Neonates, Children's Hospital of Fudan University, Shanghai, China
| | - ZhiHua Li
- Department of Neonates, Children's Hospital of Fudan University, Shanghai, China
| | - GuoQiang Cheng
- Department of Neonates, Children's Hospital of Fudan University, Shanghai, China
| | - Kai Yan
- Department of Neonates, Children's Hospital of Fudan University, Shanghai, China
| | - YanTing Kong
- Department of Neonates, Children's Hospital of Fudan University, Shanghai, China
| | - HuiJun Wang
- Birth Defect Laboratory, Children's Hospital of Fudan University, Shanghai, China
| | - Lin Yang
- Clinical Genetic Center, Children's Hospital of Fudan University, Shanghai, China
| | - WenHao Zhou
- Department of Neonates, Children's Hospital of Fudan University, Shanghai, China; Birth Defect Laboratory, Children's Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
18
|
Affiliation(s)
| | - Maria Daniela D'Agostino
- McGill University Department of Human Genetics and McGill University Health Center, Department of Medical Genetics, Montreal, QC, Canada
| | - Nancy Braverman
- McGill University Department of Human Genetics and Pediatrics, and The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
19
|
Berendse K, Engelen M, Ferdinandusse S, Majoie CBLM, Waterham HR, Vaz FM, Koelman JHTM, Barth PG, Wanders RJA, Poll-The BT. Zellweger spectrum disorders: clinical manifestations in patients surviving into adulthood. J Inherit Metab Dis 2016; 39:93-106. [PMID: 26287655 PMCID: PMC4710674 DOI: 10.1007/s10545-015-9880-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/25/2015] [Accepted: 06/25/2015] [Indexed: 11/28/2022]
Abstract
INTRODUCTION We describe the natural history of patients with a Zellweger spectrum disorder (ZSD) surviving into adulthood. METHODS Retrospective cohort study in patients with a genetically confirmed ZSD. RESULTS All patients (n = 19; aged 16-35 years) had a follow-up period of 1-24.4 years (mean 16 years). Seven patients had a progressive disease course, while 12 remained clinically stable during follow-up. Disease progression usually manifests in adolescence as a gait disorder, caused by central and/or peripheral nervous system involvement. Nine were capable of living a partly independent life with supported employment. Systematic MRI review revealed T2 hyperintense white matter abnormalities in the hilus of the dentate nucleus and/or peridentate region in nine out of 16 patients. Biochemical analyses in blood showed abnormal peroxisomal biomarkers in all patients in infancy and childhood, whereas in adolescence/adulthood we observed normalization of some metabolites. CONCLUSIONS The patients described here represent a distinct subgroup within the ZSDs who survive into adulthood. Most remain stable over many years. Disease progression may occur and is mainly due to cerebral and cerebellar white matter abnormalities, and peripheral neuropathy.
Collapse
Affiliation(s)
- Kevin Berendse
- Department of Paediatric Neurology, Emma Children's Hospital, Academic Medical Centre (AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Marc Engelen
- Department of Paediatric Neurology, Emma Children's Hospital, Academic Medical Centre (AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Charles B L M Majoie
- Department of Radiology, AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Frédéric M Vaz
- Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Johannes H T M Koelman
- Department of Neurology and Clinical Neurophysiology, AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Peter G Barth
- Department of Paediatric Neurology, Emma Children's Hospital, Academic Medical Centre (AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Bwee Tien Poll-The
- Department of Paediatric Neurology, Emma Children's Hospital, Academic Medical Centre (AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
20
|
Klouwer FCC, Berendse K, Ferdinandusse S, Wanders RJA, Engelen M, Poll-The BT. Zellweger spectrum disorders: clinical overview and management approach. Orphanet J Rare Dis 2015; 10:151. [PMID: 26627182 PMCID: PMC4666198 DOI: 10.1186/s13023-015-0368-9] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 11/22/2015] [Indexed: 11/15/2022] Open
Abstract
Zellweger spectrum disorders (ZSDs) represent the major subgroup within the peroxisomal biogenesis disorders caused by defects in PEX genes. The Zellweger spectrum is a clinical and biochemical continuum which can roughly be divided into three clinical phenotypes. Patients can present in the neonatal period with severe symptoms or later in life during adolescence or adulthood with only minor features. A defect of functional peroxisomes results in several metabolic abnormalities, which in most cases can be detected in blood and urine. There is currently no curative therapy, but supportive care is available. This review focuses on the management of patients with a ZSD and provides recommendations for supportive therapeutic options for all those involved in the care for ZSD patients.
Collapse
Affiliation(s)
- Femke C C Klouwer
- Department of Paediatric Neurology, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Meibergdreef 9, PO BOX 22660, 1105 AZ, Amsterdam, The Netherlands. .,Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Kevin Berendse
- Department of Paediatric Neurology, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Meibergdreef 9, PO BOX 22660, 1105 AZ, Amsterdam, The Netherlands. .,Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Marc Engelen
- Department of Paediatric Neurology, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Meibergdreef 9, PO BOX 22660, 1105 AZ, Amsterdam, The Netherlands.
| | - Bwee Tien Poll-The
- Department of Paediatric Neurology, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Meibergdreef 9, PO BOX 22660, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
21
|
Clinical utility gene card for: Zellweger syndrome spectrum. Eur J Hum Genet 2014; 23:ejhg2014250. [PMID: 25407003 DOI: 10.1038/ejhg.2014.250] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 09/15/2014] [Accepted: 10/14/2014] [Indexed: 11/08/2022] Open
|
22
|
Liang JS, Lu JF. Peroxisomal disorders with infantile seizures. Brain Dev 2011; 33:777-82. [PMID: 21397417 DOI: 10.1016/j.braindev.2011.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 02/11/2011] [Accepted: 02/12/2011] [Indexed: 01/03/2023]
Abstract
Peroxisomes are organelles responsible for multiple metabolic pathways including the biosynthesis of plasmalogens and the oxidation of branched-chain as well as very-long-chain fatty acids (VLCFAs). Peroxisomal disorders (PDs) are heterogeneous groups of diseases and affect many organs with varying degrees of involvement. Even pathogenetically distinct PDs share some common symptoms. However, several PDs have uniquely characteristic clinical findings. The durations of survival in PDs are also variable. Infants with PDs are usually presented with developmental delay, visual and hearing impairment. Generalized hypotonia is present in severe cases. Epileptic seizures are also a common characteristic of patients with certain PDs. Nonetheless, the classification and evolution of epilepsy in PDs have not been elucidated in detail. Here, we review the relevant literatures and provide an overview of PDs with particular emphasis on the characteristics of seizures in infants.
Collapse
Affiliation(s)
- Jao-Shwann Liang
- Department of Pediatrics and Medical Research, Far Eastern Memorial Hospital, Taipei, Taiwan
| | | |
Collapse
|
23
|
Mast FD, Li J, Virk MK, Hughes SC, Simmonds AJ, Rachubinski RA. A Drosophila model for the Zellweger spectrum of peroxisome biogenesis disorders. Dis Model Mech 2011; 4:659-72. [PMID: 21669930 PMCID: PMC3180231 DOI: 10.1242/dmm.007419] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Human peroxisome biogenesis disorders are lethal genetic diseases in which abnormal peroxisome assembly compromises overall peroxisome and cellular function. Peroxisomes are ubiquitous membrane-bound organelles involved in several important biochemical processes, notably lipid metabolism and the use of reactive oxygen species for detoxification. Using cultured cells, we systematically characterized the peroxisome assembly phenotypes associated with dsRNA-mediated knockdown of 14 predicted Drosophila homologs of PEX genes (encoding peroxins; required for peroxisome assembly and linked to peroxisome biogenesis disorders), and confirmed that at least 13 of them are required for normal peroxisome assembly. We also demonstrate the relevance of Drosophila as a genetic model for the early developmental defects associated with the human peroxisome biogenesis disorders. Mutation of the PEX1 gene is the most common cause of peroxisome biogenesis disorders and is one of the causes of the most severe form of the disease, Zellweger syndrome. Inherited mutations in Drosophila Pex1 correlate with reproducible defects during early development. Notably, Pex1 mutant larvae exhibit abnormalities that are analogous to those exhibited by Zellweger syndrome patients, including developmental delay, poor feeding, severe structural abnormalities in the peripheral and central nervous systems, and early death. Finally, microarray analysis defined several clusters of genes whose expression varied significantly between wild-type and mutant larvae, implicating peroxisomal function in neuronal development, innate immunity, lipid and protein metabolism, gamete formation, and meiosis.
Collapse
Affiliation(s)
- Fred D Mast
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | | | | | | | | | | |
Collapse
|
24
|
Lee I, Blom UM, Wang PI, Shim JE, Marcotte EM. Prioritizing candidate disease genes by network-based boosting of genome-wide association data. Genome Res 2011; 21:1109-21. [PMID: 21536720 DOI: 10.1101/gr.118992.110] [Citation(s) in RCA: 503] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Network "guilt by association" (GBA) is a proven approach for identifying novel disease genes based on the observation that similar mutational phenotypes arise from functionally related genes. In principle, this approach could account even for nonadditive genetic interactions, which underlie the synergistic combinations of mutations often linked to complex diseases. Here, we analyze a large-scale, human gene functional interaction network (dubbed HumanNet). We show that candidate disease genes can be effectively identified by GBA in cross-validated tests using label propagation algorithms related to Google's PageRank. However, GBA has been shown to work poorly in genome-wide association studies (GWAS), where many genes are somewhat implicated, but few are known with very high certainty. Here, we resolve this by explicitly modeling the uncertainty of the associations and incorporating the uncertainty for the seed set into the GBA framework. We observe a significant boost in the power to detect validated candidate genes for Crohn's disease and type 2 diabetes by comparing our predictions to results from follow-up meta-analyses, with incorporation of the network serving to highlight the JAK-STAT pathway and associated adaptors GRB2/SHC1 in Crohn's disease and BACH2 in type 2 diabetes. Consideration of the network during GWAS thus conveys some of the benefits of enrolling more participants in the GWAS study. More generally, we demonstrate that a functional network of human genes provides a valuable statistical framework for prioritizing candidate disease genes, both for candidate gene-based and GWAS-based studies.
Collapse
Affiliation(s)
- Insuk Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul, Korea.
| | | | | | | | | |
Collapse
|
25
|
Mast FD, Fagarasanu A, Knoblach B, Rachubinski RA. Peroxisome biogenesis: something old, something new, something borrowed. Physiology (Bethesda) 2011; 25:347-56. [PMID: 21186279 DOI: 10.1152/physiol.00025.2010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Eukaryotic cells are characterized by their varied complement of organelles. One set of membrane-bound, usually spherical compartments are commonly grouped together under the term peroxisomes. Peroxisomes function in regulating the synthesis and availability of many diverse lipids by harnessing the power of oxidative reactions and contribute to a number of metabolic processes essential for cellular differentiation and organismal development.
Collapse
Affiliation(s)
- Fred D Mast
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
26
|
Kohlschütter A, Bley A, Brockmann K, Gärtner J, Krägeloh-Mann I, Rolfs A, Schöls L. Leukodystrophies and other genetic metabolic leukoencephalopathies in children and adults. Brain Dev 2010; 32:82-9. [PMID: 19427149 DOI: 10.1016/j.braindev.2009.03.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 03/21/2009] [Accepted: 03/22/2009] [Indexed: 11/17/2022]
Abstract
Abnormalities of CNS white matter are frequently detected in patients with neurological disorders when MRI studies are performed. Among the many causes of such abnormalities, a large group of rare genetic diseases poses considerable diagnostic problems. Here we present a compilation of genetic leukoencephalopathies to consider when one is confronted with white matter disease of possibly genetic origin. The table contains essentials such as age at onset of symptoms, clinical and MRI characteristics, basic defect, and useful diagnostic studies. The table serves as a diagnostic check list.
Collapse
|
27
|
Colburn JD, Skelo AS, Donahue SP. Corneal ulceration due to vitamin A deficiency in Zellweger syndrome. J AAPOS 2009; 13:289-91. [PMID: 19541270 DOI: 10.1016/j.jaapos.2009.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 02/13/2009] [Accepted: 03/10/2009] [Indexed: 12/01/2022]
Abstract
We report a case of vitamin A deficiency and secondary corneal ulcer in an infant with Zellweger syndrome. A 7-month-old infant with failure to thrive and malnutrition developed a corneal ulcer. Fortified antibiotic eye drops were administered without improvement. Vitamin A deficiency was suspected and confirmed. Supplementation with oral vitamin A decreased corneal opacification. Zellweger syndrome was later diagnosed. Vitamin A deficiency should be considered in the differential diagnosis of nonhealing corneal ulcers in children, especially those with systemic syndromes and failure to thrive.
Collapse
Affiliation(s)
- Jeffrey D Colburn
- Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | |
Collapse
|
28
|
Yik WY, Steinberg SJ, Moser AB, Moser HW, Hacia JG. Identification of novel mutations and sequence variation in the Zellweger syndrome spectrum of peroxisome biogenesis disorders. Hum Mutat 2009; 30:E467-80. [PMID: 19105186 DOI: 10.1002/humu.20932] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Peroxisome biogenesis disorders (PBD) are a heterogeneous group of autosomal recessive neurodegenerative disorders that affect multiple organ systems. Approximately 80% of PBD patients are classified in the Zellweger syndrome spectrum (PBD-ZSS). Mutations in the PEX1, PEX6, PEX10, PEX12, or PEX26 genes are found in approximately 90% of PBD-ZSS patients. Here, we sequenced the coding regions and splice junctions of these five genes in 58 PBD-ZSS cases previously subjected to targeted sequencing of a limited number of PEX gene exons. In our cohort, 71 unique sequence variants were identified, including 18 novel mutations predicted to disrupt protein function and 2 novel silent variants. We identified 4 patients who had two deleterious mutations in one PEX gene and a third deleterious mutation in a second PEX gene. For two such patients, we conducted cell fusion complementation analyses to identify the defective gene responsible for aberrant peroxisome assembly. Overall, we provide empirical data to estimate the relative fraction of disease-causing alleles that occur in the coding and splice junction sequences of these five PEX genes and the frequency of cases where mutations occur in multiple PEX genes. This information is beneficial for efforts aimed at establishing rapid and sensitive clinical diagnostics for PBD-ZSS patients and interpreting the results from these genetic tests.
Collapse
Affiliation(s)
- Wing Yan Yik
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, California, USA
| | | | | | | | | |
Collapse
|
29
|
Steinberg SJ, Snowden A, Braverman NE, Chen L, Watkins PA, Clayton PT, Setchell KDR, Heubi JE, Raymond GV, Moser AB, Moser HW. A PEX10 defect in a patient with no detectable defect in peroxisome assembly or metabolism in cultured fibroblasts. J Inherit Metab Dis 2009; 32:109-19. [PMID: 19127411 DOI: 10.1007/s10545-008-0969-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 09/10/2008] [Accepted: 10/09/2008] [Indexed: 11/28/2022]
Abstract
Zellweger spectrum disorders (ZSD) are diagnosed by biochemical assay in blood, urine and cultured fibroblasts and PEX gene mutation identification. In most cases studies in fibroblasts corroborate results obtained in body fluids. In 1996 Clayton and colleagues described a 10-year old girl with evidence of a peroxisome disorder, based on elevated bile acid metabolites and phytanate. At the time it was not possible to distinguish whether she had a ZSD or a single peroxisomal protein defect. Studies in our laboratory showed that she also had elevated plasma pipecolate, supporting the former diagnosis. Despite the abnormal metabolites detected in blood (phytanate, bile acid intermediates and pipecolate), analysis of multiple peroxisomal pathways in fibroblasts yielded normal results. In addition, she had a milder clinical phenotype than usually associated with ZSD. Since complementation analysis to determine the gene defect was not possible, we screened this patient following the PEX Gene Screen algorithm (PGS). The PGS provides a template for sequencing PEX gene exons independent of complementation analysis. Two mutations in PEX10 were identified, a frameshift mutation inherited from her father and a de novo missense mutation in a conserved functional domain on the other allele. This case highlights that molecular analysis may be essential to the diagnosis of patients at the milder end of the ZSD spectrum. Furthermore, it supports the concept that some tissues are less affected by certain PEX gene defects than brain and liver.
Collapse
Affiliation(s)
- S J Steinberg
- Neurogenetics, Kennedy Krieger Institute, Baltimore, Maryland 21205, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Krause C, Rosewich H, Gärtner J. Rational diagnostic strategy for Zellweger syndrome spectrum patients. Eur J Hum Genet 2009; 17:741-8. [PMID: 19142205 DOI: 10.1038/ejhg.2008.252] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Zellweger syndrome spectrum (ZSS) comprises a clinically and genetically heterogeneous disease entity, which is caused by mutations in any of the 12 different human PEX genes leading to impaired biogenesis of the peroxisome. Patients potentially suffering from ZSS are diagnosed biochemically by measuring elevated levels of very long chain fatty acids, pristanic acid and phytanic acid in plasma and serum and reduced levels of ether phospholipids in erythrocytes. Published reports on diagnostic procedures for ZSS patients are restricted either to biochemical markers or to defined mutations in a subset of PEX genes. Clarification of the primary genetic defect in an affected patient is crucial for genetic counselling, carrier testing or prenatal diagnosis. In this study, we present a rational diagnostic strategy for patients suspected of ZSS. By combining cell biology and molecular genetic methods in an appropriate sequence, we were able to detect the underlying mutation in various PEX genes within adequate time and cost. We applied this method on 90 patients who presented at our institute, Department of Pediatrics and Pediatric Neurology at Georg August University, and detected 174 mutant alleles within six different PEX genes, including two novel deletions and three new missense mutations in PEX6. Furthermore, this strategy will extend our knowledge on genotype-phenotype correlation in various PEX genes. It will contribute to a better understanding of ZSS pathogenesis, allowing the investigation of the effects of diverse mutations on the interaction between PEX proteins and peroxisomal function in vivo.
Collapse
Affiliation(s)
- Cindy Krause
- Department of Pediatrics and Pediatric Neurology, Faculty of Medicine, Georg August University, Göttingen, Germany
| | | | | |
Collapse
|
31
|
Sedel F, Tourbah A, Fontaine B, Lubetzki C, Baumann N, Saudubray JM, Lyon-Caen O. Leukoencephalopathies associated with inborn errors of metabolism in adults. J Inherit Metab Dis 2008; 31:295-307. [PMID: 18344012 DOI: 10.1007/s10545-008-0778-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2007] [Revised: 12/17/2007] [Accepted: 12/31/2007] [Indexed: 11/28/2022]
Abstract
The discovery of a leukoencephalopathy is a frequent situation in neurological practice and the diagnostic approach is often difficult given the numerous possible aetiologies, which include multiple acquired causes and genetic diseases including inborn errors of metabolism (IEMs). It is now clear that IEMs can have their clinical onset from early infancy until late adulthood. These diseases are particularly important to recognize because specific treatments often exist. In this review, illustrated by personal observations, we give an overview of late-onset leukoencephalopathies caused by IEMs.
Collapse
MESH Headings
- Adrenoleukodystrophy/diagnosis
- Adrenoleukodystrophy/etiology
- Brain Diseases, Metabolic, Inborn/diagnosis
- Brain Diseases, Metabolic, Inborn/etiology
- Electron Transport
- Hereditary Central Nervous System Demyelinating Diseases/diagnosis
- Hereditary Central Nervous System Demyelinating Diseases/etiology
- Homocysteine/metabolism
- Humans
- Leukodystrophy, Globoid Cell/diagnosis
- Leukodystrophy, Globoid Cell/etiology
- Leukodystrophy, Metachromatic/diagnosis
- Leukodystrophy, Metachromatic/etiology
- Magnetic Resonance Imaging
- Phenylketonurias/diagnosis
- Phenylketonurias/etiology
- Xanthomatosis, Cerebrotendinous/diagnosis
- Xanthomatosis, Cerebrotendinous/etiology
Collapse
Affiliation(s)
- F Sedel
- Federation of Nervous System Diseases, Hôpital de la Salpêtrière and Université Pierre et Marie Curie (Paris VI), Assistance Publique-Hôpitaux de Paris, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
32
|
Zeharia A, Ebberink MS, Wanders RJA, Waterham HR, Gutman A, Nissenkorn A, Korman SH. A novel PEX12 mutation identified as the cause of a peroxisomal biogenesis disorder with mild clinical phenotype, mild biochemical abnormalities in fibroblasts and a mosaic catalase immunofluorescence pattern, even at 40 degrees C. J Hum Genet 2007; 52:599-606. [PMID: 17534573 DOI: 10.1007/s10038-007-0157-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2006] [Accepted: 05/07/2007] [Indexed: 10/23/2022]
Abstract
Mutations in 12 different PEX genes can cause a generalized peroxisomal biogenesis disorder with clinical phenotypes ranging from Zellweger syndrome to infantile Refsum disease. To identify the specific PEX gene to be sequenced, complementation analysis is first performed in fibroblasts using catalase immunofluorescence. A patient with a relatively mild phenotype of infantile cholestasis, hypotonia and motor delay had elevated plasma very long-chain fatty acids and bile acid precursors, but fibroblast studies revealed normal or only mildly abnormal peroxisomal parameters and mosaic catalase immunofluorescence. This mosaicism persisted even when the incubation temperature was increased from 37 degrees C to 40 degrees C, a maneuver previously shown to abolish mosaicism by exacerbating peroxisomal dysfunction. As mosaicism precludes complementation analysis, a candidate gene approach was employed. After PEX1 sequencing was unrewarding, PEX12 sequencing revealed homozygosity for a novel c.102A>T (p.R34S) missense mutation affecting a partially conserved residue in the N-terminal region important for localization to peroxisomes. Transfection of patient fibroblasts with wild-type PEX12 cDNA confirmed that a PEX12 defect was the basis for the PBD. Homozygosity for c.102A>T was identified in a second patient of similar ethnic origin also presenting with a mild phenotype. PEX12 is a highly probable candidate gene for direct sequencing in the context of a mild clinical phenotype with mosaicism and minimally abnormal peroxisomal parameters in fibroblasts.
Collapse
Affiliation(s)
- Avraham Zeharia
- Day Hospitalization Unit, Schneider Children's Medical Center of Israel, Sackler School of Medicine, Tel Aviv University, Petach Tikvah, Israel
| | - Merel S Ebberink
- Departments of Clinical Chemistry and Pediatrics, Academic Medical Centre, Emma Children's Hospital, University of Amsterdam, Amsterdam, The Netherlands
| | - Ronald J A Wanders
- Departments of Clinical Chemistry and Pediatrics, Academic Medical Centre, Emma Children's Hospital, University of Amsterdam, Amsterdam, The Netherlands
| | - Hans R Waterham
- Departments of Clinical Chemistry and Pediatrics, Academic Medical Centre, Emma Children's Hospital, University of Amsterdam, Amsterdam, The Netherlands
| | - Alisa Gutman
- Department of Clinical Biochemistry, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Andreea Nissenkorn
- Pediatric Neurology Unit, Safra Children's Hosptial, Sheba Medical Center and Sackler School of Medicine, Tel Aviv University, Tel Hashomer, Israel
| | - Stanley H Korman
- Department of Clinical Biochemistry, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
- Metabolic Diseases Unit, Division of Pediatrics, Hadassah-Hebrew University Medical Center, POB 12000, Jerusalem, Israel.
| |
Collapse
|
33
|
Sedel F. Leucodistrofie dell’adulto. Neurologia 2007. [DOI: 10.1016/s1634-7072(07)70551-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
34
|
Steinberg SJ, Dodt G, Raymond GV, Braverman NE, Moser AB, Moser HW. Peroxisome biogenesis disorders. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1733-48. [PMID: 17055079 DOI: 10.1016/j.bbamcr.2006.09.010] [Citation(s) in RCA: 343] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Revised: 09/05/2006] [Accepted: 09/06/2006] [Indexed: 01/02/2023]
Abstract
Defects in PEX genes impair peroxisome assembly and multiple metabolic pathways confined to this organelle, thus providing the biochemical and molecular bases of the peroxisome biogenesis disorders (PBD). PBD are divided into two types--Zellweger syndrome spectrum (ZSS) and rhizomelic chondrodysplasia punctata (RCDP). Biochemical studies performed in blood and urine are used to screen for the PBD. DNA testing is possible for all of the disorders, but is more challenging for the ZSS since 12 PEX genes are known to be associated with this spectrum of PBD. In contrast, PBD-RCDP is associated with defects in the PEX7 gene alone. Studies of the cellular and molecular defects in PBD patients have contributed significantly to our understanding of the role of each PEX gene in peroxisome assembly.
Collapse
Affiliation(s)
- Steven J Steinberg
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Wanders RJA, Waterham HR. Peroxisomal disorders: the single peroxisomal enzyme deficiencies. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1707-20. [PMID: 17055078 DOI: 10.1016/j.bbamcr.2006.08.010] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Accepted: 08/18/2006] [Indexed: 01/02/2023]
Abstract
Peroxisomal disorders are a group of inherited diseases in man in which either peroxisome biogenesis or one or more peroxisomal functions are impaired. The peroxisomal disorders identified to date are usually classified in two groups including: (1) the disorders of peroxisome biogenesis, and (2) the single peroxisomal enzyme deficiencies. This review is focused on the second group of disorders, which currently includes ten different diseases in which the mutant gene affects a protein involved in one of the following peroxisomal functions: (1) ether phospholipid (plasmalogen) biosynthesis; (2) fatty acid beta-oxidation; (3) peroxisomal alpha-oxidation; (4) glyoxylate detoxification, and (5) H2O2 metabolism.
Collapse
|
36
|
Huyghe S, Mannaerts GP, Baes M, Van Veldhoven PP. Peroxisomal multifunctional protein-2: the enzyme, the patients and the knockout mouse model. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:973-94. [PMID: 16766224 DOI: 10.1016/j.bbalip.2006.04.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Revised: 04/04/2006] [Accepted: 04/10/2006] [Indexed: 10/24/2022]
Abstract
The mammalian multifunctional protein-2 (MFP-2, also called multifunctional enzyme 2, D-bifunctional enzyme or 17-beta-estradiol dehydrogenase type IV) was identified by several groups about a decade ago. It plays a central role in peroxisomal beta-oxidation as it handles most, if not all, peroxisomal beta-oxidation substrates. Deficiency of this enzyme in man causes a severe developmental syndrome with abnormalities in several organs but in particular in the brain, leading to death within the first year of life. Accumulation of branched-long-chain fatty acids and very-long-chain fatty acids and a disturbed synthesis of bile acids were documented in these patients. A mouse model with MFP-2 deficiency only partly phenocopies the human disease. Although the expected metabolic abnormalities are present, no neurodevelopmental aberrations are observed. However, the survival of these mice into adulthood allowed to document the importance of this enzyme for the normal functioning of the brain, eyes and testis. In the present review, the identification and biochemical characteristics of MFP-2, and the consequences of MFP-2 dysfunction in humans and in mice will be discussed.
Collapse
Affiliation(s)
- Steven Huyghe
- Laboratory of Cell Metabolism, Department of Pharmaceutical Sciences, Katholieke Universiteit Leuven, Campus Gasthuisberg, Onderwijs en Navorsing II, bus 823, Herestraat 49, B-3000 Leuven, Belgium
| | | | | | | |
Collapse
|
37
|
Sedel F, Tourbah A, Baumann N, Fontaine B, Aubourg P, Lubetzki C, Lyon-Caen O. [Adult onset hereditary leukoencephalopathies]. Rev Neurol (Paris) 2006; 161:916-31. [PMID: 16365621 DOI: 10.1016/s0035-3787(05)85155-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In clinical practice, the term "genetic leukoencephalopathy" refers to a group of genetic diseases whose common point is to give an aspect of diffuse leukoencephalopathy on MRI. With progress in diagnostic techniques including radiology, biochemistry or genetics, a large number of hereditary diseases causing leukoencephalopathy have been identified. Although generally beginning in childhood, these diseases often have more insidious clinical forms which can begin in adulthood. These forms remain poorly known. Some are accessible to treatment so their diagnosis appears essential. The diagnostic steps must be guided by clinical examination (neurological, ophthalmological and systemic), electromyography and MRI. The purpose of this review is to propose a classification of the genetic leukoencephalopathies and to give a progress report applicable in neurological practice.
Collapse
Affiliation(s)
- F Sedel
- Fédération des Maladies du Système Nerveux, Groupe Hospitalier Pitié-Salpêtrière, Paris.
| | | | | | | | | | | | | |
Collapse
|
38
|
Steinberg S, Katsanis S, Moser A, Cutting G. Biochemical analysis of cultured chorionic villi for the prenatal diagnosis of peroxisomal disorders: biochemical thresholds and molecular sensitivity for maternal cell contamination detection. J Med Genet 2006; 42:38-44. [PMID: 15635073 PMCID: PMC1735906 DOI: 10.1136/jmg.2004.023556] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVES The prenatal diagnosis of peroxisomal disorders is most often performed by biochemical analysis of cultured chorionic villus sample (CVS) or amniocytes. We aimed to (a) highlight the risk of maternal cell contamination (MCC) in biochemical prenatal diagnosis, (b) establish the threshold of these biochemical assays to MCC, and (c) document the sensitivity of PCR based genotyping of microsatellites for the detection of MCC in prenatal diagnosis of inborn errors by biochemical analysis. METHODS The threshold of each biochemical assay was assessed by co-cultivating fibroblasts from known affected and normal individuals. Genotypes for three polymorphic loci were determined by PCR and GeneScan analysis. The sensitivity of the molecular test was determined by DNA mixing experiments and isolation of DNA from co-cultivated fibroblasts. RESULTS MCC was detected in 2.5% of at risk CVS cultures (n = 79). Co-cultivation of defective and normal fibroblasts demonstrated that the peroxisomal biochemical assays were accurate at 25% contamination. Very low level DNA or cell contamination (1-5%) was detectable by genotyping, but an allele did not yield a definitive peak based on morphology until approximately 10% contamination. Furthermore, we demonstrated that other inborn errors of metabolism might be more susceptible to diagnostic error by low level MCC. CONCLUSION The sensitivity of the microsatellite analysis (> or =10%) is well within the threshold of peroxisomal biochemical assays. Although peroxisomal biochemical assays would not be predicted to introduce a false positive or negative result if MCC <10% were present but not recognised by molecular analysis, the same may not be true for other inborn errors of metabolism.
Collapse
Affiliation(s)
- S Steinberg
- The Kennedy Krieger Institute and Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | | | |
Collapse
|
39
|
Weleber RG, Gregory-Evans K. Retinitis Pigmentosa and Allied Disorders. Retina 2006. [DOI: 10.1016/b978-0-323-02598-0.50023-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
40
|
Crane DI, Maxwell MA, Paton BC. PEX1mutations in the Zellweger spectrum of the peroxisome biogenesis disorders. Hum Mutat 2005; 26:167-75. [PMID: 16086329 DOI: 10.1002/humu.20211] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Diseases of the Zellweger spectrum represent a major subgroup of the peroxisome biogenesis disorders, a group of autosomal-recessive diseases that are characterized by widespread tissue pathology, including neurodegeneration. The Zellweger spectrum represents a clinical continuum, with Zellweger syndrome (ZS) having the most severe phenotype, and neonatal adrenoleukodystrophy (NALD) and infantile Refsum disease (IRD) having progressively milder phenotypes. Mutations in the PEX1 gene, which encodes a 143-kDa AAA ATPase protein required for peroxisome biogenesis, are the most common cause of the Zellweger spectrum diseases. The PEX1 mutations identified to date comprise insertions, deletions, nonsense, missense, and splice site mutations. Mutations that produce premature truncation codons (PTCs) are distributed throughout the PEX1 gene, whereas the majority of missense mutations segregate with the two essential AAA domains of the PEX1 protein. Severity at the two ends of the Zellweger spectrum correlates broadly with mutation type and impact (i.e., the severe ZS correlates with PTCs on both alleles, and the milder phenotypes correlate with missense mutations), but exceptions to these general correlations exist. This article provides an overview of the currently known PEX1 mutations, and includes, when necessary, revised mutation nomenclature and genotype-phenotype correlations that may be useful for clinical diagnosis.
Collapse
Affiliation(s)
- Denis I Crane
- Cell Biology Group, Eskitis Institute for Cell and Molecular Therapies, Griffith University, Brisbane, Australia.
| | | | | |
Collapse
|
41
|
Başbuğ M, Serin IS, Ozçelik B, Guneş T, Akçakuş M, Tayyar M. Prenatal Ultrasonographic Diagnosis of Rhizomelic Chondrodysplasia punctata by Detection of Rhizomelic Shortening and Bilateral Cataracts. Fetal Diagn Ther 2005; 20:171-4. [PMID: 15824492 DOI: 10.1159/000083899] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2003] [Accepted: 02/13/2004] [Indexed: 11/19/2022]
Abstract
Antenatal sonographic diagnosis of rhizomelic chondrodysplasia punctata depends on recognization of the combination of rhizomelic bone shortening and epiphyseal stippling. This is the only report of prenatal ultrasonographic diagnosis of bilateral cataracts in a fetus with rhizomelic chondrodysplasia punctata (type 1). Also, this is the first report of severe rhizomelic limb shortening, and bilateral cataracts prior to the recognization of epiphyseal stippling.
Collapse
Affiliation(s)
- Mustafa Başbuğ
- Department of Obstetrics and Gynecology, Erciyes University Medical Faculty, Kayseri, Turkey.
| | | | | | | | | | | |
Collapse
|
42
|
Wanders RJA, Waterham HR. Peroxisomal disorders I: biochemistry and genetics of peroxisome biogenesis disorders. Clin Genet 2004; 67:107-33. [PMID: 15679822 DOI: 10.1111/j.1399-0004.2004.00329.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The peroxisomal disorders represent a group of genetic diseases in humans in which there is an impairment in one or more peroxisomal functions. The peroxisomal disorders are usually subdivided into two subgroups including (i) the peroxisome biogenesis disorders (PBDs) and (ii) the single peroxisomal (enzyme-) protein deficiencies. The PBD group is comprised of four different disorders including Zellweger syndrome (ZS), neonatal adrenoleukodystrophy (NALD), infantile Refsum's disease (IRD), and rhizomelic chondrodysplasia punctata (RCDP). ZS, NALD, and IRD are clearly distinct from RCDP and are usually referred to as the Zellweger spectrum with ZS being the most severe and NALD and IRD the less severe disorders. Studies in the late 1980s had already shown that the PBD group is genetically heterogeneous with at least 12 distinct genetic groups as concluded from complementation studies. Thanks to the much improved knowledge about peroxisome biogenesis notably in yeasts and the successful extrapolation of this knowledge to humans, the genes responsible for all these complementation groups have been identified making molecular diagnosis of PBD patients feasible now. It is the purpose of this review to describe the current stage of knowledge about the clinical, biochemical, cellular, and molecular aspects of PBDs, and to provide guidelines for the post- and prenatal diagnosis of PBDs. Less progress has been made with respect to the pathophysiology and therapy of PBDs. The increasing availability of mouse models for these disorders is a major step forward in this respect.
Collapse
Affiliation(s)
- R J A Wanders
- Department of Pediatrics, Academic Medical Centre, Emma Children's Hospital, University of Amsterdam, Amsterdam, The Netherlands.
| | | |
Collapse
|
43
|
Steinberg S, Chen L, Wei L, Moser A, Moser H, Cutting G, Braverman N. The PEX Gene Screen: molecular diagnosis of peroxisome biogenesis disorders in the Zellweger syndrome spectrum. Mol Genet Metab 2004; 83:252-63. [PMID: 15542397 DOI: 10.1016/j.ymgme.2004.08.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Revised: 08/14/2004] [Accepted: 08/20/2004] [Indexed: 10/26/2022]
Abstract
Peroxisome biogenesis disorders in the Zellweger syndrome spectrum (PBD-ZSS) are caused by defects in at least 12 PEX genes required for normal organelle assembly. Clinical and biochemical features continue to be used reliably to assign patients to this general disease category. Identification of the precise genetic defect is important, however, to permit carrier testing and early prenatal diagnosis. Molecular analysis is likely to expand the clinical spectrum of PBD and may also provide data relevant to prognosis and future therapeutic intervention. However, the large number of genes involved has thus far impeded rapid mutation identification. In response, we developed the PEX Gene Screen, an algorithm for the systematic screening of exons in the six PEX genes most commonly defective in PBD-ZSS. We used PCR amplification of genomic DNA and sequencing to screen 91 unclassified PBD-ZSS patients for mutations in PEX1, PEX26, PEX6, PEX12, PEX10, and PEX2. A maximum of 14 reactions per patient identified pathological mutations in 79% and both mutant alleles in 54%. Twenty-five novel mutations were identified overall. The proportion of patients with different PEX gene defects correlated with frequencies previously identified by complementation analysis. This systematic, hierarchical approach to mutation identification is therefore a valuable tool to identify rapidly the molecular etiology of suspected PBD-ZSS disorders.
Collapse
Affiliation(s)
- Steven Steinberg
- Peroxisomal Diseases Laboratory, Kennedy Krieger Institute and Department of Neurology, Johns Hopkins University, Baltimore, MD, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
The group of peroxisomal disorders now includes 17 different disorders with Zellweger syndrome as prototype. Thanks to the explosion of new information about the functions and biogenesis of peroxisomes, the metabolic and molecular basis of most of the peroxisomal disorders has been resolved. A review of peroxisomal disorders is provided in this paper.
Collapse
Affiliation(s)
- Ronald J A Wanders
- University of Amsterdam, Academic Medical Centre, Department of Clinical Chemistry, Emma Children's Hospital, Laboratory of Genetic Metabolic Diseases, Amsterdam, The Netherlands.
| |
Collapse
|
45
|
Michelakakis HM, Zafeiriou DI, Moraitou MS, Gootjes J, Wanders RJA. PEX1 deficiency presenting as Leber congenital amaurosis. Pediatr Neurol 2004; 31:146-9. [PMID: 15301838 DOI: 10.1016/j.pediatrneurol.2004.01.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2003] [Accepted: 01/23/2004] [Indexed: 10/26/2022]
Abstract
Peroxisome biogenesis disorders result from defects in peroxin proteins involved in peroxisomal matrix and membrane protein import. Peroxins are encoded in peroxin protein genes; to date, the PEX genes responsible for all 12 peroxisome biogenesis disorders complementation groups are known. Peroxin protein 1 deficiency associated with complementation group 1 is responsible for disease in approximately two thirds of all patients with a peroxisome biogenesis disorder. Their phenotypes range from severe to mild, and it appears to be a phenotype-genotype relationship. This case report describes a patient with peroxin protein 1 deficiency presenting as Leber congenital amaurosis, in whom the diagnosis was questioned at the age of 2 years when seizures first appeared and mild facial dysmorphia became evident.
Collapse
|
46
|
Mandel H, Korman SH. Phenotypic variability (heterogeneity) of peroxisomal disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 544:9-30. [PMID: 14713208 DOI: 10.1007/978-1-4419-9072-3_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Peroxisomes perform a multitude of biosynthetic and catabolic functions, many of which are related to lipid metabolism. Peroxisomal disorders result either from deficiency of a single peroxisomal enzyme or protein, or from a defect in the complex mechanism of peroxisomal biogenesis, resulting in deficiency of several or multiple peroxisomal functions. These can be assessed by a battery of biochemical assays, enabling a biochemical phenotype to be defined that is specific and diagnostic for each of the peroxisomal disorders. Some peroxisomal disorders have unique and specific clinical phenotypes, which may be diagnostic. Others share patterns of clinical abnormalities (particularly neurological dysfunction, craniofacial dysmorphism, skeletal defects, sensory deafness, retinopathy) consistent with defined clinical phenotypes, but with considerable overlap and heterogeneity. To a certain extent, the clinical features of a particular disorder reflect the accumulation or deficiency of specific metabolites. Thus, the same clinical phenotypes may be caused by both single enzyme defects and PBDs. Furthermore, the same defect may present with different clinical phenotypes. In general, the severity of the clinical phenotype correlates with the degree of biochemical dysfunction. The clinical heterogeneity of peroxisomal disorders constitutes a diagnostic challenge demanding a high index of suspicion on the clinician's part.
Collapse
Affiliation(s)
- Hanna Mandel
- Metabolic Disease Unit, Department of Pediatrics, Rambam Medical Center, Technion-Israel Institute of Technology, Bruce Rappaport Faculty of Medicine, Haifa, Israel.
| | | |
Collapse
|
47
|
Poll-The BT, Gootjes J, Duran M, De Klerk JBC, Wenniger-Prick LJMDB, Admiraal RJC, Waterham HR, Wanders RJA, Barth PG. Peroxisome biogenesis disorders with prolonged survival: Phenotypic expression in a cohort of 31 patients. ACTA ACUST UNITED AC 2004; 126A:333-8. [PMID: 15098231 DOI: 10.1002/ajmg.a.20664] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The peroxisome biogenesis disorders (PBDs) with generalized peroxisomal dysfunction include Zellweger syndrome (ZS), neonatal adrenoleukodystrophy (NALD), and infantile Refsum disease (IRD). There is clinical, biochemical, and genetic overlap among the three phenotypes, also known as Zellweger spectrum disorders. Clinical distinctions between the phenotypes are not sharply defined. Only limited sources are available to serve as a background for prognosis in PBD, especially in case of prolonged survival. We delineated the natural history of 31 PBD patients (age 1.2-24 years) through systematic clinical and biochemical investigations. We excluded classical ZS from our study, and included all patients with a biochemically confirmed generalized peroxisomal disorder over 1 year of age, irrespective of the previously diagnosed phenotype. The initial clinical suspicion, age at diagnosis, growth, development, neurological symptoms, organ involvements, and survival are summarized. Common to all patients were cognitive and motor dysfunction, retinopathy, sensorineural hearing impairment, and hepatic involvement. Many patients showed postnatal growth failure, 10 patients displayed hyperoxaluria of whom 4 had renal stones. Motor skills ranged from sitting with support to normal gait. Speech development ranged from non-verbal expression to grammatical speech and comprehensive reading. The neurodevelopmental course was variable with stable course, rapid decline with leukodystrophy, spinocerebellar syndrome, and slow decline over a wide range of faculties as outcome profiles. At the molecular level, 21 patients had mutations in the PEX1 gene. The two most common PEX1 mutations were the G843D (c.2528G-->A) missense and the c.2097insT frameshift mutation. Patients having the G843D/G843D or the G843D/c.2097insT genotypes were compared. Patients homozygous for G843D generally had a better developmental outcome. However, one patient who was homozygous for the "mild" G843D mutation had an early lethal disease, whereas two other patients had a phenotype overlapping with the G843D/c.2097insT group. This indicates that next to the PEX1 genotype other yet unknown factors determine the ultimate phenotype.
Collapse
Affiliation(s)
- Bwee Tien Poll-The
- Department of Pediatrics, Emma Children's Hospital, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
The peroxisome biogenesis disorders (PBDs) comprise 12 autosomal recessive complementation groups (CGs). The multisystem clinical phenotype varies widely in severity and results from disturbances in both development and metabolic homeostasis. Progress over the last several years has lead to identification of the genes responsible for all of these disorders and to a much improved understanding of the biogenesis and function of the peroxisome. Increasing availability of mouse models for these disorders offers hope for a better understanding of their pathophysiology and for development of therapies that might especially benefit patients at the milder end of the clinical phenotype.
Collapse
Affiliation(s)
- Sabine Weller
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | |
Collapse
|
49
|
Matsumoto N, Tamura S, Furuki S, Miyata N, Moser A, Shimozawa N, Moser HW, Suzuki Y, Kondo N, Fujiki Y. Mutations in novel peroxin gene PEX26 that cause peroxisome-biogenesis disorders of complementation group 8 provide a genotype-phenotype correlation. Am J Hum Genet 2003; 73:233-46. [PMID: 12851857 PMCID: PMC1180364 DOI: 10.1086/377004] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2003] [Accepted: 05/07/2003] [Indexed: 11/03/2022] Open
Abstract
The human disorders of peroxisome biogenesis (PBDs) are subdivided into 12 complementation groups (CGs). CG8 is one of the more common of these and is associated with varying phenotypes, ranging from the most severe, Zellweger syndrome (ZS), to the milder neonatal adrenoleukodystrophy (NALD) and infantile Refsum disease (IRD). PEX26, encoding the 305-amino-acid membrane peroxin, has been shown to be deficient in CG8. We studied the PEX26 genotype in fibroblasts of eight CG8 patients--four with the ZS phenotype, two with NALD, and two with IRD. Catalase was mostly cytosolic in all these cell lines, but import of the proteins that contained PTS1, the SKL peroxisome targeting sequence, was normal. Expression of PEX26 reestablished peroxisomes in all eight cell lines, confirming that PEX26 defects are pathogenic in CG8 patients. When cells were cultured at 30 degrees C, catalase import was restored in the cell lines from patients with the NALD and IRD phenotypes, but to a much lesser extent in those with the ZS phenotype, indicating that temperature sensitivity varied inversely with the severity of the clinical phenotype. Several types of mutations were identified, including homozygous G89R mutations in two patients with ZS. Expression of these PEX26 mutations in pex26 Chinese hamster ovary cells resulted in cell phenotypes similar to those in the human cell lines. These findings confirm that the degree of temperature sensitivity in pex26 cell lines is predictive of the clinical phenotype in patients with PEX26 deficiency.
Collapse
Affiliation(s)
- Naomi Matsumoto
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, Fukuoka, Japan; Department of Neurology and Pediatrics, Kennedy-Krieger Institute, Johns Hopkins University, Baltimore; Department of Pediatrics, Gifu University School of Medicine, Gifu, Japan; and SORST, Japan Science and Technology Corporation, Kawaguchi, Saitama, Japan
| | - Shigehiko Tamura
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, Fukuoka, Japan; Department of Neurology and Pediatrics, Kennedy-Krieger Institute, Johns Hopkins University, Baltimore; Department of Pediatrics, Gifu University School of Medicine, Gifu, Japan; and SORST, Japan Science and Technology Corporation, Kawaguchi, Saitama, Japan
| | - Satomi Furuki
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, Fukuoka, Japan; Department of Neurology and Pediatrics, Kennedy-Krieger Institute, Johns Hopkins University, Baltimore; Department of Pediatrics, Gifu University School of Medicine, Gifu, Japan; and SORST, Japan Science and Technology Corporation, Kawaguchi, Saitama, Japan
| | - Non Miyata
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, Fukuoka, Japan; Department of Neurology and Pediatrics, Kennedy-Krieger Institute, Johns Hopkins University, Baltimore; Department of Pediatrics, Gifu University School of Medicine, Gifu, Japan; and SORST, Japan Science and Technology Corporation, Kawaguchi, Saitama, Japan
| | - Ann Moser
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, Fukuoka, Japan; Department of Neurology and Pediatrics, Kennedy-Krieger Institute, Johns Hopkins University, Baltimore; Department of Pediatrics, Gifu University School of Medicine, Gifu, Japan; and SORST, Japan Science and Technology Corporation, Kawaguchi, Saitama, Japan
| | - Nobuyuki Shimozawa
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, Fukuoka, Japan; Department of Neurology and Pediatrics, Kennedy-Krieger Institute, Johns Hopkins University, Baltimore; Department of Pediatrics, Gifu University School of Medicine, Gifu, Japan; and SORST, Japan Science and Technology Corporation, Kawaguchi, Saitama, Japan
| | - Hugo W. Moser
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, Fukuoka, Japan; Department of Neurology and Pediatrics, Kennedy-Krieger Institute, Johns Hopkins University, Baltimore; Department of Pediatrics, Gifu University School of Medicine, Gifu, Japan; and SORST, Japan Science and Technology Corporation, Kawaguchi, Saitama, Japan
| | - Yasuyuki Suzuki
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, Fukuoka, Japan; Department of Neurology and Pediatrics, Kennedy-Krieger Institute, Johns Hopkins University, Baltimore; Department of Pediatrics, Gifu University School of Medicine, Gifu, Japan; and SORST, Japan Science and Technology Corporation, Kawaguchi, Saitama, Japan
| | - Naomi Kondo
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, Fukuoka, Japan; Department of Neurology and Pediatrics, Kennedy-Krieger Institute, Johns Hopkins University, Baltimore; Department of Pediatrics, Gifu University School of Medicine, Gifu, Japan; and SORST, Japan Science and Technology Corporation, Kawaguchi, Saitama, Japan
| | - Yukio Fujiki
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, Fukuoka, Japan; Department of Neurology and Pediatrics, Kennedy-Krieger Institute, Johns Hopkins University, Baltimore; Department of Pediatrics, Gifu University School of Medicine, Gifu, Japan; and SORST, Japan Science and Technology Corporation, Kawaguchi, Saitama, Japan
| |
Collapse
|
50
|
Gärtner J. Is there a Phenotype/Genotype Correlation in Peroxisome Biogenesis Disorders (PBDs)? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 544:59-65. [PMID: 14713213 DOI: 10.1007/978-1-4419-9072-3_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Affiliation(s)
- Jutta Gärtner
- Department of Pediatrics, Georg August University Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany.
| |
Collapse
|